f(x) f(c) is the limit of numbers less than or equal to 0 and therefore can t be positive. It follows that

Size: px
Start display at page:

Download "f(x) f(c) is the limit of numbers less than or equal to 0 and therefore can t be positive. It follows that"

Transcription

1 The Mean Value Theorem A student at the University of Connecticut happens to be travelling to Boston. He enters the Massachussetts Turnpike at the Sturbridge Village entrance at 9:15 in the morning. Since he uses Fast Lane, he never actually picks up a ticket, but sensors record that he goes through the toll lane at Newton at 9:53, just 38 minutes later. He soon receives a traffic summons in the mail indicating that he violated the posted speed limit and decides to appeal, since there is no indication he was caught by radar. Appearing in court, the prosecutor argues that he travelled 44.8 miles in 38 minutes and therefore travelled at an average speed of miles per hour, more than 5 miles above the highest posted speed limit of 65 miles per hour. The student argues that, although he may have averaged more than 65 miles per hour, there is no evidence that he actually ever travelled at an instantaneous speed of more than 65 miles per hour. The judge considers the arguments and quickly rejects the student s plea, noting that the Mean Value Theorem implies that since his average speed was miles per hour, there had to be at least one instant during which his instantaneous speed was miles per hour. Rolle s Theorem Theorem 1 (Rolle s Theorem). Suppose a function f is continuous on the closed interval [a, b], differentiable on the open interval (a, b) and f(a) = f(b). Then there is a number c (a, b) such that f (c) = 0. Geometrically, this says that if there are two points on a smooth curve takes at the same height, there must be a point in between where the tangent is horizontal. Rolle s Theorem is a special case of the Mean Value Theorem. Proof: Suppose f satisfies the hypotheses of Rolle s Theorem. By the Extreme Value Theorem for Continuous Function, there must be some point in [a, b] at which f attains a minimum and some point at which f attains a maximum. One possibility is that f is constant on the entire interval, in which case f is identically 0 on (a, b) and the conclusion is clearly true. So let s consider the other possibility, that f is not constant. Then either the minimum or the maximum must occur at some point c (a, b), that is, at some point other than the endpoints. 1

2 We will show that f (c) = 0 if f has a maximum at c. Similar reasoning would show f (c) = 0 if f had a minimum at c, showing the conclusion is true and completing the proof. We know f f(x) f(c) (c) = lim x c. Since this ordinary limit exists, it follows that both the left hand limit and the right hand limit exist and are both equal to f (c). We ll consider them separately. The Left Hand Limit: f f(x) f(c) (c) = lim x c. Since f has a maximum at c, if x < c, then f(x) f(c), so f(x) f(c) 0. But, if x < c, it s also true that < 0 and it follows that f(x) f(c) f(x) f(c) 0. We see lim x c is the limit of nonnegative numbers and therefore can t be negative. It follows that f (c) 0. The line of reasoning for the right hand limit is similar. The Right Hand Limit: f f(x) f(c) (c) = lim x c +. Since f has a maximum at c, if x > c, then f(x) f(c), so f(x) f(c) 0. But, if x > c, it s also true that > 0 and it follows that f(x) f(c) f(x) f(c) 0. We see lim x c + is the limit of numbers less than or equal to 0 and therefore can t be positive. It follows that f (c) 0. Since f (c) 0 and f (c) 0, it follows that f (c) = 0 2 QED Consequences of Rolle s Theorem Besides being a special case of the Mean Value Theorem and being a step in the path to proving the Mean Value Theorem, Rolle s Theorem has some interesting applications of its own. Corollary 2. A polynomial equation of degree n has at most n solutions. This is equivalent to the statement that a polynomial of degree n has at most n zeros. Since a polynomial may be differentiated as many times as necessary, with each derivative being a polynomial of lower degree, one immediate consequence of Rolle s Theorem is that the derivative of a polynomial has at least one zero between each pair of distinct zeros of the original polynomial.

