Mon Feb Matrix algebra and matrix inverses. Announcements: Warm-up Exercise:

Size: px
Start display at page:

Download "Mon Feb Matrix algebra and matrix inverses. Announcements: Warm-up Exercise:"

Transcription

1 Math Week 5 notes We will not necessarily finish the material from a given day's notes on that day We may also add or subtract some material as the week progresses, but these notes represent an in-depth outline of what we plan to cover These notes cover material in Mon Feb Matrix algebra and matrix inverses Announcements: Warm-up Exercise: Remember from last week that matrices correspond to linear transformations, and that products of matrices are the matrices of compositions of linear transformations:

2 21 Matrix multiplication Suppose we take a composition of linear transformations: : n m, x = A x, A m n T 2 : m p, T 2 y = B y B p m Then the composition T 2 : n p is linear: i T 2 u v T 2 u v = T 2 u v linear = T 2 u T 2 v T 2 linear T 2 u T 2 v ii T 2 c u T 2 c u = T 2 c u linear = c T 2 u T 2 linear c T 2 u So T 2 : n p is a matrix transformation, by the theorem on the previous page Its j th column is T 2 e j = T 2 A e j = T 2 col j A = B col j A ie the matrix of T 2 : n p is where col j A = a j B a 1 B a 2 B a n B A Summary: For B p m and A m n the matrix product BA p or equivalently And, because BA is the matrix of T 2 n is defined by col j B A = B col j A j = 1 n entry i j B A = row i B col j A i = 1 p, j = 1 n BA x = B A x

3 21 matrix algebrawe already talked about matrix multiplication It interacts with matrix addition in interesting ways We can also add and scalar multiply matrices of the same size, just treating them as oddly-shaped vectors: Matrix algebra: addition and scalar multiplication: Let A m n, B m n be two matrices of the same dimensions (m rows and n columns) Let entry i j A = a i j, entry i j B = b i j (In this case we write A = a i j, B = b i j ) Let c be a scalar Then entry i j A B a i j b i j entry i j c A c a i j In other words, addition and scalar multiplication are defined analogously as for vectors In fact, for these two operations you can just think of matrices as vectors written in a rectangular rather than row or column format Exercise 1) Let A := 3 1 and B := 5 1 Compute 4 A B vector properties of matrix addition and scalar multiplication But other properties you're used to do hold: is commutative A B = B A entry ij A B = a ij b ij = b ij a ij = entry ij B A is associative A B C = A B C the ij entry of each side is a ij b ij c ij scalar multiplication distributes over c A B = ca cb ij entry of LHS is c a ij b ij = c a ij b ij = ij entry of RHS

4 More interesting are how matrix multiplication and addition interact: Check some of the following Let I n be the n n identity matrix, with I n x = x for all x n Let A, B, C have compatible dimensions so that the indicated expressions make sense Then a A B C = AB C (associative property of multiplication) b A B C = A B A C (left distributive law) c A B C = A C B C (right distributive law) d r AB = ra B = A rb for any scalar r e) If A m n then I m A = A and A I n = A Warning: AB BA in general In fact, the sizes won't even match up if you don't use square matrices

5 The transpose operation: Definition: Let B m n = b i j Then the transpose of B, denoted by B T is an n m matrix defined by entry i j B T entry j i B = b j i The effect of this definition is to turn the columns of B into the rows of B T : entry i col j B = b i j entry i row j B T = entry j i B T = b i j And to turn the rows of B into the columns of B T : entry j row i B = b i j entry j col i B T = entry j i B T = b i j Exercise 2) explore these properties with the identity T = Algebra of transpose: a A T T = A b A B T = A T B T c for every scalar r ra T = r A T d (The only surprising property, so we should check it) A B T = B T A T

6 22 matrix inverses We've been talking about matrix algebra: addition, scalar multiplication, multiplication, and how these operations combine But I haven't told you what the algebra on the previous page is good for Today we'll start to find out By way of comparison, think of a scalar linear equation with known numbers a, b, c, d and an unknown number x, a x b = c x d We know how to solve it by collecting terms and doing scalar algebra: a x c x = d b a c x = d b * x = d b a c How would you solve such an equation if A, B, C, D were square matrices, and X was a vector (or matrix)? Well, you could use the matrix algebra properties we've been discussing to get to the step And then if X was a vector you could solve the system * with Gaussian elimination In fact, if X was a matrix, you could solve for each column of X (and do it all at once) with Gaussian elimination But you couldn't proceed as with scalars and do the final step after the * because it is not possible to divide by a matrix Today we'll talk about a potential shortcut for that last step that is an analog of of dividing, in order to solve for X It involves the concept of inverse matrices

7 Matrix inverses: A square matrix A n n is invertible if there is a matrix B n n so that AB = BA = I In this case we call B the inverse of A, and write B = A 1 Remark 1: A matrix A can have at most one inverse, because if we have two candidates B, C with AB = BA = I and also AC = CA = I then BA C = IC = C B AC = BI = B so since the associative property BA C = B AC is true, it must be that B = C Remark 2: In terms of linear transformations, if T : n n is the linear transformation T x = A x, then saying that A has an inverse matrix is the same as saying that T has an inverse linear transformation, : n n with matrix B so that T x = x x n and T y = y y n Your final food for thought question from last Friday explains why linear transformations T : n m only have a chance at having inverse transforms when n = m Exercise 1a) Verify that for A = the inverse matrix is A 1 =

