ELECTROSTATICS. kq q SUPERPOSITION

Size: px
Start display at page:

Download "ELECTROSTATICS. kq q SUPERPOSITION"

Transcription

1 ELECTROSTATICS As seen in class, we observe both attractive and repulsive forces. This requires at least two kinds of charge. Although more is possible we choose the simplest explanation consistent with experiment. We choose to call them + and in order to make Coulomb s Law give direction directly ( + *+ = +, -*- = +, +*- = -). The experimental result for the force between two charges is: F kq q 1 That the force should be proportional to q 1 q is required by Newton s second law. That it should be proportional to 1/R is required by Quantum Mechanics. Although we will not rigorously derive this we will give a physical motivation shortly. The constant k depends on the units chosen for charge. As noted in class the most natural choice would be the smallest charge nature provides. This leads to so called natural units in which the charge on an electron is -1 and on a proton is +1. There are many systems in use, but we will use the SI system exclusively. In this system we define k to be n- m /coul, where q is in coulombs. This results in the charge on a proton being coulombs. R R ˆ SUPERPOSITION The next question is whether electrostatics is linear, i.e., is the force of two charges on a third merely the sum of the 1 st on the third and the nd on the third. The experimental answer is yes provided the charges are not too large or too close together. More about this later. We will always assume these criterion are met and hence: where F 3 is the force on 3, F 13 F3 F13F3 the force on 3 due to 1, F 3 the force on 3 due to. ELECTRIC FIELDS Although it is in principle possible to do electrostatics with forces directly, it is much more convenient to introduce the concept of a field. For now this is purely a mathematical convenience. Later we will see that it has a fundamental importance.

2 The idea is to split the force on an object into two parts. The first is a disturbed environment. The second is the effect of that disturbance on the object. As noted in class it is like listening to a radio. The disturbance is always there (radiowaves), but you don t observe it until you turn on the radio. To experimentally determine the electric field, E, at a point we use the following definition: F q r E r lim q q0 where Fq r is the force on charge q located at r. This definition works fine for macroscopic objects, but since there is a smallest q (proton) we can t perform it on the atomic scale. We therefore recognize the reason for taking the limit and a achieve the desired result in a different way. We take the limit so that the disturbance of the point charge, q, will not disturb the field we are trying to measure. This could happen in two ways. The first is that q might feel the field it produces. The second is that it might cause the charges producing the field to move hence changing the field they produce at r. We overcome these problems by requiring that a point charge not produce a field on itself and by locking all other charges in place. Although this may be difficult in practice we can easily do it in theoretical calculations. GRAPHICAL REPRESENTATION OF FIELDS We now introduce an extremely useful method of visualizing fields. Although this takes a little effort to master, it will make things immensely easier, and is well worth the effort. Since force is a vector so is field. Thus far we have represented vectors by arrows where the length of the arrow gave the magnitude and the direction gave the direction of the vector. We now introduce a new method in which the direction is still given by the direction of a line at the point in question, but the magnitude is not related to the length of the line. Instead it is given by the number of lines/area perpendicular to the line. Field due to point charge

3 q F R kqqrˆ kq kq Er lim lim Rˆ Rˆ lim q0 q q0 qr q0r R Since the field is clearly isotropic (depends only on R) we represent it graphically by lines moving radially outward from the charge uniformly in all directions Now consider a sphere of radius R centered on Q. Since the surface of the sphere is perpendicular to the radius, and the lines are distributed uniformly in all directions, we have: N #/ area 4 R where N is the total number of lines. But the magnitude of E is equal to this: Since we already know E for a point charge: we must have: Thus: N E 4R kq E R kq N R 4 R

4 N 4 kq This is a fundamental result. Each point charge Q emits (+charge) or absorbs (-charge) 4πkQ lines. Later on when we look at Quantum Mechanics we will find a physical significance to these lines in terms of force particles. GAUSS S LAW We now make use of superposition to derive a fundamental result. Consider an arbitrary volume containing an arbitrary collection of charges. Since each charge acts independently of all the other (superposition), the total number of lines leaving the volume must be: #lines leaving 4 kq in In other words, it doesn t matter how the charges are arranged, the total number of lines leaving will be the same. The number/area at each point on the surface will depend on the arrangement, but not the total number leaving. INTEGRAL FORM OF GAUSS S LAW We need a method to calculate the number of lines leaving the volume. To do this we define a vector element of area as follows. Consider an infinitesimal element of area on a surface bounding a volume: We represent it by a vector of length da directed perpendicular to the surface and pointing outward.

