Charles Robert Darwin (12 February April 1882)

Size: px
Start display at page:

Download "Charles Robert Darwin (12 February April 1882)"

Transcription

1 I attempted mathematics, but it was repugnant to me, chiefly from my not being able to see any meaning in the early steps in algebra. This impatience was very foolish, and in after years I have deeply regretted that I did not proceed far enough at least to understand something of the great leading principles of mathematics; for men thus endowed seem to have an extra sense. Charles Robert Darwin (12 February April 1882)

2 MATH 1131Q - Calculus 1. Álvaro Lozano-Robledo Department of Mathematics University of Connecticut Day 18 Álvaro Lozano-Robledo (UConn) MATH 1131Q - Calculus 1 2 / 30

3 Clicker Question... (frequency DD) I do not go to your (Álvaro s) office hours because... (A) I don t know when and/or where they are! (B) I find the whole concept of office hours by a professor intimidating. (C) I don t really have questions. (D) I ask for help elsewhere (my TA, Q Center, etc). (E) I can t make it to your office at those times. Álvaro Lozano-Robledo (UConn) MATH 1131Q - Calculus 1 3 / 30

4 Applications of Derivatives

5 Maximum and Minimum Values of a Function Definition Let c be a number in the domain D of a function f. Then f (c) is the 1 absolute maximum value of f on D if f (c) f (x) for all x in D. 2 absolute minimum value of f on D if f (c) f (x) for all x in D. 3 local maximum value of f if f (c) f (x) when x is near c. 4 local minimum value of f if f (c) f (x) when x is near c.

6 Maximum and Minimum Values of a Function Definition Let c be a number in the domain D of a function f. Then f (c) is the 1 absolute maximum value of f on D if f (c) f (x) for all x in D. 2 absolute minimum value of f on D if f (c) f (x) for all x in D. 3 local maximum value of f if f (c) f (x) when x is near c. 4 local minimum value of f if f (c) f (x) when x is near c. Theorem (Extreme Value Theorem) If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f (c) and an absolute minimum value f (d) at some numbers c and d in [a, b].

7 Maximum and Minimum Values of a Function Definition Let c be a number in the domain D of a function f. Then f (c) is the 1 absolute maximum value of f on D if f (c) f (x) for all x in D. 2 absolute minimum value of f on D if f (c) f (x) for all x in D. 3 local maximum value of f if f (c) f (x) when x is near c. 4 local minimum value of f if f (c) f (x) when x is near c. Theorem (Extreme Value Theorem) If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f (c) and an absolute minimum value f (d) at some numbers c and d in [a, b]. Theorem (Fermat s Theorem) If f has a local maximum or minimum at c, and if f (c) exists, then f (c) = 0.

8 Maximum and Minimum Values of a Function Theorem (Fermat s Theorem) If f (x) has a local maximum or minimum at c, and if f (c) exists, then f (c) = 0. Definition A critical number of a function f (x) is a number c in the domain of f such that (1) f (c) = 0, or (2) f (c) does not exist. Example Find the critical points of f (x) = x 3 3x + 1.

9 Maximum and Minimum Values of a Function Theorem (Fermat s Theorem) If f (x) has a local maximum or minimum at c, and if f (c) exists, then f (c) = 0. Definition A critical number of a function f (x) is a number c in the domain of f such that (1) f (c) = 0, or (2) f (c) does not exist. Example Find the critical points of f (x) = sin x.

10 Maximum and Minimum Values of a Function Example Find the critical points of f (x) = (4 x)x 3/5. Álvaro Lozano-Robledo (UConn) MATH 1131Q - Calculus 1 8 / 30

11 Maximum and Minimum Values of a Function How to find the absolute maximum and minimum values of a function f (x) on a closed interval [a, b]:

12 Maximum and Minimum Values of a Function How to find the absolute maximum and minimum values of a function f (x) on a closed interval [a, b]: 1 Find the critical values of f in [a, b]. Calculate the values of f at all critical values.

13 Maximum and Minimum Values of a Function How to find the absolute maximum and minimum values of a function f (x) on a closed interval [a, b]: 1 Find the critical values of f in [a, b]. Calculate the values of f at all critical values. 2 Find the values of f at endpoints of the interval and at any point where f is defined but not continuous.

14 Maximum and Minimum Values of a Function How to find the absolute maximum and minimum values of a function f (x) on a closed interval [a, b]: 1 Find the critical values of f in [a, b]. Calculate the values of f at all critical values. 2 Find the values of f at endpoints of the interval and at any point where f is defined but not continuous. 3 The largest of the values from (1) and (2) is the absolute maximum value; the smallest of these values is the absolute minimum value.