8 Inverse matrices can be useful in solving algebra problems For example Theorem: If A 1 exists then the only solution to Ax = b is x = A 1 b Exercise 1b) Use the theorem and A 1 in 2a, to write down the solution to the system x 2 y = 5 3 x 4 y = 6 Exercise 2a) Use matrix algebra to verify why the Theorem above is true Notice that the correct formula is x = A 1 b and not x = b A 1 (This second product can't even be computed because the dimensions don't match up!)

9 Corollary: If A 1 exists, then the reduced row echelon form of A is the identity matrix proof: For a square matrix, solutions to A x = b always exist and are unique only when A reduces to the identity When A 1 exists, the solutions to A x = b exist and are unique, so rref A must equal the identity Exercise 3 Assuming A is a square matrix with an inverse A 1, and that the matrices in the equation below have dimensions which make for meaningful equation, solve for X in terms of the other matrices: XA C = B

10 But where did that formula for A 1 come from? One Answer: Consider A 1 as an unknown matrix, A 1 = X We want A X = I We can break this matrix equation down by the columns of X In the two by two case we get: A col 1 X col 2 X = In other words, the two columns of the inverse matrix X should satisfy A col 1 X = 1 0, A col 2 X = 0 1 We can solve for both of these mystery columns at once, as we've done before when we had different right hand sides: Exercise 3: Reduce the double augmented matrix to find the two columns of A 1 for the previous example

11 For 2 2 matrices there's also a cool formula for inverse matrices: Theorem: this case, a b c d 1 exists if and only if the determinant D = ad 1 bc of a b c d is non-zero And in a b 1 d b = c d ad bc c a (Notice that the diagonal entries have been swapped, and minus signs have been placed in front of the offdiagonal terms This formula should be memorized) Exercise 4) Check that the magic formula reproduces the answer you got in Exercise 3 for Remark) If ad bc = 0 then rows of A are multiples of each other, so A cannot reduce to the identity, so doesn't have an inverse matrix

12 Exercise 4: Will this always work? Can you find A 1 for A := ?

13 1 5 5 Exercise 5) Will this always work? Try to find B 1 for B := Here's what happens when we try to find the three columns of B 1 : BaugI rref BaugI =

14 Tues Feb Matrix inverses Announcements: Warm-up Exercise:

15 Theorem: Let A n n be a square matrix Then A has an inverse matrix if and only if its reduced row echelon form is the identity In this case the algorithm illustrated in our examples will yield A 1 explanation: By the theorem, we discussed on Monday, when A 1 exists, the linear systems A x = b always have unique solutions (x = A 1 b From our previous discussions about reduced row echelon form, we know that for square matrices, solutions to such linear systems exist and are unique if and only if the reduced row echelon form of A is the identity matrix Thus by logic, whenever A 1 exists, A reduces to the identity In this case that A does reduce to I, we search for A 1 as the solution matrix X to the matrix equation A X = I ie A col 1 X col 2 X col n X = Because A reduces to the identity matrix, we may solve for X column by column as in the examples we've worked, by using a chain of elementary row operations: A I I B, and deduce that the columns of X are exactly the columns of B, ie X = B Thus we know that A B = I To realize that B A = I as well, we would try to solve B Y = I for Y, and hope Y = A But we can actually verify this fact by reordering the columns of I B to read B I and then reversing each of the elementary row operations in the first computation, ie create the reversed chain of elementary row operations, B I I A so B A = I also holds (This is one of those rare times when matrix multiplication actually is commuative) To summarize: If A 1 exists, then solutions x to A x = b always exist and are unique, so the reduced row echelon form of A is the identity If the reduced row echelon form of A is the identity, then A 1 exists, because we can find it using the algorithm above That's exactly what the Theorem claims

16 Saying the same thing in lots of different ways (important because it ties a lot of our Chapter 1-2 ideas together): Can you explain why these are all equivalent? The invertible matrix theorem (page 114) Let A be a square n n matrix Then the following statements are equivalent That is, for a given A, the statements are either all true or all false a) A is an invertible matrix b) The reduced row echelon form of A is the n n identity matrix c) A has n pivot positions d) The equation A x = 0 has only the trivial solution x = 0 e) The columns of A form a linearly independent set f) The linear transformation T x A x is one-one g) The equation A x = b has at least one solution for each b n h) The columns of A span n i) The linear transformation T x A x maps n onto n j) There is an n n matrix C such that C A = I k) There is an n n matrix D such that A D = I l) A T is an invertible matrix

17 Wed Feb Matrix inverses: the product of elementary matrices approach to matrix inverses Announcements: Warm-up Exercise:

18 Exercise 1) Show that if A, B, C are invertible matrices, then A B 1 = B 1 A 1 ABC 1 = C 1 B 1 A 1 Theorem The product of n n invertible matrices is invertible, and the inverse of the product is the product of their inverses in reverse order