5 We can now calculate the number of lines passing through this area. We know that E is the number of lines/area perpendicular to the lines. Hence we only get to count the component of da perpendicular to E. This is da E cos(θ). Hence the number of lines passing through da is # EdAcos But this is just: # EdA To find the total number of lines leaving the volume we must integrate this over the entire surface: We then have the integral form of Gauss s Law: #leaving E da 4koQin EdA It is often useful to define a permittivity of free space, ε 0, as: ko Then: Q EdA in o

FIELD LINES. Gauss s Law. Consider an arbitrary volume bounded by a closed surface. The volume contains an assortment of charges.

FIELD LINES. Gauss s Law. Consider an arbitrary volume bounded by a closed surface. The volume contains an assortment of charges. FIELD LINES We now consider an alternative method of graphically displaying vectors as directed by arrows where the length of the arrow gives the magnitude of the vector and it s direction gives the direction

More information

Chapters 21 and 22: Giancoli, 4 th Edition Electrostatics

Chapters 21 and 22: Giancoli, 4 th Edition Electrostatics Chapters 21 and 22: Giancoli, 4 th Edition Electrostatics Electric Charges Coulomb s Law and Electric force The Electric Field Electric Field Lines Electric flux Gauss Law and applications of Gauss Law

More information

PHY102 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law

PHY102 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law PHY1 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law In this topic, we will cover: 1) Electric Flux ) Gauss s Law, relating flux to enclosed charge 3) Electric Fields and Conductors revisited Reading

More information

Welcome. to Electrostatics

Welcome. to Electrostatics Welcome to Electrostatics Outline 1. Coulomb s Law 2. The Electric Field - Examples 3. Gauss Law - Examples 4. Conductors in Electric Field Coulomb s Law Coulomb s law quantifies the magnitude of the electrostatic

More information

3. The Electric Flux

3. The Electric Flux 3. The Electric Flux S. G. Rajeev January 20, 2011 1 Electric Field Lines The most important idea we discussed so far so far is the electric field. If you place a charge at any point, the electric force

More information

Ch 24 Electric Flux, & Gauss s Law

Ch 24 Electric Flux, & Gauss s Law Ch 24 Electric Flux, & Gauss s Law Electric Flux...is related to the number of field lines penetrating a given surface area. Φ e = E A Φ = phi = electric flux Φ units are N m 2 /C Electric Flux Φ = E A

More information

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface.

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface. Chapter 23 Gauss' Law Instead of considering the electric fields of charge elements in a given charge distribution, Gauss' law considers a hypothetical closed surface enclosing the charge distribution.

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chapter 24 Gauss s Law Gauss Law Gauss Law can be used as an alternative procedure for calculating electric fields. Gauss Law is based on the inverse-square behavior of the electric force between point

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chapter 24 Gauss s Law Let s return to the field lines and consider the flux through a surface. The number of lines per unit area is proportional to the magnitude of the electric field. This means that

More information

Physics 142 Electrostatics 1 Page 1. Electrostatics 1. The covers of this book are too far apart. Ambrose Bierce

Physics 142 Electrostatics 1 Page 1. Electrostatics 1. The covers of this book are too far apart. Ambrose Bierce Physics 142 Electrostatics 1 Page 1 Electrostatics 1 The covers of this book are too far apart. Ambrose Bierce Overview: the mechanical model yields to the field model In the previous course the description

More information

Phys 2102 Spring 2002 Exam 1

Phys 2102 Spring 2002 Exam 1 Phys 2102 Spring 2002 Exam 1 February 19, 2002 1. When a positively charged conductor touches a neutral conductor, the neutral conductor will: (a) Lose protons (b) Gain electrons (c) Stay neutral (d) Lose

More information

Flux. Flux = = va. This is the same as asking What is the flux of water through the rectangle? The answer depends on:

Flux. Flux = = va. This is the same as asking What is the flux of water through the rectangle? The answer depends on: Ch. 22: Gauss s Law Gauss s law is an alternative description of Coulomb s law that allows for an easier method of determining the electric field for situations where the charge distribution contains symmetry.