3 The derivative of a linear polynomial is a non-zero constant, having no zeros, so a linear polynomial can t have more than 1 zero. The derivative of a quadratic polynomial is linear, having no more than 1 zero, so a quadratic can t have more than 2 zeros. The derivative of a cubic polynomial is quadratic, having no more than 2 zeros, so the cubic can t have more than 3 zeros. This clearly goes on forever. The argument can be made rigorous through the use of Mathematical Induction. The Mean Value Theorem Theorem 3 (The Mean Value Theorem). Suppose a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b). Then there is a number c (a, b) such that f(b) f(a) = f (c)() or, equivalently, f (c) =. Geometrically, the Mean Value Theorem says that if there is a smooth curve connecting two points, there must be some point in between at which the tangent line is parallel to the line connecting those two points. Analytically, the Mean Value Theorem says the rate of change of a differentiable function must, at some point, take on its average, or mean value. The proof of the Mean Value Theorem depends on the fact that the particular point at which the tangent line is parallel to the line connecting the endpoints also happens to be the point at which the curve is furthers away from that line. The proof essentially consists of applying Rolle s Theorem to the function measuring the distance between the line and the curve. Since the line goes between the points (a, f(a)) and (b, f(b)), its slope will be and its equation may be written, in pointslope form, y f(a) = (x a). Solving for y, we may write the equation in the form y = f(a) + (x a). Since the second coordinate of a point on the curve with first coordinate x is f(x), the vertical distance between the line and the curve will equal 3

4 [ ] f(x) f(a) + (x a) = f(x) f(a) (x a). We are now prepared to prove the Mean Value Theorem. Proof: Let φ(x) = f(x) f(a) (x a). It is easy to see that φ satisfies the hypotheses of Rolle s Theorem on the interval [a, b]. Certainly, the fact that φ is both continuous and differentiable on [a, b] follows immediately from the fact that f is. In addition, φ(a) = f(a) f(a) (a a) = 0 and φ(b) = f(b) f(a) (b a) = f(b) f(a) [f(b) f(a)] = 0. Thus, there must be some c (a, b) such that φ (c) = 0. We first obtain φ (c) as follows. φ (x) = f (x) φ (c) = f (c) Since φ (c) = 0, it follows that f (c) = 0. f (c) = f (c)() = 4 QED Consequences of the Mean Value Theorem Perhaps the most important consequence of the Mean Value Theorem is that it gives precise meaning to the most important single concept in elementary Calculus, The Derivative Measures Rate of Change. Theorem 4. a. If the derivative of a function is positive at all points on an interval, then the function is increasing on that interval. b. If the derivative of a function is negative at all points on an interval, then the function is decreasing on that interval.

5 To prove this, we need a precise definition of what it means to be increasing or decreasing. Definition 1 (Strictly Increasing). A function f is said to be strictly increasing on an open interval I if f(a) < f(b) whenever a, b I and a < b. 5 Definition 2 (Nondecreasing). A function f is said to be nondecreasing on an open interval I if f(a) f(b) whenever a, b I and a < b. Note the subtle difference. Often, we will simply say a function is increasing. Generally, in those cases, it will not really be important whether we mean strictly increasing or simply nondecreasing. There are similar definitions of the terms strictly decreasing and nonincreasing. Here, too, we will often use the ambiguous term decreasing. Definition 3 (Strictly Decreasing). A function f is said to be strictly decreasing on an open interval I if f(a) > f(b) whenever a, b I and a < b. Definition 4 (Nonincreasing). A function f is said to be nonincreasing on an open interval I if f(a) f(b) whenever a, b I and a < b. With these definitions, we are ready to prove the derivative measures rate of change. We will prove just one of what are really four different parts, that if the derivative is strictly positive then the function is strictly increasing. Proof. Suppose f (x) > 0 prove that f(a) < f(b). x I and let a, b I, a < b. We need to Note: We ve introduced the notation to mean for all or for every. Since f (x) > 0 x I, it follows that f is continuous on [a, b] and differentiable on (a, b), so by the Mean Value Theorem there is some c (a, b) such that = f (c)(). Since f (x) > 0 x I, it follows that f (c) is positive. Since a < b, it follows that is also positive, so that f (c)() is also positive and hence must be positive. Clearly, f(a) must be smaller than f(b). Very Different Functions Can t Have the Same Derivative