15 Maximum and Minimum Values of a Function Example Find the absolute max and min values of f (x) = x 3 3x in the interval [ 1 2, 4]. Álvaro Lozano-Robledo (UConn) MATH 1131Q - Calculus 1 10 / 30

16 Blue: E(t) = a/(b + ce dt ), Red: E(t) = a + R0 (1 + d) t t, Source

17 Example Find the absolute maximum value of E(t) = a + R0 (1+d) t t in [0, 400], where a = 94, R 0 = 1.077, and d =

18 Example Find the absolute maximum value of E(t) = a + R0 (1+d) t t in [0, 400], where a = 94, R 0 = 1.077, and d =

19 Example Find the absolute maximum value of E(t) = a + R0 (1+d) t t in [0, 400], where a = 94, R 0 = 1.077, and d = Solution: There is a unique critical point in [0, 400] given at The values of the function t = Ln(R 0) 2Ln(1 + d) = E(0) = 95 E(400) E( ) So the absolute maximum occurs at t = 259 and the value is

20 This slide left intentionally blank Álvaro Lozano-Robledo (UConn) MATH 1131Q - Calculus 1 14 / 30

21 The Mean Value Theorem Theorem (The Mean Value Theorem) Let f be a function that satisfies the following hypotheses: 1 f is continuous on the closed interval [a, b], and 2 f is differentiable on the open interval (a, b). Then, there is a number c in (a, b) such that f (b) f (a) f (c) =, or, equivalently, f (b) f (a) = f (c)(b a). b a

22 The Mean Value Theorem Theorem (The Mean Value Theorem) Let f be a function that is continuous on the closed interval [a, b], and differentiable on the open interval (a, b). Then, there is a number c in (a, b) such that f (b) f (a) f (c) =, or, equivalently, f (b) f (a) = f (c)(b a). b a Example Show that the Mean Value Theorem is true for f (x) = x 2 and the interval [0, 3].

23 Example A driver goes through a toll booth at noon, drives 180 miles on the same highway, and exits through another toll 2 hours later. If the speed limit on the highway is 65 miles per hour... 1 Was the driver speeding at some point in the trip? 2 The speed tickets are $100 if the speed at any point in time was between 65 and 75 mi/h, and $100 + x if the speed was 75 + x mi/h at any point. What the largest fine you can charge on the driver?

24 Example A driver goes through a toll booth at noon, drives 180 miles on the same highway, and exits through another toll 2 hours later. If the speed limit on the highway is 65 miles per hour... 1 Was the driver speeding at some point in the trip? 2 The speed tickets are $100 if the speed at any point in time was between 65 and 75 mi/h, and $100 + x if the speed was 75 + x mi/h at any point. What the largest fine you can charge on the driver?

25 Important Consequences of the Mean Value Theorem Theorem (The Mean Value Theorem) Let f be a function that is continuous on the closed interval [a, b], and differentiable on the open interval (a, b). Then, there is a number c in (a, b) such that f (c) = (f (b) f (a))/(b a) or, equivalently, f (b) f (a) = f (c)(b a).

26 Important Consequences of the Mean Value Theorem Theorem (The Mean Value Theorem) Let f be a function that is continuous on the closed interval [a, b], and differentiable on the open interval (a, b). Then, there is a number c in (a, b) such that f (c) = (f (b) f (a))/(b a) or, equivalently, f (b) f (a) = f (c)(b a). Theorem If f (x) = 0 for all x in an interval (a, b), then f is constant on (a, b). Proof.

27 Important Consequences of the Mean Value Theorem Theorem (The Mean Value Theorem) Let f be a function that is continuous on the closed interval [a, b], and differentiable on the open interval (a, b). Then, there is a number c in (a, b) such that f (c) = (f (b) f (a))/(b a) or, equivalently, f (b) f (a) = f (c)(b a). Theorem If f (x) = 0 for all x in an interval (a, b), then f is constant on (a, b). Proof. Let x 1 and x 2 be numbers in (a, b)), with a < x 1 < x 2 < b. Then, f is continuous on [x 1, x 2 ] and differentiable on (x 1, x 2 ), because f exists (and equals 0). Hence, by the MVT there is some c in (x 1, x 2 ) such that f (x 2 ) f (x 1 ) = f (c)(x 2 x 1 ) = 0 (x 2 x 1 ) = 0. Therefore, f (x 2 ) f (x 1 ) = 0, and so f (x 2 ) = f (x 1 ). It follows that f has the same value for any two x 1 and x 2 on (a, b), and so it is constant.

28 Important Consequences of the Mean Value Theorem Theorem If f (x) = 0 for all x in an interval (a, b), then f is constant on (a, b).

29 Important Consequences of the Mean Value Theorem Theorem If f (x) = 0 for all x in an interval (a, b), then f is constant on (a, b). Corollary If f (x) = g (x) for all x in the interval (a, b), then f g is constant on (a, b); that is, f (x) = g(x) + C, where C is a constant. Proof.

30 Important Consequences of the Mean Value Theorem Theorem If f (x) = 0 for all x in an interval (a, b), then f is constant on (a, b). Corollary If f (x) = g (x) for all x in the interval (a, b), then f g is constant on (a, b); that is, f (x) = g(x) + C, where C is a constant. Proof. Consider the function F(x) = f (x) g(x). Then, F (x) = f (x) g (x) = 0 in the interval (a, b). Thus, by the theorem, F(x) = C is constant. Hence, f (x) g(x) = C or, equivalently, f (x) = g(x) + C.