More information

Chapter 23. Electric Fields

Chapter 23. Electric Fields Chapter 23 Electric Fields Electric Charges There are two kinds of electric charges Called positive and negative Negative charges are the type possessed by electrons Positive charges are the type possessed

More information

1. ELECTRIC CHARGES AND FIELDS

1. ELECTRIC CHARGES AND FIELDS 1. ELECTRIC CHARGES AND FIELDS 1. What are point charges? One mark questions with answers A: Charges whose sizes are very small compared to the distance between them are called point charges 2. The net

More information

Chapter 22 Gauss s Law

Chapter 22 Gauss s Law Chapter 22 Gauss s Law Lecture by Dr. Hebin Li Goals for Chapter 22 To use the electric field at a surface to determine the charge within the surface To learn the meaning of electric flux and how to calculate

More information

Electrostatics : Electric Field & Potential

Electrostatics : Electric Field & Potential Electrostatics : Electric Field & Potential Lecture 6: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay In the present module of Electrostatics, we will deal with properties

More information

Today in Physics 217: begin electrostatics

Today in Physics 217: begin electrostatics Today in Physics 217: begin electrostatics Fields and potentials, and the Helmholtz theorem The empirical basis of electrostatics Coulomb s Law At right: the classic hand-to-thevan-de-graaf experiment.

More information

Quiz. Chapter 15. Electrical Field. Quiz. Electric Field. Electric Field, cont. 8/29/2011. q r. Electric Forces and Electric Fields

Quiz. Chapter 15. Electrical Field. Quiz. Electric Field. Electric Field, cont. 8/29/2011. q r. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields uiz Four point charges, each of the same magnitude, with varying signs as specified, are arranged at the corners of a square as shown. Which of the arrows

More information

HOMEWORK 1 SOLUTIONS

HOMEWORK 1 SOLUTIONS HOMEWORK 1 SOLUTIONS CHAPTER 18 3. REASONING AND SOLUTION The total charge to be removed is 5.0 µc. The number of electrons corresponding to this charge is N = ( 5.0 10 6 C)/( 1.60 10 19 C) = 3.1 10 13

More information

Physics 1302, Exam 1 Review

Physics 1302, Exam 1 Review c V Andersen, 2006 1 Physics 1302, Exam 1 Review The following is a list of things you should definitely know for the exam, however, the list is not exhaustive. You are responsible for all the material

More information

Lecture 3. Electric Field Flux, Gauss Law. Last Lecture: Electric Field Lines

Lecture 3. Electric Field Flux, Gauss Law. Last Lecture: Electric Field Lines Lecture 3. Electric Field Flux, Gauss Law Last Lecture: Electric Field Lines 1 iclicker Charged particles are fixed on grids having the same spacing. Each charge has the same magnitude Q with signs given

More information

4. Gauss s Law. S. G. Rajeev. January 27, The electric flux through any closed surface is proportional to the total charge contained inside it.

4. Gauss s Law. S. G. Rajeev. January 27, The electric flux through any closed surface is proportional to the total charge contained inside it. 4. Gauss s Law S. G. Rajeev January 27, 2009 1 Statement of Gauss s Law The electric flux through any closed surface is proportional to the total charge contained inside it. In other words E da = Q ɛ 0.

More information

Gauss s Law. Name. I. The Law: , where ɛ 0 = C 2 (N?m 2

Gauss s Law. Name. I. The Law: , where ɛ 0 = C 2 (N?m 2 Name Gauss s Law I. The Law:, where ɛ 0 = 8.8510 12 C 2 (N?m 2 1. Consider a point charge q in three-dimensional space. Symmetry requires the electric field to point directly away from the charge in all

More information

Chapter 1 The Electric Force

Chapter 1 The Electric Force Chapter 1 The Electric Force 1. Properties of the Electric Charges 1- There are two kinds of the electric charges in the nature, which are positive and negative charges. - The charges of opposite sign

More information

Coulomb s Law and the Electric Field

Coulomb s Law and the Electric Field Coulomb s Law and the Electric Field Physics 2415 Lecture 2 Michael Fowler, UVa The Electroscope Charge detector invented by an English clergyman in 1787. Two very thin strips of gold leaf hang side by

More information

Essential University Physics

Essential University Physics Essential University Physics Richard Wolfson 21 Gauss s Law PowerPoint Lecture prepared by Richard Wolfson Slide 21-1 In this lecture you ll learn To represent electric fields using field-line diagrams