6 It s obvious that if two functions differ by only a constant term, then they will have the same derivative. d Example: dx (x2 ) = d dx (x2 + 5) = 2x. A natural question is whether only functions differing by a constant can share the same derivative. The Mean Value Theorem enables us to see this is true. Theorem 5. If f (x) = g (x) for all x in some interval, then there is some constant k such that f(x) = g(x) + k. Proof: Let φ = f g and let a be some fixed point in the interval. Now let x be in the interval. Clearly, the φ is both continuous and differentiable on the interval with endpoints a and x and we can apply the Mean Value Theorem. We use that language because it is possible that a < x and the interval is [a, x] but also possible that a > x and the interval is [x, a]. By the Mean Value Theorem, there is some c in the interval such that φ(x) φ(a) = φ (c)(x a). Because φ = f g, it follows that φ (c) = 0, so φ(x) φ(a) = 0. It follows that φ(x) = φ(a), or φ(x) = k, where we let k = φ(a). Since φ = f g, we have f(x) g(x) = k, or f(x) = g(x) + k. 6 QED Corollary 6. Only constant functions have derivatives which are identically 0. This theorem will prove useful when we try to find functions with a given derivative. One application will be to determine the acceleration due to gravity. Example An object is dropped from a height of 128 feet. How long does it take to reach the ground? Solution Let: h be the height of the object, measured in feet. v be the velocity of the object, measured in feet per second. t be the time since the object was dropped, measured in seconds. We Know: h = 128 when t = 0 v = 0 when t = 0

7 dh dv = v (Since velocity is the rate at which the height changes.) = 32 (Since acceleration is the rate at which the velocity changes and the acceleration due to gravity is 32 feet per second per second and is in the downward, or negative, direction.) frame We Want: The value of t when h = 0 Since d ( 32t) = 32 and two functions can have the same derivative only if they differ by a constant, it follows that v = 32t + c for some constant c. Since v = 0 when t = 0, it follows that 0 = c c = 0 v = 32t Since d dh ( 16t2 ) = 32t, = v = 32t and two functions can have the same derivative only if they differ by a constant, it follows that h = 16t 2 + k for some constant k. Since h = 128 when t = 0, it follows that 128 = k k = 128 h = 16t Thus, when h = 0, 0 = 16t t 2 = 128 t 2 = = 8 t = 8 = It thus takes 2 2 seconds for the object to fall to the ground. We can also figure out how fast it was going when it hit the ground: Since v = 32t, when t = 2 2 we have v = = , so the object is travelling at a speed of 64 2 feet per second when it hits the ground. 7

8 Example Determine the acceleration due to gravity. Solution: We may perform the following experiment: We drop a coin from the ceiling and measure the time it takes to hit the ground. Let: t be the time since the coin is dropped T be the amount of time it takes to hit the ground h be the height of the coin H be the height of the ceiling v be the speed of the coin g be the acceleration due to gravity We Know We know: dh = v dv = g h = H when t = 0 v = 0 when t = 0 h = 0 when t = T We want: We Want The value of g. Since d (gt) = g, dv = g and two functions can have the same derivative only if they differ by a constant, it follows that v = gt + c for some constant c. Since v = 0 when t = 0, it follows that 0 = g 0 + c c = 0 v = gt Since d ( 1 2 gt2) = gt, dh = v = gt and two functions can have the same derivative only if they differ by a constant, it follows that h = 1 2 gt2 + k for some constant k. Since h = H when t = 0, it follows that 8

9 H = 1 2 g 02 + k k = H h = 1 2 gt2 + H Since h = 0 when t = T, it follows that 0 = 1 2 gt 2 + H 1 gt 2 = H 2 g = H 1 2 T 2 g = 2H T 2 So the acceleration due to gravity is 2H T 2 9 feet per second per second. Note that g is negative, since the acceleration is downward.