31 Sketching Graphs of Functions

32 Definition We say that a function f (x) is... 1 Increasing in the interval [a, b], if f (c) f (d) for any c < d. 2 Decreasing in the interval [a, b], if f (c) f (d) for any c < d. 3 Concave upward in the interval [a, b], if the graph of f lies above all of its tangent lines for points on the interval. 4 Concave downward in the interval [a, b], if the graph of f lies below all of its tangent lines for points on the interval

33 Using the First Derivative Theorem (Increasing/Decreasing Test) Let f be a differentiable function on an interval (a, b). 1 If f (x) > 0 on (a, b), then f is increasing on (a, b). 2 If f (x) < 0 on (a, b), then f is decreasing on (a, b). Theorem (The First Derivative Test for Critical Points) Suppose that c is a critical number of a continuous function f. Then: 1 If f changes from positive to negative at c, then f has a local maximum at c. 2 If f changes from negative to positive at c, then f has a local minimum at c. 3 If f does not change sign at c, then f has no local maximum or minimum at c. Álvaro Lozano-Robledo (UConn) MATH 1131Q - Calculus 1 23 / 30

34 Using the First Derivative Example Sketch the graph of the function y = 3x 5 5x Álvaro Lozano-Robledo (UConn) MATH 1131Q - Calculus 1 24 / 30

35 Using the First Derivative Example Sketch the graph of the function y = 3x 5 5x Álvaro Lozano-Robledo (UConn) MATH 1131Q - Calculus 1 24 / 30

36 Using the First Derivative Example Sketch the graph of the function y = 3x 5 5x Álvaro Lozano-Robledo (UConn) MATH 1131Q - Calculus 1 25 / 30

How does a calculator compute 2?

How does a calculator compute 2? How does a calculator compute 2? 2 0 2 3 4 y = x 2 0 2 3 4 y = x and y = 2 + x 2 2 0 2 3 4 y = x and y = 3 8 + 3x 4 x 2 8 2 0 2 3 4 y = x and y = 5 6 + 5x 6 5x 2 6 + x 3 6 2 0 2 3 4 y = x and y = 35 28

More information

Calculus 1 Math 151 Week 10 Rob Rahm. Theorem 1.1. Rolle s Theorem. Let f be a function that satisfies the following three hypotheses:

Calculus 1 Math 151 Week 10 Rob Rahm. Theorem 1.1. Rolle s Theorem. Let f be a function that satisfies the following three hypotheses: Calculus 1 Math 151 Week 10 Rob Rahm 1 Mean Value Theorem Theorem 1.1. Rolle s Theorem. Let f be a function that satisfies the following three hypotheses: (1) f is continuous on [a, b]. (2) f is differentiable

More information

Math Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Essentials of Calculus by James Stewart Prepared by Jason Gaddis Chapter 3 - Applications of Differentiation 3.1 - Maximum and Minimum Values Note We continue our study of functions using derivatives.

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION Many applications of calculus depend on our ability to deduce facts about a function f from information concerning its derivatives. APPLICATIONS

More information

MATH 151, Fall 2015, Week 12, Section

MATH 151, Fall 2015, Week 12, Section MATH 151, Fall 2015, Week 12, Section 5.1-5.3 Chapter 5 Application of Differentiation We develop applications of differentiation to study behaviors of functions and graphs Part I of Section 5.1-5.3, Qualitative/intuitive

More information

Mathematics 131 Final Exam 02 May 2013

Mathematics 131 Final Exam 02 May 2013 Mathematics 3 Final Exam 0 May 03 Directions: This exam should consist of twelve multiple choice questions and four handgraded questions. Multiple choice questions are worth five points apiece. The first

More information

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then Lectures 1/18 Derivatives and Graphs When we have a picture of the graph of a function f(x), we can make a picture of the derivative f (x) using the slopes of the tangents to the graph of f. In this section

More information

Calculus The Mean Value Theorem October 22, 2018

Calculus The Mean Value Theorem October 22, 2018 Calculus The Mean Value Theorem October, 018 Definitions Let c be a number in the domain D of a function f. Then f(c) is the (a) absolute maximum value of f on D, i.e. f(c) = max, if f(c) for all x in

More information

dx dt = x 2 x = 120

dx dt = x 2 x = 120 Solutions to Review Questions, Exam. A child is flying a kite. If the kite is 90 feet above the child s hand level and the wind is blowing it on a horizontal course at 5 feet per second, how fast is the

More information

Section 4.2: The Mean Value Theorem

Section 4.2: The Mean Value Theorem Section 4.2: The Mean Value Theorem Before we continue with the problem of describing graphs using calculus we shall briefly pause to examine some interesting applications of the derivative. In previous

More information

4.3 How Derivatives Aect the Shape of a Graph

4.3 How Derivatives Aect the Shape of a Graph 11/3/2010 What does f say about f? Increasing/Decreasing Test Fact Increasing/Decreasing Test Fact If f '(x) > 0 on an interval, then f interval. is increasing on that Increasing/Decreasing Test Fact If

More information

St. Augustine, De Genesi ad Litteram, Book II, xviii, 37. (1) Note, however, that mathematici was most likely used to refer to astrologers.

St. Augustine, De Genesi ad Litteram, Book II, xviii, 37. (1) Note, however, that mathematici was most likely used to refer to astrologers. Quote: [...] Beware of mathematicians, and all those who make empty prophecies. The danger already exists that the mathematicians (1) have made a covenant with the devil to darken the spirit and to confine

More information

Applications of Differentiation

Applications of Differentiation Applications of Differentiation Definitions. A function f has an absolute maximum (or global maximum) at c if for all x in the domain D of f, f(c) f(x). The number f(c) is called the maximum value of f

More information

The Mean Value Theorem Rolle s Theorem

The Mean Value Theorem Rolle s Theorem The Mean Value Theorem In this section, we will look at two more theorems that tell us about the way that derivatives affect the shapes of graphs: Rolle s Theorem and the Mean Value Theorem. Rolle s Theorem

More information

Midterm 1 - Data. Overall (all sections): Average Median Std dev Section 80: Average Median Std dev 14.