More information

Electric Flux and Gauss Law

Electric Flux and Gauss Law Electric Flux and Gauss Law Gauss Law can be used to find the electric field of complex charge distribution. Easier than treating it as a collection of point charge and using superposition To use Gauss

More information

Test Review FQ3eso_U5_3_Electric force

Test Review FQ3eso_U5_3_Electric force Test Review FQ3eso_U5_3_Electric force Identify the letter of the choice that best completes the statement or answers the question. 1.- Two metal spheres, A and B, possess charges of 1.0 microcoulomb and

More information

APPLICATIONS OF GAUSS S LAW

APPLICATIONS OF GAUSS S LAW APPLICATIONS OF GAUSS S LAW Although Gauss s Law is always correct it is generally only useful in cases with strong symmetries. The basic problem is that it gives the integral of E rather than E itself.

More information

Welcome to PHYS2002!

Welcome to PHYS2002! Welcome to PHYS00! Physics I Done! We are now all experts in mechanics. Mechanics Mass M Interaction: mm F = G r 1 G = 6.67 10 Nm/ kg r M 11 1 We never said what mass is, only how it behaves. New Semester

More information

Electric Flux and Gauss s Law

Electric Flux and Gauss s Law Electric Flux and Gauss s Law Electric Flux Figure (1) Consider an electric field that is uniform in both magnitude and direction, as shown in Figure 1. The total number of lines penetrating the surface

More information

3: Gauss s Law July 7, 2008

3: Gauss s Law July 7, 2008 3: Gauss s Law July 7, 2008 3.1 Electric Flux In order to understand electric flux, it is helpful to take field lines very seriously. Think of them almost as real things that stream out from positive charges

More information

AP PHYSICS 2 FRAMEWORKS

AP PHYSICS 2 FRAMEWORKS 1 AP PHYSICS 2 FRAMEWORKS Big Ideas Essential Knowledge Science Practices Enduring Knowledge Learning Objectives ELECTRIC FORCE, FIELD AND POTENTIAL Static Electricity; Electric Charge and its Conservation

More information

Physics 202, Lecture 3. The Electric Field

Physics 202, Lecture 3. The Electric Field Physics 202, Lecture 3 Today s Topics Electric Field (Review) Motion of charged particles in external E field Conductors in Electrostatic Equilibrium (Ch. 21.9) Gauss s Law (Ch. 22) Reminder: HW #1 due

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b Electromagnetism Physics 15b Lecture #2 Guass s Law Electric Field and Flux Purcell 1.7 1.15 Administravia Online sectioning due Wednesday (tudy Card Day) Go to http://www.section.fas.harvard.edu/ Do both

More information

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero?

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero? Lecture 4-1 Physics 219 Question 1 Aug.31.2016. Where (if any) is the net electric field due to the following two charges equal to zero? y Q Q a x a) at (-a,0) b) at (2a,0) c) at (a/2,0) d) at (0,a) and

More information

Physics 240 Fall 2003: Exam #1. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2003: Exam #1. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 4 Fall 3: Exam #1 Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will be a 1.5

More information

Chapter 28. Gauss s Law

Chapter 28. Gauss s Law Chapter 28. Gauss s Law Using Gauss s law, we can deduce electric fields, particularly those with a high degree of symmetry, simply from the shape of the charge distribution. The nearly spherical shape

More information

Phys102 General Physics II. Chapter 24: Gauss s Law

Phys102 General Physics II. Chapter 24: Gauss s Law Phys102 General Physics II Gauss Law Chapter 24: Gauss s Law Flux Electric Flux Gauss Law Coulombs Law from Gauss Law Isolated conductor and Electric field outside conductor Application of Gauss Law Charged

More information

Chapter 23. Electric Fields

Chapter 23. Electric Fields Chapter 23 Electric Fields Electricity and Magnetism The laws of electricity and magnetism play a central role in the operation of many modern devices. The interatomic and intermolecular forces responsible

More information

Chapter 21. Electric Fields. Lecture 2. Dr. Armen Kocharian

Chapter 21. Electric Fields. Lecture 2. Dr. Armen Kocharian Chapter 21 Electric Fields Lecture 2 Dr. Armen Kocharian Electric Field Introduction The electric force is a field force Field forces can act through space The effect is produced even with no physical

More information

Electric Field Lines

Electric Field Lines Electric Field Lines Electric forces Electric fields: - Electric field lines emanate from positive charges - Electric field lines disappear at negative charges If you see a bunch of field lines emanating