The Mean Value Theorem Rolle s Theorem

The Mean Value Theorem Rolle s Theorem The Mean Value Theorem In this section, we will look at two more theorems that tell us about the way that derivatives affect the shapes of graphs: Rolle s Theorem and the Mean Value Theorem. Rolle s Theorem

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem

Section 3.7. Rolle s Theorem and the Mean Value Theorem Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate of change and the average rate of change of

More information

dx dt = x 2 x = 120

dx dt = x 2 x = 120 Solutions to Review Questions, Exam. A child is flying a kite. If the kite is 90 feet above the child s hand level and the wind is blowing it on a horizontal course at 5 feet per second, how fast is the

More information

Section 4.2: The Mean Value Theorem

Section 4.2: The Mean Value Theorem Section 4.2: The Mean Value Theorem Before we continue with the problem of describing graphs using calculus we shall briefly pause to examine some interesting applications of the derivative. In previous

More information

Caculus 221. Possible questions for Exam II. March 19, 2002

Caculus 221. Possible questions for Exam II. March 19, 2002 Caculus 221 Possible questions for Exam II March 19, 2002 These notes cover the recent material in a style more like the lecture than the book. The proofs in the book are in section 1-11. At the end there

More information

Families of Functions, Taylor Polynomials, l Hopital s

Families of Functions, Taylor Polynomials, l Hopital s Unit #6 : Rule Families of Functions, Taylor Polynomials, l Hopital s Goals: To use first and second derivative information to describe functions. To be able to find general properties of families of functions.

More information

Chapter 8: Taylor s theorem and L Hospital s rule

Chapter 8: Taylor s theorem and L Hospital s rule Chapter 8: Taylor s theorem and L Hospital s rule Theorem: [Inverse Mapping Theorem] Suppose that a < b and f : [a, b] R. Given that f (x) > 0 for all x (a, b) then f 1 is differentiable on (f(a), f(b))

More information

Lesson 59 Rolle s Theorem and the Mean Value Theorem

Lesson 59 Rolle s Theorem and the Mean Value Theorem Lesson 59 Rolle s Theorem and the Mean Value Theorem HL Math - Calculus After this lesson, you should be able to: Understand and use Rolle s Theorem Understand and use the Mean Value Theorem 1 Rolle s

More information

14 Increasing and decreasing functions

14 Increasing and decreasing functions 14 Increasing and decreasing functions 14.1 Sketching derivatives READING Read Section 3.2 of Rogawski Reading Recall, f (a) is the gradient of the tangent line of f(x) at x = a. We can use this fact to

More information

Mean Value Theorem. is continuous at every point of the closed interval,

Mean Value Theorem. is continuous at every point of the closed interval, Mean Value Theorem The Mean Value Theorem connects the average rate of change (slope of the secant between two points [a and b]) with the instantaneous rate of change (slope of tangent at some point c).

More information

Student Study Session. Theorems

Student Study Session. Theorems Students should be able to apply and have a geometric understanding of the following: Intermediate Value Theorem Mean Value Theorem for derivatives Extreme Value Theorem Name Formal Statement Restatement

More information

Calculus The Mean Value Theorem October 22, 2018

Calculus The Mean Value Theorem October 22, 2018 Calculus The Mean Value Theorem October, 018 Definitions Let c be a number in the domain D of a function f. Then f(c) is the (a) absolute maximum value of f on D, i.e. f(c) = max, if f(c) for all x in

More information

Calculus Honors and Introduction to Calculus

Calculus Honors and Introduction to Calculus Calculus Honors and Introduction to Calculus Name: This summer packet is for students entering Calculus Honors or Introduction to Calculus in the Fall of 015. The material represents concepts and skills

More information

Section 3.1 Extreme Values

Section 3.1 Extreme Values Math 132 Extreme Values Section 3.1 Section 3.1 Extreme Values Example 1: Given the following is the graph of f(x) Where is the maximum (x-value)? What is the maximum (y-value)? Where is the minimum (x-value)?