Midterm 1 - Data. Overall (all sections): Average Median Std dev Section 80: Average Median Std dev 14. Midterm 1 - Data Overall (all sections): Average 75.12 Median 78.50 Std dev 15.40 Section 80: Average 74.77 Median 78.00 Std dev 14.70 Midterm 2 - Data Overall (all sections): Average 74.55 Median 79

More information

2015 Math Camp Calculus Exam Solution

2015 Math Camp Calculus Exam Solution 015 Math Camp Calculus Exam Solution Problem 1: x = x x +5 4+5 = 9 = 3 1. lim We also accepted ±3, even though it is not according to the prevailing convention 1. x x 4 x+4 =. lim 4 4+4 = 4 0 = 4 0 = We

More information

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a)

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a) MATH 2250 Calculus I Eric Perkerson Test 3 Review Sections Covered: 3.11, 4.1 4.6. Topics Covered: Linearization, Extreme Values, The Mean Value Theorem, Consequences of the Mean Value Theorem, Concavity

More information

Math 125: Exam 3 Review

Math 125: Exam 3 Review Math 125: Exam 3 Review Since we re using calculators, to keep the playing field level between all students, I will ask that you refrain from using certain features of your calculator, including graphing.

More information

The Mathematics of CT-Scans

The Mathematics of CT-Scans The Mathematics of CT-Scans Tomography has become one of the most important applications of mathematics to the problems of keeping us alive. Modern medicine relies heavily on imaging methods, beginning

More information

MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 5.2) Extrema, Inflection Points, and Graphing (Section 5.

MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 5.2) Extrema, Inflection Points, and Graphing (Section 5. MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 52) Extrema, Inflection Points, and Graphing (Section 53) Alberto Corso albertocorso@ukyedu Department of Mathematics

More information

Section 3.1 Extreme Values

Section 3.1 Extreme Values Math 132 Extreme Values Section 3.1 Section 3.1 Extreme Values Example 1: Given the following is the graph of f(x) Where is the maximum (x-value)? What is the maximum (y-value)? Where is the minimum (x-value)?

More information

Shape of a curve. Nov 15, 2016

Shape of a curve. Nov 15, 2016 Shape of a curve Nov 15, 2016 y = f(x) Where does the curve of f attain its maximum or minimum value? Where does the curve of f increase or decrease? What is its sketch? Some definitions Def: Absolute

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.9 Antiderivatives In this section, we will learn about: Antiderivatives and how they are useful in solving certain scientific problems.

More information

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0 8.7 Taylor s Inequality Math 00 Section 005 Calculus II Name: ANSWER KEY Taylor s Inequality: If f (n+) is continuous and f (n+) < M between the center a and some point x, then f(x) T n (x) M x a n+ (n

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 2/03/20 Bormashenko MATH 408N PRACTICE FINAL Show your work for all the problems. Good luck! () Let f(x) = ex e x. (a) [5 pts] State the domain and range of f(x). Name: TA session: Since e x is defined

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Spring 2019, WEEK 10 JoungDong Kim Week 10 Section 4.2, 4.3, 4.4 Mean Value Theorem, How Derivatives Affect the Shape of a Graph, Indeterminate Forms and L Hospital s

More information

Derivatives and Shapes of Curves

Derivatives and Shapes of Curves MATH 1170 Section 43 Worksheet NAME Derivatives and Shapes of Curves In Section 42 we discussed how to find the extreme values of a function using the derivative These results say, In Chapter 2, we discussed

More information

Maximum and Minimum Values (4.2)

Maximum and Minimum Values (4.2) Math 111.01 July 17, 2003 Summer 2003 Maximum and Minimum Values (4.2) Example. Determine the points at which f(x) = sin x attains its maximum and minimum. Solution: sin x attains the value 1 whenever

More information

Section 13.3 Concavity and Curve Sketching. Dr. Abdulla Eid. College of Science. MATHS 104: Mathematics for Business II

Section 13.3 Concavity and Curve Sketching. Dr. Abdulla Eid. College of Science. MATHS 104: Mathematics for Business II Section 13.3 Concavity and Curve Sketching College of Science MATHS 104: Mathematics for Business II (University of Bahrain) Concavity 1 / 18 Concavity Increasing Function has three cases (University of

More information

Review Questions, Exam 3

Review Questions, Exam 3 Review Questions, Exam. A child is flying a kite. If the kite is 90 feet above the child s hand level and the wind is blowing it on a horizontal course at 5 feet per second, how fast is the child paying

More information

Calculus Trivia: Historic Calculus Texts

Calculus Trivia: Historic Calculus Texts Calculus Trivia: Historic Calculus Texts Archimedes of Syracuse (c. 287 BC - c. 212 BC) - On the Measurement of a Circle : Archimedes shows that the value of pi (π) is greater than 223/71 and less than

More information

Calculus I 5. Applications of differentiation

Calculus I 5. Applications of differentiation 2301107 Calculus I 5. Applications of differentiation Chapter 5:Applications of differentiation C05-2 Outline 5.1. Extreme values 5.2. Curvature and Inflection point 5.3. Curve sketching 5.4. Related rate

More information

UNIVERSITY OF REGINA Department of Mathematics and Statistics. Calculus I Mathematics 110. Final Exam, Winter 2013 (April 25 th )