More information

Chapter 22: Gauss s Law

Chapter 22: Gauss s Law Chapter 22: Gauss s Law How you can determine the amount of charge within a closed surface by examining the electric field on the surface. What is meant by electric flux, and how to calculate it. How Gauss

More information

Electric Fields Part 1: Coulomb s Law

Electric Fields Part 1: Coulomb s Law Electric Fields Part 1: Coulomb s Law F F Last modified: 07/02/2018 Contents Links Electric Charge & Coulomb s Law Electric Charge Coulomb s Law Example 1: Coulomb s Law Electric Field Electric Field Vector

More information

free space (vacuum) permittivity [ F/m]

free space (vacuum) permittivity [ F/m] Electrostatic Fields Electrostatic fields are static (time-invariant) electric fields produced by static (stationary) charge distributions. The mathematical definition of the electrostatic field is derived

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chapter 24 Gauss s Law Gauss Law Gauss Law can be used as an alternative procedure for calculating electric fields. Gauss Law is based on the inverse-square behavior of the electric force between point

More information

Chapter 21 Chapter 23 Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 21 Chapter 23 Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 21 Chapter 23 Gauss Law Copyright 23-1 What is Physics? Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface. Gauss law considers

More information

Chapter 21: Gauss s Law

Chapter 21: Gauss s Law Chapter 21: Gauss s Law Electric field lines Electric field lines provide a convenient and insightful way to represent electric fields. A field line is a curve whose direction at each point is the direction

More information

Physics 11b Lecture #3. Electric Flux Gauss s Law

Physics 11b Lecture #3. Electric Flux Gauss s Law Physics 11b Lecture #3 lectric Flux Gauss s Law What We Did Last Time Introduced electric field by Field lines and the rules From a positive charge to a negative charge No splitting, merging, or crossing

More information

Chapter 1 Electric Charges, Forces, and Fields

Chapter 1 Electric Charges, Forces, and Fields Chapter 1 Electric Charges, Forces, and Fields 1 Units of Chapter 1 Electric Charge Insulators and Conductors Coulomb s Law The Electric Field Electric Field Lines Electric Fields Generated by simple distributions

More information

Electric Field and Gauss s law. January 17, 2014 Physics for Scientists & Engineers 2, Chapter 22 1

Electric Field and Gauss s law. January 17, 2014 Physics for Scientists & Engineers 2, Chapter 22 1 Electric Field and Gauss s law January 17, 2014 Physics for Scientists & Engineers 2, Chapter 22 1 Missing clickers! The following clickers are not yet registered! If your clicker number is in this list,

More information

Average Electrostatic Potential over a Spherical Surface

Average Electrostatic Potential over a Spherical Surface Average Electrostatic Potential over a Spherical Surface EE 141 Lecture Notes Topic 8 Professor K. E. Oughstun School of Engineering College of Engineering & Mathematical Sciences University of Vermont

More information

Ch. 5 - The Periodic Table

Ch. 5 - The Periodic Table Ch. 5 - The Periodic Table 250 Atomic Radius (pm) 200 150 100 50 0 0 5 10 15 20 Atomic Number III. Periodic Trends (p. 140-154) I II III A. Periodic Law When elements are arranged in order of increasing

More information

Phys 122 Lecture 3 G. Rybka

Phys 122 Lecture 3 G. Rybka Phys 122 Lecture 3 G. Rybka A few more Demos Electric Field Lines Example Calculations: Discrete: Electric Dipole Overview Continuous: Infinite Line of Charge Next week Labs and Tutorials begin Electric

More information

Chapter 17 & 18. Electric Field and Electric Potential

Chapter 17 & 18. Electric Field and Electric Potential Chapter 17 & 18 Electric Field and Electric Potential Electric Field Maxwell developed an approach to discussing fields An electric field is said to exist in the region of space around a charged object

More information

Chapter 19 Electric Charges, Forces, and Fields

Chapter 19 Electric Charges, Forces, and Fields Chapter 19 Electric Charges, Forces, and Fields 1 Overview of Chapter 19 Electric Charge! Insulators and Conductors! Coulomb s Law! The Electric Field! Electric Field Lines! Shielding and Charging by Induction

More information

Lecture 3. Electric Field Flux, Gauss Law

Lecture 3. Electric Field Flux, Gauss Law Lecture 3. Electric Field Flux, Gauss Law Attention: the list of unregistered iclickers will be posted on our Web page after this lecture. From the concept of electric field flux to the calculation of