More information

CH 2: Limits and Derivatives

CH 2: Limits and Derivatives 2 The tangent and velocity problems CH 2: Limits and Derivatives the tangent line to a curve at a point P, is the line that has the same slope as the curve at that point P, ie the slope of the tangent

More information

V. Graph Sketching and Max-Min Problems

V. Graph Sketching and Max-Min Problems V. Graph Sketching and Max-Min Problems The signs of the first and second derivatives of a function tell us something about the shape of its graph. In this chapter we learn how to find that information.

More information

3 Geometrical Use of The Rate of Change

3 Geometrical Use of The Rate of Change Arkansas Tech University MATH 224: Business Calculus Dr. Marcel B. Finan Geometrical Use of The Rate of Change Functions given by tables of values have their limitations in that nearly always leave gaps.

More information

[ ] with end points at ( a,f(a) ) and b,f(b)

[ ] with end points at ( a,f(a) ) and b,f(b) Section 4 2B: Rolle s Theorem and the Mean Value Theorem The intermediate Value Theorem If f(x) is a continuous function on the closed interval a,b [ ] with end points at ( a,f(a) ) and b,f(b) ( )then

More information

Mean Value Theorem. Increasing Functions Extreme Values of Functions Rolle s Theorem Mean Value Theorem FAQ. Index

Mean Value Theorem. Increasing Functions Extreme Values of Functions Rolle s Theorem Mean Value Theorem FAQ. Index Mean Value Increasing Functions Extreme Values of Functions Rolle s Mean Value Increasing Functions (1) Assume that the function f is everywhere increasing and differentiable. ( x + h) f( x) f Then h 0

More information

Math 132 Mean Value Theorem Stewart 3.2

Math 132 Mean Value Theorem Stewart 3.2 Math 132 Mean Value Theorem Stewart 3.2 Vanishing derivatives. We will prove some basic theorems which relate the derivative of a function with the values of the function, culminating in the Uniqueness

More information

Review Questions, Exam 3

Review Questions, Exam 3 Review Questions, Exam. A child is flying a kite. If the kite is 90 feet above the child s hand level and the wind is blowing it on a horizontal course at 5 feet per second, how fast is the child paying

More information

Everything Old Is New Again: Connecting Calculus To Algebra Andrew Freda

Everything Old Is New Again: Connecting Calculus To Algebra Andrew Freda Everything Old Is New Again: Connecting Calculus To Algebra Andrew Freda (afreda@deerfield.edu) ) Limits a) Newton s Idea of a Limit Perhaps it may be objected, that there is no ultimate proportion of

More information

MATH 113: ELEMENTARY CALCULUS

MATH 113: ELEMENTARY CALCULUS MATH 3: ELEMENTARY CALCULUS Please check www.ualberta.ca/ zhiyongz for notes updation! 6. Rates of Change and Limits A fundamental philosophical truth is that everything changes. In physics, the change

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.9 Antiderivatives In this section, we will learn about: Antiderivatives and how they are useful in solving certain scientific problems.

More information

B553 Lecture 1: Calculus Review

B553 Lecture 1: Calculus Review B553 Lecture 1: Calculus Review Kris Hauser January 10, 2012 This course requires a familiarity with basic calculus, some multivariate calculus, linear algebra, and some basic notions of metric topology.

More information

AP Calculus AB. Introduction. Slide 1 / 233 Slide 2 / 233. Slide 4 / 233. Slide 3 / 233. Slide 6 / 233. Slide 5 / 233. Limits & Continuity

AP Calculus AB. Introduction. Slide 1 / 233 Slide 2 / 233. Slide 4 / 233. Slide 3 / 233. Slide 6 / 233. Slide 5 / 233. Limits & Continuity Slide 1 / 233 Slide 2 / 233 AP Calculus AB Limits & Continuity 2015-10-20 www.njctl.org Slide 3 / 233 Slide 4 / 233 Table of Contents click on the topic to go to that section Introduction The Tangent Line