UNIVERSITY OF REGINA Department of Mathematics and Statistics. Calculus I Mathematics 110. Final Exam, Winter 2013 (April 25 th ) UNIVERSITY OF REGINA Department of Mathematics and Statistics Calculus I Mathematics 110 Final Exam, Winter 2013 (April 25 th ) Time: 3 hours Pages: 11 Full Name: Student Number: Instructor: (check one)

More information

3.5: Issues in Curve Sketching

3.5: Issues in Curve Sketching 3.5: Issues in Curve Sketching Mathematics 3 Lecture 20 Dartmouth College February 17, 2010 Typeset by FoilTEX Example 1 Which of the following are the graphs of a function, its derivative and its second

More information

Section 4.3 Concavity and Curve Sketching 1.5 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.3 Concavity and Curve Sketching 1.5 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.3 Concavity and Curve Sketching 1.5 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) Concavity 1 / 29 Concavity Increasing Function has three cases (University of Bahrain)

More information

What is on today. 1 Linear approximation. MA 123 (Calculus I) Lecture 17: November 2, 2017 Section A2. Professor Jennifer Balakrishnan,

What is on today. 1 Linear approximation. MA 123 (Calculus I) Lecture 17: November 2, 2017 Section A2. Professor Jennifer Balakrishnan, Professor Jennifer Balakrishnan, jbala@bu.edu What is on today 1 Linear approximation 1 1.1 Linear approximation and concavity....................... 2 1.2 Change in y....................................

More information

3. (12 points) Find an equation for the line tangent to the graph of f(x) =

3. (12 points) Find an equation for the line tangent to the graph of f(x) = April 8, 2015 Name The total number of points available is 168 Throughout this test, show your work Throughout this test, you are expected to use calculus to solve problems Graphing calculator solutions

More information

v(t) v(t) Assignment & Notes 5.2: Intro to Integrals Due Date: Friday, 1/10

v(t) v(t) Assignment & Notes 5.2: Intro to Integrals Due Date: Friday, 1/10 Assignment & Notes 5.2: Intro to Integrals 1. The velocity function (in miles and hours) for Ms. Hardtke s Christmas drive to see her family is shown at the right. Find the total distance Ms. H travelled

More information

Limits, Rates of Change, and Tangent Lines

Limits, Rates of Change, and Tangent Lines Limits, Rates of Change, and Tangent Lines jensenrj July 2, 2018 Contents 1 What is Calculus? 1 2 Velocity 2 2.1 Average Velocity......................... 3 2.2 Instantaneous Velocity......................

More information

MAT01B1: the Mean Value Theorem

MAT01B1: the Mean Value Theorem MAT01B1: the Mean Value Theorem Dr Craig 15 August 2018 My details: acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 11h20 12h55 Friday (this week): 11h20 12h30 Office C-Ring 508 https://andrewcraigmaths.wordpress.com/

More information

April 9, 2009 Name The problems count as marked. The total number of points available is 160. Throughout this test, show your work.

April 9, 2009 Name The problems count as marked. The total number of points available is 160. Throughout this test, show your work. April 9, 009 Name The problems count as marked The total number of points available is 160 Throughout this test, show your work 1 (15 points) Consider the cubic curve f(x) = x 3 + 3x 36x + 17 (a) Build

More information

Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections 3.1, 3.3, and 3.5

Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections 3.1, 3.3, and 3.5 Department of Mathematics, University of Wisconsin-Madison Math 11 Worksheet Sections 3.1, 3.3, and 3.5 1. For f(x) = 5x + (a) Determine the slope and the y-intercept. f(x) = 5x + is of the form y = mx

More information

Math 141: Section 4.1 Extreme Values of Functions - Notes

Math 141: Section 4.1 Extreme Values of Functions - Notes Math 141: Section 4.1 Extreme Values of Functions - Notes Definition: Let f be a function with domain D. Thenf has an absolute (global) maximum value on D at a point c if f(x) apple f(c) for all x in D

More information

Math 108, Solution of Midterm Exam 3

Math 108, Solution of Midterm Exam 3 Math 108, Solution of Midterm Exam 3 1 Find an equation of the tangent line to the curve x 3 +y 3 = xy at the point (1,1). Solution. Differentiating both sides of the given equation with respect to x,

More information

5.5 Worksheet - Linearization

5.5 Worksheet - Linearization AP Calculus 4.5 Worksheet 5.5 Worksheet - Linearization All work must be shown in this course for full credit. Unsupported answers ma receive NO credit. 1. Consider the function = sin. a) Find the equation

More information

2. (12 points) Find an equation for the line tangent to the graph of f(x) =

2. (12 points) Find an equation for the line tangent to the graph of f(x) = November 23, 2010 Name The total number of points available is 153 Throughout this test, show your work Throughout this test, you are expected to use calculus to solve problems Graphing calculator solutions

More information

Work the following on notebook paper. You may use your calculator to find

Work the following on notebook paper. You may use your calculator to find CALCULUS WORKSHEET ON 3.1 Work the following on notebook paper. You may use your calculator to find f values. 1. For each of the labeled points, state whether the function whose graph is shown has an absolute

More information

f ', the first derivative of a differentiable function, f. Use the

f ', the first derivative of a differentiable function, f. Use the f, f ', and The graph given to the right is the graph of graph to answer the questions below. f '' Relationships and The Extreme Value Theorem 1. On the interval [0, 8], are there any values where f(x)

More information

= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds?

= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds? Mathematics 115 Professor Alan H. Stein April 18, 005 SOLUTIONS 1. Define what is meant by an antiderivative or indefinite integral of a function f(x). Solution: An antiderivative or indefinite integral

More information

Math 180, Final Exam, Fall 2012 Problem 1 Solution

Math 180, Final Exam, Fall 2012 Problem 1 Solution Math 80, Final Exam, Fall 0 Problem Solution. Find the derivatives of the following functions: (a) ln(ln(x)) (b) x 6 + sin(x) e x (c) tan(x ) + cot(x ) (a) We evaluate the derivative using the Chain Rule.

More information

MAT01B1: the Mean Value Theorem

MAT01B1: the Mean Value Theorem MAT01B1: the Mean Value Theorem Dr Craig 21 August 2017 My details: acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 09h40 11h15 Friday (this week): 11h20 12h30 14h00 16h00 Office C-Ring 508

More information

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C)

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C) Math 1120 Calculus Test 3 November 4, 1 Name In the first 10 problems, each part counts 5 points (total 50 points) and the final three problems count 20 points each Multiple choice section Circle the correct

More information

f(x) f(c) is the limit of numbers less than or equal to 0 and therefore can t be positive. It follows that

f(x) f(c) is the limit of numbers less than or equal to 0 and therefore can t be positive. It follows that The Mean Value Theorem A student at the University of Connecticut happens to be travelling to Boston. He enters the Massachussetts Turnpike at the Sturbridge Village entrance at 9:15 in the morning. Since

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION We have already investigated some applications of derivatives. However, now that we know the differentiation rules, we are in a better

More information

3.Applications of Differentiation

3.Applications of Differentiation 3.Applications of Differentiation 3.1. Maximum and Minimum values Absolute Maximum and Absolute Minimum Values Absolute Maximum Values( Global maximum values ): Largest y-value for the given function Absolute

More information

APPM 1350 Final Exam Fall 2017

APPM 1350 Final Exam Fall 2017 APPM 350 Final Exam Fall 207. (26 pts) Evaluate the following. (a) Let g(x) cos 3 (π 2x). Find g (π/3). (b) Let y ( x) x. Find y (4). (c) lim r 0 e /r ln(r) + (a) (9 pt) g (x) 3 cos 2 (π 2x)( sin(π 2x))(

More information

Math 206 Practice Test 3

Math 206 Practice Test 3 Class: Date: Math 06 Practice Test. The function f (x) = x x + 6 satisfies the hypotheses of the Mean Value Theorem on the interval [ 9, 5]. Find all values of c that satisfy the conclusion of the theorem.

More information

Today Applications of MVT Find where functions are increasing/decreasing Derivative tests for extrema

Today Applications of MVT Find where functions are increasing/decreasing Derivative tests for extrema Today Applications of MVT Find where functions are increasing/decreasing Derivative tests for extrema Mean Value Theorem (proved by Cauchy in 1823) If f is continuous on [a, b] f(b) differentiable on (a,

More information

Math 1120, Section 1 Calculus Final Exam

Math 1120, Section 1 Calculus Final Exam May 7, 2014 Name Each of the first 17 problems are worth 10 points The other problems are marked The total number of points available is 285 Throughout the free response part of this test, to get credit

More information

MTH Calculus with Analytic Geom I TEST 1

MTH Calculus with Analytic Geom I TEST 1 MTH 229-105 Calculus with Analytic Geom I TEST 1 Name Please write your solutions in a clear and precise manner. SHOW your work entirely. (1) Find the equation of a straight line perpendicular to the line

More information

ch 3 applications of differentiation notebook.notebook January 17, 2018 Extrema on an Interval

ch 3 applications of differentiation notebook.notebook January 17, 2018 Extrema on an Interval Extrema on an Interval Extrema, or extreme values, are the minimum and maximum of a function. They are also called absolute minimum and absolute maximum (or global max and global min). Extrema that occur

More information

MATH 115 QUIZ4-SAMPLE December 7, 2016

MATH 115 QUIZ4-SAMPLE December 7, 2016 MATH 115 QUIZ4-SAMPLE December 7, 2016 Please review the following problems from your book: Section 4.1: 11 ( true and false) Section 4.1: 49-70 ( Using table or number line.) Section 4.2: 77-83 Section

More information

Caculus 221. Possible questions for Exam II. March 19, 2002

Caculus 221. Possible questions for Exam II. March 19, 2002 Caculus 221 Possible questions for Exam II March 19, 2002 These notes cover the recent material in a style more like the lecture than the book. The proofs in the book are in section 1-11. At the end there

More information

4.2: What Derivatives Tell Us

4.2: What Derivatives Tell Us 4.2: What Derivatives Tell Us Problem Fill in the following blanks with the correct choice of the words from this list: Increasing, decreasing, positive, negative, concave up, concave down (a) If you know

More information

McGILL UNIVERSITY FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS CALCULUS 1

McGILL UNIVERSITY FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS CALCULUS 1 McGILL UNIVERSITY FACULTY OF SCIENCE FINAL EXAMINATION VERSION 1 MATHEMATICS 140 2008 09 CALCULUS 1 EXAMINER: Professor W. G. Brown DATE: Sunday, December 07th, 2008 ASSOCIATE EXAMINER: Dr. D. Serbin TIME:

More information

Section 1.3 Rates of Change and Behavior of Graphs

Section 1.3 Rates of Change and Behavior of Graphs Section 1. Rates of Change and Behavior of Graphs 5 Section 1. Rates of Change and Behavior of Graphs Since functions represent how an output quantity varies with an input quantity, it is natural to ask