19 Saying the same thing in lots of different ways (important because it ties a lot of our Chapter 1-2 ideas together): Can you explain why these are all equivalent? The invertible matrix theorem (page 114) Let A be a square n n matrix Then the following statements are equivalent That is, for a given A, the statements are either all true or all false a) A is an invertible matrix b) The reduced row echelon form of A is the n n identity matrix c) A has n pivot positions

20 d) The equation A x = 0 has only the trivial solution x = 0 e) The columns of A form a linearly independent set f) The linear transformation T x A x is one-one

21 g) The equation A x = b has at least one solution for each b n h) The columns of A span n i) The linear transformation T x A x maps n onto n

22 j) There is an n n matrix C such that C A = I k) There is an n n matrix D such that A D = I l) A T is an invertible matrix

23 Wed Feb Matrix inverses: the product of elementary matrices approach to matrix inverses Announcements: Warm-up Exercise:

24 Exercise 1) Show that if A, B, C are invertible matrices, then A B 1 = B 1 A 1 ABC 1 = C 1 B 1 A 1 Theorem The product of n n invertible matrices is invertible, and the inverse of the product is the product of their inverses in reverse order

25 Our algorithm for finding the inverse of a matrix can be reformulated in terms of a product of so-called "elementary" matrices This product idea will pay off elsewhere To get started, let's notice an analog of the fact that a matrix times a vector is a linear combination of the matrix columns That was in fact how we defined matrix times vector in week 2, although we usually use the dot product way of computing the product entry by entry, instead: Definition (from 14) If A is an m n matrix, with columns a 1, a 2, a n (in m ) and if x n, then A x is defined to be the linear combination of the columns, with weights given by the corresponding entries of x In other words, A x = a 1 a 2 a n x x 1 a 1 x 2 a 2 x n a n Theorem If we multiply a row vector times an n B: proof: We want to check whether m matrix B we get a linear combination of the rows of b 1 x T B = x 1 x 2 x n b 1 : = x 1 b 1 x 2 b 2 x n b n b n where the rows of B are given by the row vectors b 1, b 2, b n This proposed identity is true if and only if its transpose is a true identity But the transpose of the left side is x T B T = B T x T T = B T x = b 1 T b2 T bn T x T T T x 1 b 1 x 2 b 2 x n b n which is the transpose of the right side of the proposed identity So the identity is true QED

26 Exercise 2a Use the Theorem on the previous page and work row by row on so-called "elementary matrix" E 1 on the right of the product below, to show that E 1 A is the result of replacing row 3 A with row 3 A 2 row 1 A, and leaving the other rows unchanged: a 11 a 12 a 13 a 21 a 22 a 23 = a 31 a 32 a 33 2b) The inverse of E 1 must undo the original elementary row operation, so must replace any row 3 A with row 3 A 2 row 1 A So it must be true that Check! E 1 1 = c) What 3 3 matrix E 2 can we multiply times A, in order to multiply row 2 A by 5 and leave the other rows unchanged What is E 2 1? 2d) What 3 3 matrix E 3 can we multiply time A, in order to swap row 1 A with row 3 A? What is E 3 1?

27 Definition An elementary matrix E is one that is obtained by doing a single elementary row operation on the identity matrix Theorem Let E m m be an elementary matrix Let A m n Then the product E A is the result of doing the same elementary row operation to A that was used to construct E from the identity matrix Algorithm for finding A 1 re-interpreted: Suppose a sequence of elementary row operations reduces the n n square matrix A to the identity I n Let the corresponding elementary matrices, in order, be given by Then we have E 1, E 2, E p E p E p 1 E 2 E 1 A = I n E p E p 1 E 2 E 1 A = I n So, A 1 = E p E p 1 E 2 E 1 Notice that E p E p 1 E 2 E 1 = E p E p 1 E 2 E 1 I n so we have obtained A 1 by starting with the identity matrix, and doing the same elementary row operations to it that we did to A, in order to reduce A to the identity I find this explanation of our original algorithm to be somewhat convoluted, but as I said, the matrix product decomposition idea is going to pay dividends elsewhere Also, notice that we have ended up "factoring" A into a product of elementary matrices: A = A 1 1 = 1 Ep E p 1 E 2 E 1 = 1 1 E1 E2 1 Ep 1 E p 1

Mon Feb Matrix inverses, the elementary matrix approach overview of skipped section 2.5. Announcements: Warm-up Exercise:

Mon Feb Matrix inverses, the elementary matrix approach overview of skipped section 2.5. Announcements: Warm-up Exercise: Math 2270-004 Week 6 notes We will not necessarily finish the material from a given day's notes on that day We may also add or subtract some material as the week progresses, but these notes represent an

More information

if we factor non-zero factors out of rows, we factor the same factors out of the determinants.

if we factor non-zero factors out of rows, we factor the same factors out of the determinants. Theorem: Let A n n. Then A 1 exists if and only if det A 0. proof: We already know that A 1 exists if and only if the reduced row echelon form of A is the identity matrix. Now, consider reducing A to its