More information

The Mean Value Theorem

The Mean Value Theorem Math 31A Discussion Session Week 6 Notes February 9 and 11, 2016 This week we ll discuss some (unsurprising) properties of the derivative, and then try to use some of these properties to solve a real-world

More information

AP Calculus AB. Slide 1 / 233. Slide 2 / 233. Slide 3 / 233. Limits & Continuity. Table of Contents

AP Calculus AB. Slide 1 / 233. Slide 2 / 233. Slide 3 / 233. Limits & Continuity. Table of Contents Slide 1 / 233 Slide 2 / 233 AP Calculus AB Limits & Continuity 2015-10-20 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 233 Introduction The Tangent Line Problem Definition

More information

Math 131. Rolle s and Mean Value Theorems Larson Section 3.2

Math 131. Rolle s and Mean Value Theorems Larson Section 3.2 Math 3. Rolle s and Mean Value Theorems Larson Section 3. Many mathematicians refer to the Mean Value theorem as one of the if not the most important theorems in mathematics. Rolle s Theorem. Suppose f

More information

Precalculus idea: A picture is worth 1,000 words

Precalculus idea: A picture is worth 1,000 words Six Pillars of Calculus by Lorenzo Sadun Calculus is generally viewed as a difficult subject, with hundreds of formulas to memorize and many applications to the real world. However, almost all of calculus

More information

Solutions to Problem Sheet for Week 8

Solutions to Problem Sheet for Week 8 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Wee 8 MATH1901: Differential Calculus (Advanced) Semester 1, 017 Web Page: sydney.edu.au/science/maths/u/ug/jm/math1901/

More information

MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula.

MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula. MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula. Points of local extremum Let f : E R be a function defined on a set E R. Definition. We say that f attains a local maximum

More information

Anna D Aloise May 2, 2017 INTD 302: Final Project. Demonstrate an Understanding of the Fundamental Concepts of Calculus

Anna D Aloise May 2, 2017 INTD 302: Final Project. Demonstrate an Understanding of the Fundamental Concepts of Calculus Anna D Aloise May 2, 2017 INTD 302: Final Project Demonstrate an Understanding of the Fundamental Concepts of Calculus Analyzing the concept of limit numerically, algebraically, graphically, and in writing.

More information

Last week we looked at limits generally, and at finding limits using substitution.

Last week we looked at limits generally, and at finding limits using substitution. Math 1314 ONLINE Week 4 Notes Lesson 4 Limits (continued) Last week we looked at limits generally, and at finding limits using substitution. Indeterminate Forms What do you do when substitution gives you

More information

Math 141: Section 4.1 Extreme Values of Functions - Notes

Math 141: Section 4.1 Extreme Values of Functions - Notes Math 141: Section 4.1 Extreme Values of Functions - Notes Definition: Let f be a function with domain D. Thenf has an absolute (global) maximum value on D at a point c if f(x) apple f(c) for all x in D

More information

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1 Math 131. The Derivative and the Tangent Line Problem Larson Section.1 From precalculus, the secant line through the two points (c, f(c)) and (c +, f(c + )) is given by m sec = rise f(c + ) f(c) f(c +

More information

X. Numerical Methods

X. Numerical Methods X. Numerical Methods. Taylor Approximation Suppose that f is a function defined in a neighborhood of a point c, and suppose that f has derivatives of all orders near c. In section 5 of chapter 9 we introduced

More information

Answers for Calculus Review (Extrema and Concavity)

Answers for Calculus Review (Extrema and Concavity) Answers for Calculus Review 4.1-4.4 (Extrema and Concavity) 1. A critical number is a value of the independent variable (a/k/a x) in the domain of the function at which the derivative is zero or undefined.

More information

AP Calculus AB. Limits & Continuity.