More information

Chapter 23: Gauss Law. PHY2049: Chapter 23 1

Chapter 23: Gauss Law. PHY2049: Chapter 23 1 Chapter 23: Gauss Law PHY2049: Chapter 23 1 Two Equivalent Laws for Electricity Coulomb s Law equivalent Gauss Law Derivation given in Sec. 23-5 (Read!) Not derived in this book (Requires vector calculus)

More information

VERIFYING COULOMB S LAW

VERIFYING COULOMB S LAW Verifying Coulomb s Law 21 Name Date Partners VERIFYING COULOMB S LAW Materials: hanging metal coated pith ball stationary metal coated pith ball teflon rod silk Source: Fishbane, Gasiorowicz, and Thornton,

More information

Physics 2415: Lecture #2

Physics 2415: Lecture #2 home Physics 415: Lecture # Michael owler, UVa, 8/9/09 Coulomb s Law Using the two small hanging spheres, we can even find just how the attraction varies with distance, by measuring the angle the string

More information

Physics 2B. Lecture 24B. Gauss 10 Deutsche Mark

Physics 2B. Lecture 24B. Gauss 10 Deutsche Mark Physics 2B Lecture 24B Gauss 10 Deutsche Mark Electric Flux Flux is the amount of something that flows through a given area. Electric flux, Φ E, measures the amount of electric field lines that passes

More information

PHYS102 - Gauss s Law.

PHYS102 - Gauss s Law. PHYS102 - Gauss s Law. Dr. Suess February 2, 2007 PRS Questions 2 Question #1.............................................................................. 2 Answer to Question #1......................................................................

More information

Gauss s law for electric fields

Gauss s law for electric fields 1 Gauss s law for electric fields In Maxwell s Equations, you ll encounter two kinds of electric field: the electrostatic field produced by electric charge and the induced electric field produced by a

More information

Notice that now the electric field is perpendicular to the x=axis. It has magnitude

Notice that now the electric field is perpendicular to the x=axis. It has magnitude home Physics 415: Lecture 3 Michael Fowler, UVa, 8/9/09 The Dipole Suppose now that in the previous example we replace the lower charge by Q: Q d x-axis -Q y-axis x r E total E = kqrˆ r upper charge Notice

More information

CH 23. Gauss Law. A. Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface.

CH 23. Gauss Law. A. Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface. CH 23 Gauss Law [SHIVOK SP212] January 4, 2016 I. Introduction to Gauss Law A. Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface.

More information

5. Electric field (theoretical approach) and Gauss s law

5. Electric field (theoretical approach) and Gauss s law 5. Electric field (theoretical approach) and Gauss s law Announcement: Lab schedule will be posted later today I went to the tutorial session yesterday A. yes B. No C. I don t remember The tutorial session

More information

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law Electric Flux Gauss s Law: Definition Chapter 22 Gauss s Law Applications of Gauss s Law Uniform Charged Sphere Infinite Line of Charge Infinite Sheet of Charge Two infinite sheets of charge Phys 2435:

More information

Halliday/Resnick/Walker Fundamentals of Physics

Halliday/Resnick/Walker Fundamentals of Physics Halliday/Resnick/Walker Fundamentals of Physics Classroom Response System Questions Chapter 24 Electric Potential Interactive Lecture Questions 24.2.1. Two electrons are separated by a distance R. If the

More information

THE NATURE OF THERMODYNAMIC ENTROPY. 1 Introduction. James A. Putnam. 1.1 New Definitions for Mass and Force. Author of

THE NATURE OF THERMODYNAMIC ENTROPY. 1 Introduction. James A. Putnam. 1.1 New Definitions for Mass and Force. Author of THE NATURE OF THERMODYNAMIC ENTROPY James A. Putnam Author of http://newphysicstheory.com james@newphysicstheory.com Thermodynamic entropy is a pathway for transitioning from the mechanical world of fundamental

More information

Chapter 15. Electric Forces and Electric Fields

Chapter 15. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields First Observations Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified and attracted pieces

More information

Gauss s Law. The first Maxwell Equation A very useful computational technique This is important!