More information

A 2. =... = c c N. 's arise from the three types of elementary row operations. If rref A = I its determinant is 1, and A = c 1

A 2. =... = c c N. 's arise from the three types of elementary row operations. If rref A = I its determinant is 1, and A = c 1 Theorem: Let A n n Then A 1 exists if and only if det A 0 proof: We already know that A 1 exists if and only if the reduced row echelon form of A is the identity matrix Now, consider reducing A to its

More information

Chapter 2 Notes, Linear Algebra 5e Lay

Chapter 2 Notes, Linear Algebra 5e Lay Contents.1 Operations with Matrices..................................1.1 Addition and Subtraction.............................1. Multiplication by a scalar............................ 3.1.3 Multiplication

More information

Math Week 1 notes

Math Week 1 notes Math 2270-004 Week notes We will not necessarily finish the material from a given day's notes on that day. Or on an amazing day we may get farther than I've predicted. We may also add or subtract some

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

Matrix operations Linear Algebra with Computer Science Application

Matrix operations Linear Algebra with Computer Science Application Linear Algebra with Computer Science Application February 14, 2018 1 Matrix operations 11 Matrix operations If A is an m n matrix that is, a matrix with m rows and n columns then the scalar entry in the

More information

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES LECTURES 14/15: LINEAR INDEPENDENCE AND BASES MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1. Linear Independence We have seen in examples of span sets of vectors that sometimes adding additional vectors

More information

Review Let A, B, and C be matrices of the same size, and let r and s be scalars. Then

Review Let A, B, and C be matrices of the same size, and let r and s be scalars. Then 1 Sec 21 Matrix Operations Review Let A, B, and C be matrices of the same size, and let r and s be scalars Then (i) A + B = B + A (iv) r(a + B) = ra + rb (ii) (A + B) + C = A + (B + C) (v) (r + s)a = ra

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

Review Solutions for Exam 1

Review Solutions for Exam 1 Definitions Basic Theorems. Finish the definition: Review Solutions for Exam (a) A linear combination of vectors {v,..., v n } is: any vector of the form c v + c v + + c n v n (b) A set of vectors {v,...,

More information

is any vector v that is a sum of scalar multiples of those vectors, i.e. any v expressible as v = c 1 v n ... c n v 2 = 0 c 1 = c 2

is any vector v that is a sum of scalar multiples of those vectors, i.e. any v expressible as v = c 1 v n ... c n v 2 = 0 c 1 = c 2 Math 225-4 Week 8 Finish sections 42-44 and linear combination concepts, and then begin Chapter 5 on linear differential equations, sections 5-52 Mon Feb 27 Use last Friday's notes to talk about linear

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

Tues Feb Vector spaces and subspaces. Announcements: Warm-up Exercise:

Tues Feb Vector spaces and subspaces. Announcements: Warm-up Exercise: Math 2270-004 Week 7 notes We will not necessarily finish the material from a given day's notes on that day. We may also add or subtract some material as the week progresses, but these notes represent

More information

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2 Week 22 Equations, Matrices and Transformations Coefficient Matrix and Vector Forms of a Linear System Suppose we have a system of m linear equations in n unknowns a 11 x 1 + a 12 x 2 + + a 1n x n b 1

More information

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511)

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) D. ARAPURA Gaussian elimination is the go to method for all basic linear classes including this one. We go summarize the main ideas. 1.

More information

Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Elementary Matrices. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Elementary Matrices MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Outline Today s discussion will focus on: elementary matrices and their properties, using elementary

More information

Lecture 2 Systems of Linear Equations and Matrices, Continued

Lecture 2 Systems of Linear Equations and Matrices, Continued Lecture 2 Systems of Linear Equations and Matrices, Continued Math 19620 Outline of Lecture Algorithm for putting a matrix in row reduced echelon form - i.e. Gauss-Jordan Elimination Number of Solutions

More information

Topic 15 Notes Jeremy Orloff

Topic 15 Notes Jeremy Orloff Topic 5 Notes Jeremy Orloff 5 Transpose, Inverse, Determinant 5. Goals. Know the definition and be able to compute the inverse of any square matrix using row operations. 2. Know the properties of inverses.

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 8: Inverse of a Matrix Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/0 Announcements We will not make it to section. tonight,

More information

CHAPTER 1 MATRICES SECTION 1.1 MATRIX ALGEBRA. matrices Configurations like π 6 1/2

CHAPTER 1 MATRICES SECTION 1.1 MATRIX ALGEBRA. matrices Configurations like π 6 1/2 page 1 of Section 11 CHAPTER 1 MATRICES SECTION 11 MATRIX ALGEBRA matrices Configurations like 2 3 4 1 6 5, 2 3 7 1 2 π 6 1/2 are called matrices The numbers inside the matrix are called entries If the

More information

INVERSE OF A MATRIX [2.2]

INVERSE OF A MATRIX [2.2] INVERSE OF A MATRIX [2.2] The inverse of a matrix: Introduction We have a mapping from R n to R n represented by a matrix A. Can we invert this mapping? i.e. can we find a matrix (call it B for now) such

More information

Section 2.2: The Inverse of a Matrix

Section 2.2: The Inverse of a Matrix Section 22: The Inverse of a Matrix Recall that a linear equation ax b, where a and b are scalars and a 0, has the unique solution x a 1 b, where a 1 is the reciprocal of a From this result, it is natural

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.7 LINEAR INDEPENDENCE LINEAR INDEPENDENCE Definition: An indexed set of vectors {v 1,, v p } in n is said to be linearly independent if the vector equation x x x

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University February 6, 2018 Linear Algebra (MTH

More information

MATH 152 Exam 1-Solutions 135 pts. Write your answers on separate paper. You do not need to copy the questions. Show your work!!!