More information

WEEK 8. CURVE SKETCHING. 1. Concavity

WEEK 8. CURVE SKETCHING. 1. Concavity WEEK 8. CURVE SKETCHING. Concavity Definition. (Concavity). The graph of a function y = f(x) is () concave up on an interval I if for any two points a, b I, the straight line connecting two points (a,

More information

AP Calculus. Analyzing a Function Based on its Derivatives

AP Calculus. Analyzing a Function Based on its Derivatives AP Calculus Analyzing a Function Based on its Derivatives Student Handout 016 017 EDITION Click on the following link or scan the QR code to complete the evaluation for the Study Session https://www.surveymonkey.com/r/s_sss

More information

Absolute and Local Extrema

Absolute and Local Extrema Extrema of Functions We can use the tools of calculus to help us understand and describe the shapes of curves. Here is some of the data that derivatives f (x) and f (x) can provide about the shape of the

More information

My name is... WHAT?? (as seen on your exams)

My name is... WHAT?? (as seen on your exams) My name is... WHAT?? (as seen on your exams) Alvaro Loreno Alvaro Loranzo-Rubledo Alaro Alzano-Robledo Alvareo Lozano-Robledo Alvaro Lozano-Rebledo Dr. Lorenzo-Robledo Alvaro-Loranzo Alvaro Alverez Lonzaro

More information

Exam 3 MATH Calculus I

Exam 3 MATH Calculus I Trinity College December 03, 2015 MATH 131-01 Calculus I By signing below, you attest that you have neither given nor received help of any kind on this exam. Signature: Printed Name: Instructions: Show

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundamental Theorem of Calculus MATH 6 Calculus I J. Robert Buchanan Department of Mathematics Summer 208 Remarks The Fundamental Theorem of Calculus (FTC) will make the evaluation of definite integrals

More information

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know. Disclaimer: This is meant to help you start studying. It is not necessarily a complete list of everything you need to know. The MTH 132 final exam mainly consists of standard response questions where students

More information

QUIZ ON CHAPTER 4 APPLICATIONS OF DERIVATIVES; MATH 150 FALL 2016 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS

QUIZ ON CHAPTER 4 APPLICATIONS OF DERIVATIVES; MATH 150 FALL 2016 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS Math 150 Name: QUIZ ON CHAPTER 4 APPLICATIONS OF DERIVATIVES; MATH 150 FALL 2016 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100% Show all work, simplify as appropriate, and use good form and procedure

More information

Limit. Chapter Introduction

Limit. Chapter Introduction Chapter 9 Limit Limit is the foundation of calculus that it is so useful to understand more complicating chapters of calculus. Besides, Mathematics has black hole scenarios (dividing by zero, going to

More information

Summary of Derivative Tests

Summary of Derivative Tests Summary of Derivative Tests Note that for all the tests given below it is assumed that the function f is continuous. Critical Numbers Definition. A critical number of a function f is a number c in the

More information

Topics and Concepts. 1. Limits

Topics and Concepts. 1. Limits Topics and Concepts 1. Limits (a) Evaluating its (Know: it exists if and only if the it from the left is the same as the it from the right) (b) Infinite its (give rise to vertical asymptotes) (c) Limits

More information

3 Geometrical Use of The Rate of Change

3 Geometrical Use of The Rate of Change Arkansas Tech University MATH 224: Business Calculus Dr. Marcel B. Finan Geometrical Use of The Rate of Change Functions given by tables of values have their limitations in that nearly always leave gaps.

More information

MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula.

MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula. MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula. Points of local extremum Let f : E R be a function defined on a set E R. Definition. We say that f attains a local maximum

More information

Section 11.3 Rates of Change:

Section 11.3 Rates of Change: Section 11.3 Rates of Change: 1. Consider the following table, which describes a driver making a 168-mile trip from Cleveland to Columbus, Ohio in 3 hours. t Time (in hours) 0 0.5 1 1.5 2 2.5 3 f(t) Distance

More information

MATH CALCULUS I 2.2: Differentiability, Graphs, and Higher Derivatives

MATH CALCULUS I 2.2: Differentiability, Graphs, and Higher Derivatives MATH 12002 - CALCULUS I 2.2: Differentiability, Graphs, and Higher Derivatives Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 /

More information

Math 118, Summer 1999 Calculus for Students of Business and Economics Midterm

Math 118, Summer 1999 Calculus for Students of Business and Economics Midterm Math 118, Summer 1999 Calculus for Students of Business and Economics Midterm Instructions: Try all the problems. Show all your work. Answers given with no indication of how they were obtained may receive

More information

1. (16pts) Use the graph of the function to answer the following. Justify your answer if a limit does not exist. lim

1. (16pts) Use the graph of the function to answer the following. Justify your answer if a limit does not exist. lim Spring 10/MAT 250/Exam 1 Name: Show all your work. 1. (16pts) Use the graph of the function to answer the following. Justify your answer if a limit does not exist. lim x 1 +f(x) = lim x 3 f(x) = lim x

More information

Justifications on the AP Calculus Exam

Justifications on the AP Calculus Exam Justifications on the AP Calculus Exam Students are expected to demonstrate their knowledge of calculus concepts in 4 ways. 1. Numerically (Tables/Data) 2. Graphically 3. Analytically (Algebraic equations)