Gauss s Law. The first Maxwell Equation A very useful computational technique This is important! Gauss s Law The first Maxwell quation A very useful computational technique This is important! P05-7 Gauss s Law The Idea The total flux of field lines penetrating any of these surfaces is the same and

More information

Electric Field Lines. lecture 4.1.1

Electric Field Lines. lecture 4.1.1 Electric Field Lines Two protons, A and B, are in an electric field. Which proton has the larger acceleration? A. Proton A B. Proton B C. Both have the same acceleration. lecture 4.1.1 Electric Field Lines

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Electric fields are responsible for the electric currents that flow through your computer and the nerves in your body. Electric fields also line up polymer molecules to form the images in a liquid crystal

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 16 Physics: Principles with Applications, 7 th edition Giancoli 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely

More information

ELECTRIC FORCES AND ELECTRIC FIELDS

ELECTRIC FORCES AND ELECTRIC FIELDS CHATER 18 ELECTRIC FORCES AND ELECTRIC FIELDS CONCETUAL QUESTIONS 1. REASONING AND SOLUTION In Figure 18.9, the grounding wire is removed first, followed by the rod, and the sphere is left with a positive

More information

Electrical Potential Energy and Electric Potential (Chapter 29)

Electrical Potential Energy and Electric Potential (Chapter 29) Electrical Potential Energy and Electric Potential (Chapter 29) A Refresher Course on Gravity and Mechanical Energy Total mechanical energy: E mech = K + U, K= 1 2 mv2,u = potential energy f W = F!" ids

More information

The electric potential energy of charge q in a uniform electric field is

The electric potential energy of charge q in a uniform electric field is The electric potential energy of charge q in a uniform electric field is where s is measured from the negative plate and U 0 is the potential energy at the negative plate (s = 0). It will often be convenient

More information

Chapter 21. Electric Fields

Chapter 21. Electric Fields Chapter 21 Electric Fields The Origin of Electricity The electrical nature of matter is inherent in the atoms of all substances. An atom consists of a small relatively massive nucleus that contains particles

More information

Strand G. Electricity. Unit 1. Electrostatics. Text. Charge 2 Forces Between Charges 4 Electric Field 10

Strand G. Electricity. Unit 1. Electrostatics. Text. Charge 2 Forces Between Charges 4 Electric Field 10 Strand G. Electricity Unit 1. Electrostatics Contents Page Charge 2 Forces Between Charges 4 Electric Field 10 G.1.1. Charge An atom was once considered the building block of matter, although we know now

More information

How to define the direction of A??

How to define the direction of A?? Chapter Gauss Law.1 Electric Flu. Gauss Law. A charged Isolated Conductor.4 Applying Gauss Law: Cylindrical Symmetry.5 Applying Gauss Law: Planar Symmetry.6 Applying Gauss Law: Spherical Symmetry You will

More information

Electromagnetic Field Theory (EMT)

Electromagnetic Field Theory (EMT) Electromagnetic Field Theory (EMT) Lecture # 9 1) Coulomb s Law and Field Intensity 2) Electric Fields Due to Continuous Charge Distributions Line Charge Surface Charge Volume Charge Coulomb's Law Coulomb's

More information

1. (3) Write Gauss Law in differential form. Explain the physical meaning.

1. (3) Write Gauss Law in differential form. Explain the physical meaning. Electrodynamics I Midterm Exam - Part A - Closed Book KSU 204/0/23 Name Instructions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try to tell about the physics involved,

More information

Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras

Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras Lecture - 21 Central Potential and Central Force Ready now to take up the idea

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chapter 24 Gauss s Law Electric Flux Electric flux is the product of the magnitude of the electric field and the surface area, A, perpendicular to the field Φ E = EA Defining Electric Flux EFM06AN1 Electric

More information

Chapter 25. Electric Potential

Chapter 25. Electric Potential Chapter 25 Electric Potential Electric Potential Electromagnetism has been connected to the study of forces in previous chapters. In this chapter, electromagnetism will be linked to energy. By using an

More information

density = N A where the vector di erential aread A = ^n da, and ^n is the normaltothat patch of surface. Solid angle

density = N A where the vector di erential aread A = ^n da, and ^n is the normaltothat patch of surface. Solid angle Gauss Law Field lines and Flux Field lines are drawn so that E is tangent to the field line at every point. Field lines give us information about the direction of E, but also about its magnitude, since

More information

Physics 212. Lecture 3. Gauss s Law. Today's Concepts: Electric Flux and Field Lines. Physics 212 Lecture 3, Slide 1