MATH 152 Exam 1-Solutions 135 pts. Write your answers on separate paper. You do not need to copy the questions. Show your work!!! MATH Exam -Solutions pts Write your answers on separate paper. You do not need to copy the questions. Show your work!!!. ( pts) Find the reduced row echelon form of the matrix Solution : 4 4 6 4 4 R R

More information

Fall Inverse of a matrix. Institute: UC San Diego. Authors: Alexander Knop

Fall Inverse of a matrix. Institute: UC San Diego. Authors: Alexander Knop Fall 2017 Inverse of a matrix Authors: Alexander Knop Institute: UC San Diego Row-Column Rule If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding

More information

Math 344 Lecture # Linear Systems

Math 344 Lecture # Linear Systems Math 344 Lecture #12 2.7 Linear Systems Through a choice of bases S and T for finite dimensional vector spaces V (with dimension n) and W (with dimension m), a linear equation L(v) = w becomes the linear

More information

MATH 2030: MATRICES. Example 0.2. Q:Define A 1 =, A. 3 4 A: We wish to find c 1, c 2, and c 3 such that. c 1 + c c

MATH 2030: MATRICES. Example 0.2. Q:Define A 1 =, A. 3 4 A: We wish to find c 1, c 2, and c 3 such that. c 1 + c c MATH 2030: MATRICES Matrix Algebra As with vectors, we may use the algebra of matrices to simplify calculations. However, matrices have operations that vectors do not possess, and so it will be of interest

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 7 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 7 1 / 8 Properties of the matrix product Let us show that the matrix product we

More information

INVERSE OF A MATRIX [2.2] 8-1

INVERSE OF A MATRIX [2.2] 8-1 INVERSE OF A MATRIX [2.2] 8-1 The inverse of a matrix: Introduction We have a mapping from R n to R n represented by a matrix A. Can we invert this mapping? i.e. can we find a matrix (call it B for now)

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2018 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

February 20 Math 3260 sec. 56 Spring 2018

February 20 Math 3260 sec. 56 Spring 2018 February 20 Math 3260 sec. 56 Spring 2018 Section 2.2: Inverse of a Matrix Consider the scalar equation ax = b. Provided a 0, we can solve this explicity x = a 1 b where a 1 is the unique number such that

More information

Definition 2.3. We define addition and multiplication of matrices as follows.

Definition 2.3. We define addition and multiplication of matrices as follows. 14 Chapter 2 Matrices In this chapter, we review matrix algebra from Linear Algebra I, consider row and column operations on matrices, and define the rank of a matrix. Along the way prove that the row

More information

Linear Algebra: Lecture Notes. Dr Rachel Quinlan School of Mathematics, Statistics and Applied Mathematics NUI Galway

Linear Algebra: Lecture Notes. Dr Rachel Quinlan School of Mathematics, Statistics and Applied Mathematics NUI Galway Linear Algebra: Lecture Notes Dr Rachel Quinlan School of Mathematics, Statistics and Applied Mathematics NUI Galway November 6, 23 Contents Systems of Linear Equations 2 Introduction 2 2 Elementary Row

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

MITOCW ocw f99-lec30_300k

MITOCW ocw f99-lec30_300k MITOCW ocw-18.06-f99-lec30_300k OK, this is the lecture on linear transformations. Actually, linear algebra courses used to begin with this lecture, so you could say I'm beginning this course again by

More information

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic A FIRST COURSE IN LINEAR ALGEBRA An Open Text by Ken Kuttler Matrix Arithmetic Lecture Notes by Karen Seyffarth Adapted by LYRYX SERVICE COURSE SOLUTION Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)

More information

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix Math 34H EXAM I Do all of the problems below. Point values for each of the problems are adjacent to the problem number. Calculators may be used to check your answer but not to arrive at your answer. That

More information

Introduction to Matrices

Introduction to Matrices POLS 704 Introduction to Matrices Introduction to Matrices. The Cast of Characters A matrix is a rectangular array (i.e., a table) of numbers. For example, 2 3 X 4 5 6 (4 3) 7 8 9 0 0 0 Thismatrix,with4rowsand3columns,isoforder

More information

Linear Algebra. Chapter Linear Equations

Linear Algebra. Chapter Linear Equations Chapter 3 Linear Algebra Dixit algorizmi. Or, So said al-khwarizmi, being the opening words of a 12 th century Latin translation of a work on arithmetic by al-khwarizmi (ca. 78 84). 3.1 Linear Equations