More information

It has neither a local maximum value nor an absolute maximum value

It has neither a local maximum value nor an absolute maximum value 1 Here, we learn how derivatives affect the shape of a graph of a function and, in particular, how they help us locate maximum and minimum values of functions. Some of the most important applications of

More information

Math 111 Calculus I Fall 2005 Practice Problems For Final December 5, 2005

Math 111 Calculus I Fall 2005 Practice Problems For Final December 5, 2005 Math 111 Calculus I Fall 2005 Practice Problems For Final December 5, 2005 As always, the standard disclaimers apply In particular, I make no claims that all the material which will be on the exam is represented

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 05/05/2012 Bormashenko MATH 408N PRACTICE FINAL Name: TA session: Show your work for all the problems. Good luck! (1) Calculate the following limits, using whatever tools are appropriate. State which results

More information

Math Honors Calculus I Final Examination, Fall Semester, 2013

Math Honors Calculus I Final Examination, Fall Semester, 2013 Math 2 - Honors Calculus I Final Eamination, Fall Semester, 2 Time Allowed: 2.5 Hours Total Marks:. (2 Marks) Find the following: ( (a) 2 ) sin 2. (b) + (ln 2)/(+ln ). (c) The 2-th Taylor polynomial centered

More information

MA FINAL EXAM Green December 16, You must use a #2 pencil on the mark sense sheet (answer sheet).

MA FINAL EXAM Green December 16, You must use a #2 pencil on the mark sense sheet (answer sheet). MA 600 FINAL EXAM Green December 6, 205 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME. You must use a #2 pencil on the mark sense sheet (answer sheet). 2. Be sure the paper you are looking at right

More information

MA 161 Final Exam December 13, You must use a #2 pencil on the scantron sheet (answer sheet).

MA 161 Final Exam December 13, You must use a #2 pencil on the scantron sheet (answer sheet). MA 161 Final Exam December 1, 016 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME 1. You must use a # pencil on the scantron sheet (answer sheet).. Write the following in the TEST/QUIZ NUMBER boxes (and

More information

Test 3 Review. fx ( ) ( x 2) 4/5 at the indicated extremum. y x 2 3x 2. Name: Class: Date: Short Answer

Test 3 Review. fx ( ) ( x 2) 4/5 at the indicated extremum. y x 2 3x 2. Name: Class: Date: Short Answer Name: Class: Date: ID: A Test 3 Review Short Answer 1. Find the value of the derivative (if it exists) of fx ( ) ( x 2) 4/5 at the indicated extremum. 7. A rectangle is bounded by the x- and y-axes and

More information

AP Calculus Worksheet: Chapter 2 Review Part I

AP Calculus Worksheet: Chapter 2 Review Part I AP Calculus Worksheet: Chapter 2 Review Part I 1. Given y = f(x), what is the average rate of change of f on the interval [a, b]? What is the graphical interpretation of your answer? 2. The derivative

More information

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x?

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x? . What are the domain and range of the function Fall 9 Math 3 Final Exam Solutions f(x) = + ex e x? Answer: The function is well-defined everywhere except when the denominator is zero, which happens when

More information

MA 123 September 8, 2016

MA 123 September 8, 2016 Instantaneous velocity and its Today we first revisit the notion of instantaneous velocity, and then we discuss how we use its to compute it. Learning Catalytics session: We start with a question about

More information

f(r) = (r 1/2 r 1/2 ) 3 u = (ln t) ln t ln u = (ln t)(ln (ln t)) t(ln t) g (t) = t

f(r) = (r 1/2 r 1/2 ) 3 u = (ln t) ln t ln u = (ln t)(ln (ln t)) t(ln t) g (t) = t Math 4, Autumn 006 Final Exam Solutions Page of 9. [ points total] Calculate the derivatives of the following functions. You need not simplfy your answers. (a) [4 points] y = 5x 7 sin(3x) + e + ln x. y

More information

Linearization and Extreme Values of Functions

Linearization and Extreme Values of Functions Linearization and Extreme Values of Functions 3.10 Linearization and Differentials Linear or Tangent Line Approximations of function values Equation of tangent to y = f(x) at (a, f(a)): Tangent line approximation

More information

V. Graph Sketching and Max-Min Problems

V. Graph Sketching and Max-Min Problems V. Graph Sketching and Max-Min Problems The signs of the first and second derivatives of a function tell us something about the shape of its graph. In this chapter we learn how to find that information.

More information

Math 131. Increasing/Decreasing Functions and First Derivative Test Larson Section 3.3

Math 131. Increasing/Decreasing Functions and First Derivative Test Larson Section 3.3 Math 131. Increasing/Decreasing Functions and First Derivative Test Larson Section 3.3 Increasing and Decreasing Functions. A function f is increasing on an interval if for any two numbers x 1 and x 2

More information

Solutions to Math 41 First Exam October 18, 2012

Solutions to Math 41 First Exam October 18, 2012 Solutions to Math 4 First Exam October 8, 202. (2 points) Find each of the following its, with justification. If the it does not exist, explain why. If there is an infinite it, then explain whether it

More information

MA 113 Calculus I Fall 2009 Exam 3 November 17, 2009

MA 113 Calculus I Fall 2009 Exam 3 November 17, 2009 MA 113 Calculus I Fall 2009 Exam 3 November 17, 2009 Answer all of the questions 1-7 and two of the questions 8-10. Please indicate which problem is not to be graded by crossing through its number in the

More information