Physics 212. Lecture 3. Gauss s Law. Today's Concepts: Electric Flux and Field Lines. Physics 212 Lecture 3, Slide 1 Physics 212 Lecture 3 Today's Concepts: lectric Flux and Field Lines Gauss s Law Physics 212 Lecture 3, Slide 1 Introduce a new constant: 0 q k r r 2 ˆ k 1 4 0 k = 9 x 10 9 N m 2 / C 2 0 = 8.85 x 10-12

More information

Chapter Electric Forces and Electric Fields. Prof. Armen Kocharian

Chapter Electric Forces and Electric Fields. Prof. Armen Kocharian Chapter 25-26 Electric Forces and Electric Fields Prof. Armen Kocharian First Observations Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified

More information

SPH 4U: Unit 3 - Electric and Magnetic Fields

SPH 4U: Unit 3 - Electric and Magnetic Fields Name: Class: _ Date: _ SPH 4U: Unit 3 - Electric and Magnetic Fields Modified True/False (1 point each) Indicate whether the statement is true or false. If false, change the identified word or phrase to

More information

Book page. Coulombs Law

Book page. Coulombs Law Book page Coulombs Law A Coulomb torsion balance A Coulomb torsion balance is used to measure the force between two charged objects Coulomb's Torsion Balance Two conducting spheres fixed on insulating

More information

Turn in scantron You keep these question sheets

Turn in scantron You keep these question sheets Exam 1 on FEB. 20. 2018 - Physics 106 R. Schad YOUR NAME ¼À Turn in scantron You keep these question sheets 1) Electric flux through a spherical surface of radius 1m dueto a charge inside [which is the

More information

F E = Electric field q T (+ test charge)

F E = Electric field q T (+ test charge) Summary Page week 1 charges opposite attract like repel F = k Q Q r T + Cancelation/screening 1 Coulombs Law vector sum of forces Superposition Principle solution (A+B)= solution (A)+ solution (B) F E

More information

3 Chapter. Gauss s Law

3 Chapter. Gauss s Law 3 Chapter Gauss s Law 3.1 Electric Flux... 3-2 3.2 Gauss s Law (see also Gauss s Law Simulation in Section 3.10)... 3-4 Example 3.1: Infinitely Long Rod of Uniform Charge Density... 3-9 Example 3.2: Infinite

More information

ENERGY IN ELECTROSTATICS

ENERGY IN ELECTROSTATICS ENERGY IN ELECTROSTATICS We now turn to the question of energy in electrostatics. The first question to consider is whether or not the force is conservative. You will recall from last semester that a conservative

More information

Read this cover page completely before you start.

Read this cover page completely before you start. I affirm that I have worked this exam independently, without texts, outside help, integral tables, calculator, solutions, or software. (Please sign legibly.) Read this cover page completely before you

More information

Electric flux. You must be able to calculate the electric flux through a surface.

Electric flux. You must be able to calculate the electric flux through a surface. Today s agenda: Announcements. lectric field lines. You must be able to draw electric field lines, and interpret diagrams that show electric field lines. A dipole in an external electric field. You must

More information

PHYSICS - CLUTCH CH 22: ELECTRIC FORCE & FIELD; GAUSS' LAW

PHYSICS - CLUTCH CH 22: ELECTRIC FORCE & FIELD; GAUSS' LAW !! www.clutchprep.com CONCEPT: ELECTRIC CHARGE e Atoms are built up of protons, neutrons and electrons p, n e ELECTRIC CHARGE is a property of matter, similar to MASS: MASS (m) ELECTRIC CHARGE (Q) - Mass

More information

Electrostatics-Coulomb's Law

Electrostatics-Coulomb's Law 1. Which graph best represents the electrostatic force between an alpha particle with a charge of +2 elementary charges and a positively charged nucleus as a function of their distance of separation? 2.

More information

Lecture 2 Electric Fields Ch. 22 Ed. 7

Lecture 2 Electric Fields Ch. 22 Ed. 7 1 2 Lecture 2 Electric Fields Ch. 22 Ed. 7 Cartoon - Analogous to gravitational field Topics Electric field = Force per unit Charge Electric Field Lines Electric field from more than 1 charge Electric

More information

Chapter 23. Electric Charge and Electric Field

Chapter 23. Electric Charge and Electric Field Chapter 23 Electric Charge and Electric Field Goals for Chapter 23 To study electric charge and see how charge behaves in conductors and insulators To calculate force with Coulomb s Law To consider the

More information