More information

[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of

[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of . Matrices A matrix is any rectangular array of numbers. For example 3 5 6 4 8 3 3 is 3 4 matrix, i.e. a rectangular array of numbers with three rows four columns. We usually use capital letters for matrices,

More information

LINEAR ALGEBRA REVIEW

LINEAR ALGEBRA REVIEW LINEAR ALGEBRA REVIEW SPENCER BECKER-KAHN Basic Definitions Domain and Codomain. Let f : X Y be any function. This notation means that X is the domain of f and Y is the codomain of f. This means that for

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij Topics Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij or a ij lives in row i and column j Definition of a matrix

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. To repeat the recipe: These matrices are constructed by performing the given row

More information

Math Camp II. Basic Linear Algebra. Yiqing Xu. Aug 26, 2014 MIT

Math Camp II. Basic Linear Algebra. Yiqing Xu. Aug 26, 2014 MIT Math Camp II Basic Linear Algebra Yiqing Xu MIT Aug 26, 2014 1 Solving Systems of Linear Equations 2 Vectors and Vector Spaces 3 Matrices 4 Least Squares Systems of Linear Equations Definition A linear

More information

Solutions to Exam I MATH 304, section 6

Solutions to Exam I MATH 304, section 6 Solutions to Exam I MATH 304, section 6 YOU MUST SHOW ALL WORK TO GET CREDIT. Problem 1. Let A = 1 2 5 6 1 2 5 6 3 2 0 0 1 3 1 1 2 0 1 3, B =, C =, I = I 0 0 0 1 1 3 4 = 4 4 identity matrix. 3 1 2 6 0

More information

Next topics: Solving systems of linear equations

Next topics: Solving systems of linear equations Next topics: Solving systems of linear equations 1 Gaussian elimination (today) 2 Gaussian elimination with partial pivoting (Week 9) 3 The method of LU-decomposition (Week 10) 4 Iterative techniques:

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 9: Characterizations of Invertible Matrices Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/ Announcements Review for Exam 1

More information

All of my class notes can be found at

All of my class notes can be found at My name is Leon Hostetler I am currently a student at Florida State University majoring in physics as well as applied and computational mathematics Feel free to download, print, and use these class notes

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

Announcements Wednesday, November 01

Announcements Wednesday, November 01 Announcements Wednesday, November 01 WeBWorK 3.1, 3.2 are due today at 11:59pm. The quiz on Friday covers 3.1, 3.2. My office is Skiles 244. Rabinoffice hours are Monday, 1 3pm and Tuesday, 9 11am. Section

More information

Math 123, Week 2: Matrix Operations, Inverses

Math 123, Week 2: Matrix Operations, Inverses Math 23, Week 2: Matrix Operations, Inverses Section : Matrices We have introduced ourselves to the grid-like coefficient matrix when performing Gaussian elimination We now formally define general matrices

More information

Inverting Matrices. 1 Properties of Transpose. 2 Matrix Algebra. P. Danziger 3.2, 3.3

Inverting Matrices. 1 Properties of Transpose. 2 Matrix Algebra. P. Danziger 3.2, 3.3 3., 3.3 Inverting Matrices P. Danziger 1 Properties of Transpose Transpose has higher precedence than multiplication and addition, so AB T A ( B T and A + B T A + ( B T As opposed to the bracketed expressions

More information

x + 2y + 3z = 8 x + 3y = 7 x + 2z = 3

x + 2y + 3z = 8 x + 3y = 7 x + 2z = 3 Chapter 2: Solving Linear Equations 23 Elimination Using Matrices As we saw in the presentation, we can use elimination to make a system of linear equations into an upper triangular system that is easy

More information

Recall, we solved the system below in a previous section. Here, we learn another method. x + 4y = 14 5x + 3y = 2

Recall, we solved the system below in a previous section. Here, we learn another method. x + 4y = 14 5x + 3y = 2 We will learn how to use a matrix to solve a system of equations. College algebra Class notes Matrices and Systems of Equations (section 6.) Recall, we solved the system below in a previous section. Here,

More information

3.4 Elementary Matrices and Matrix Inverse

3.4 Elementary Matrices and Matrix Inverse Math 220: Summer 2015 3.4 Elementary Matrices and Matrix Inverse A n n elementary matrix is a matrix which is obtained from the n n identity matrix I n n by a single elementary row operation. Elementary

More information

Graduate Mathematical Economics Lecture 1

Graduate Mathematical Economics Lecture 1 Graduate Mathematical Economics Lecture 1 Yu Ren WISE, Xiamen University September 23, 2012 Outline 1 2 Course Outline ematical techniques used in graduate level economics courses Mathematics for Economists

More information

MITOCW ocw f99-lec17_300k

MITOCW ocw f99-lec17_300k MITOCW ocw-18.06-f99-lec17_300k OK, here's the last lecture in the chapter on orthogonality. So we met orthogonal vectors, two vectors, we met orthogonal subspaces, like the row space and null space. Now

More information

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants.

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. Elementary matrices Theorem 1 Any elementary row operation σ on matrices with n rows can be simulated as left multiplication

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 13 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 13 1 / 8 The coordinate vector space R n We already used vectors in n dimensions

More information

ANSWERS. Answer: Perform combo(3,2,-1) on I then combo(1,3,-4) on the result. The elimination matrix is

ANSWERS. Answer: Perform combo(3,2,-1) on I then combo(1,3,-4) on the result. The elimination matrix is MATH 227-2 Sample Exam 1 Spring 216 ANSWERS 1. (1 points) (a) Give a counter example or explain why it is true. If A and B are n n invertible, and C T denotes the transpose of a matrix C, then (AB 1 )

More information

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS 1. HW 1: Due September 4 1.1.21. Suppose v, w R n and c is a scalar. Prove that Span(v + cw, w) = Span(v, w). We must prove two things: that every element

More information

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4 Linear Algebra Section. : LU Decomposition Section. : Permutations and transposes Wednesday, February 1th Math 01 Week # 1 The LU Decomposition We learned last time that we can factor a invertible matrix

More information

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Midterm 1 Review Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Summary This Midterm Review contains notes on sections 1.1 1.5 and 1.7 in your

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 18.06 Linear Algebra, Spring 2005 Please use the following citation format: Gilbert Strang, 18.06 Linear Algebra, Spring 2005. (Massachusetts Institute of Technology:

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes.

Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes. Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes Matrices and linear equations A matrix is an m-by-n array of numbers A = a 11 a 12 a 13 a 1n a 21 a 22 a 23 a

More information

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES 1 CHAPTER 4 MATRICES 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES 1 Matrices Matrices are of fundamental importance in 2-dimensional and 3-dimensional graphics programming

More information

MTH501- Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~

MTH501- Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~ MTH501- Linear Algebra MCQS MIDTERM EXAMINATION ~ LIBRIANSMINE ~ Question No: 1 (Marks: 1) If for a linear transformation the equation T(x) =0 has only the trivial solution then T is One-to-one Onto Question

More information

is Use at most six elementary row operations. (Partial

is Use at most six elementary row operations. (Partial MATH 235 SPRING 2 EXAM SOLUTIONS () (6 points) a) Show that the reduced row echelon form of the augmented matrix of the system x + + 2x 4 + x 5 = 3 x x 3 + x 4 + x 5 = 2 2x + 2x 3 2x 4 x 5 = 3 is. Use

More information

1 Last time: determinants

1 Last time: determinants 1 Last time: determinants Let n be a positive integer If A is an n n matrix, then its determinant is the number det A = Π(X, A)( 1) inv(x) X S n where S n is the set of n n permutation matrices Π(X, A)

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 1 Material Dr. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University January 9, 2018 Linear Algebra (MTH 464)

More information

Linear Algebra Exam 1 Spring 2007

Linear Algebra Exam 1 Spring 2007 Linear Algebra Exam 1 Spring 2007 March 15, 2007 Name: SOLUTION KEY (Total 55 points, plus 5 more for Pledged Assignment.) Honor Code Statement: Directions: Complete all problems. Justify all answers/solutions.

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information

Elementary Row Operations on Matrices

Elementary Row Operations on Matrices King Saud University September 17, 018 Table of contents 1 Definition A real matrix is a rectangular array whose entries are real numbers. These numbers are organized on rows and columns. An m n matrix

More information

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions.

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. Review for Exam. Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. x + y z = 2 x + 2y + z = 3 x + y + (a 2 5)z = a 2 The augmented matrix for

More information

1300 Linear Algebra and Vector Geometry

1300 Linear Algebra and Vector Geometry 1300 Linear Algebra and Vector Geometry R. Craigen Office: MH 523 Email: craigenr@umanitoba.ca May-June 2017 Introduction: linear equations Read 1.1 (in the text that is!) Go to course, class webpages.

More information

Linear Algebra March 16, 2019

Linear Algebra March 16, 2019 Linear Algebra March 16, 2019 2 Contents 0.1 Notation................................ 4 1 Systems of linear equations, and matrices 5 1.1 Systems of linear equations..................... 5 1.2 Augmented

More information

MAT 2037 LINEAR ALGEBRA I web:

MAT 2037 LINEAR ALGEBRA I web: MAT 237 LINEAR ALGEBRA I 2625 Dokuz Eylül University, Faculty of Science, Department of Mathematics web: Instructor: Engin Mermut http://kisideuedutr/enginmermut/ HOMEWORK 2 MATRIX ALGEBRA Textbook: Linear

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)

More information

Matrix Factorization Reading: Lay 2.5

Matrix Factorization Reading: Lay 2.5 Matrix Factorization Reading: Lay 2.5 October, 20 You have seen that if we know the inverse A of a matrix A, we can easily solve the equation Ax = b. Solving a large number of equations Ax = b, Ax 2 =

More information

Chapter 4. Solving Systems of Equations. Chapter 4

Chapter 4. Solving Systems of Equations. Chapter 4 Solving Systems of Equations 3 Scenarios for Solutions There are three general situations we may find ourselves in when attempting to solve systems of equations: 1 The system could have one unique solution.

More information

3 Matrix Algebra. 3.1 Operations on matrices

3 Matrix Algebra. 3.1 Operations on matrices 3 Matrix Algebra A matrix is a rectangular array of numbers; it is of size m n if it has m rows and n columns. A 1 n matrix is a row vector; an m 1 matrix is a column vector. For example: 1 5 3 5 3 5 8

More information

Chapter 1: Linear Equations

Chapter 1: Linear Equations Chapter : Linear Equations (Last Updated: September, 6) The material for these notes is derived primarily from Linear Algebra and its applications by David Lay (4ed).. Systems of Linear Equations Before

More information

MODEL ANSWERS TO THE THIRD HOMEWORK

MODEL ANSWERS TO THE THIRD HOMEWORK MODEL ANSWERS TO THE THIRD HOMEWORK 1 (i) We apply Gaussian elimination to A First note that the second row is a multiple of the first row So we need to swap the second and third rows 1 3 2 1 2 6 5 7 3

More information

Linear Algebra II. 2 Matrices. Notes 2 21st October Matrix algebra

Linear Algebra II. 2 Matrices. Notes 2 21st October Matrix algebra MTH6140 Linear Algebra II Notes 2 21st October 2010 2 Matrices You have certainly seen matrices before; indeed, we met some in the first chapter of the notes Here we revise matrix algebra, consider row

More information

Chapter 2: Matrices and Linear Systems

Chapter 2: Matrices and Linear Systems Chapter 2: Matrices and Linear Systems Paul Pearson Outline Matrices Linear systems Row operations Inverses Determinants Matrices Definition An m n matrix A = (a ij ) is a rectangular array of real numbers

More information

Lecture 9: Elementary Matrices

Lecture 9: Elementary Matrices Lecture 9: Elementary Matrices Review of Row Reduced Echelon Form Consider the matrix A and the vector b defined as follows: 1 2 1 A b 3 8 5 A common technique to solve linear equations of the form Ax

More information

POLI270 - Linear Algebra

POLI270 - Linear Algebra POLI7 - Linear Algebra Septemer 8th Basics a x + a x +... + a n x n b () is the linear form where a, b are parameters and x n are variables. For a given equation such as x +x you only need a variable and

More information

Matrices and systems of linear equations

Matrices and systems of linear equations Matrices and systems of linear equations Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T.

More information

Linear Algebra: Lecture notes from Kolman and Hill 9th edition.

Linear Algebra: Lecture notes from Kolman and Hill 9th edition. Linear Algebra: Lecture notes from Kolman and Hill 9th edition Taylan Şengül March 20, 2019 Please let me know of any mistakes in these notes Contents Week 1 1 11 Systems of Linear Equations 1 12 Matrices

More information

Review of matrices. Let m, n IN. A rectangle of numbers written like A =

Review of matrices. Let m, n IN. A rectangle of numbers written like A = Review of matrices Let m, n IN. A rectangle of numbers written like a 11 a 12... a 1n a 21 a 22... a 2n A =...... a m1 a m2... a mn where each a ij IR is called a matrix with m rows and n columns or an

More information

Section 12.4 Algebra of Matrices

Section 12.4 Algebra of Matrices 244 Section 2.4 Algebra of Matrices Before we can discuss Matrix Algebra, we need to have a clear idea what it means to say that two matrices are equal. Let's start a definition. Equal Matrices Two matrices

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Michaelmas Term 2015 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Michaelmas Term 2015 1 / 8 Elementary matrices Let us define elementary matrices.

More information

Final Exam Practice Problems Answers Math 24 Winter 2012

Final Exam Practice Problems Answers Math 24 Winter 2012 Final Exam Practice Problems Answers Math 4 Winter 0 () The Jordan product of two n n matrices is defined as A B = (AB + BA), where the products inside the parentheses are standard matrix product. Is the

More information

is a 3 4 matrix. It has 3 rows and 4 columns. The first row is the horizontal row [ ]

is a 3 4 matrix. It has 3 rows and 4 columns. The first row is the horizontal row [ ] Matrices: Definition: An m n matrix, A m n is a rectangular array of numbers with m rows and n columns: a, a, a,n a, a, a,n A m,n =...... a m, a m, a m,n Each a i,j is the entry at the i th row, j th column.

More information

LECTURE 12: SOLUTIONS TO SIMULTANEOUS LINEAR EQUATIONS. Prof. N. Harnew University of Oxford MT 2012

LECTURE 12: SOLUTIONS TO SIMULTANEOUS LINEAR EQUATIONS. Prof. N. Harnew University of Oxford MT 2012 LECTURE 12: SOLUTIONS TO SIMULTANEOUS LINEAR EQUATIONS Prof. N. Harnew University of Oxford MT 2012 1 Outline: 12. SOLUTIONS TO SIMULTANEOUS LINEAR EQUATIONS 12.1 Methods used to solve for unique solution

More information

Elementary Linear Algebra

Elementary Linear Algebra Matrices J MUSCAT Elementary Linear Algebra Matrices Definition Dr J Muscat 2002 A matrix is a rectangular array of numbers, arranged in rows and columns a a 2 a 3 a n a 2 a 22 a 23 a 2n A = a m a mn We

More information