AP Calculus AB. Limits & Continuity. 1 AP Calculus AB Limits & Continuity 2015 10 20 www.njctl.org 2 Table of Contents click on the topic to go to that section Introduction The Tangent Line Problem Definition of a Limit and Graphical Approach

More information

Sample Mathematics 106 Questions

Sample Mathematics 106 Questions Sample Mathematics 106 Questions x 2 + 8x 65 (1) Calculate lim x 5. x 5 (2) Consider an object moving in a straight line for which the distance s (measured in feet) it s travelled from its starting point

More information

AP Calculus AB Chapter 2 Test Review #1

AP Calculus AB Chapter 2 Test Review #1 AP Calculus AB Chapter Test Review # Open-Ended Practice Problems:. Nicole just loves drinking chocolate milk out of her special cone cup which has a radius of inches and a height of 8 inches. Nicole pours

More information

Applications of Derivatives

Applications of Derivatives Applications of Derivatives Extrema on an Interval Objective: Understand the definition of extrema of a function on an interval. Understand the definition of relative extrema of a function on an open interval.

More information

(x) = lim. dx = f f(x + h) f(x)

(x) = lim. dx = f f(x + h) f(x) Chapter 4 The Derivative In our investigation so far, we have defined the notion of an instantaneous rate of change, and called this the derivative. We have also identified this mathematical concept with

More information

Limits, Continuity, and the Derivative

Limits, Continuity, and the Derivative Unit #2 : Limits, Continuity, and the Derivative Goals: Study and define continuity Review limits Introduce the derivative as the limit of a difference quotient Discuss the derivative as a rate of change

More information

Chapter 5 Integrals. 5.1 Areas and Distances

Chapter 5 Integrals. 5.1 Areas and Distances Chapter 5 Integrals 5.1 Areas and Distances We start with a problem how can we calculate the area under a given function ie, the area between the function and the x-axis? If the curve happens to be something

More information

A secant line is a line drawn through two points on a curve. The Mean Value Theorem relates the slope of a secant line to the slope of a tangent line.

A secant line is a line drawn through two points on a curve. The Mean Value Theorem relates the slope of a secant line to the slope of a tangent line. The Mean Value Theorem 10-1-005 A secant line is a line drawn through two points on a curve. The Mean Value Theorem relates the slope of a secant line to the slope of a tangent line. The Mean Value Theorem.

More information

The Mean Value Theorem. Oct

The Mean Value Theorem. Oct The Mean Value Theorem Oct 14 2011 The Mean Value Theorem Theorem Suppose that f is defined and continuous on a closed interval [a, b], and suppose that f exists on the open interval (a, b). Then there

More information

Section 3.1. Best Affine Approximations. Difference Equations to Differential Equations

Section 3.1. Best Affine Approximations. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 3.1 Best Affine Approximations We are now in a position to discuss the two central problems of calculus as mentioned in Section 1.1. In this chapter

More information

What will you learn?

What will you learn? Section 2.2 Basic Differentiation Rules & Rates of Change Calc What will you learn? Find the derivative using the Constant Rule Find the derivative using the Power Rule Find the derivative using the Constant

More information

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the Area and Tangent Problem Calculus is motivated by two main problems. The first is the area problem. It is a well known result that the area of a rectangle with length l and width w is given by A = wl.

More information

Induction, sequences, limits and continuity

Induction, sequences, limits and continuity Induction, sequences, limits and continuity Material covered: eclass notes on induction, Chapter 11, Section 1 and Chapter 2, Sections 2.2-2.5 Induction Principle of mathematical induction: Let P(n) be

More information

+ 1 for x > 2 (B) (E) (B) 2. (C) 1 (D) 2 (E) Nonexistent

+ 1 for x > 2 (B) (E) (B) 2. (C) 1 (D) 2 (E) Nonexistent dx = (A) 3 sin(3x ) + C 1. cos ( 3x) 1 (B) sin(3x ) + C 3 1 (C) sin(3x ) + C 3 (D) sin( 3x ) + C (E) 3 sin(3x ) + C 6 3 2x + 6x 2. lim 5 3 x 0 4x + 3x (A) 0 1 (B) 2 (C) 1 (D) 2 (E) Nonexistent is 2 x 3x

More information

Position, Velocity, Acceleration

Position, Velocity, Acceleration 191 CHAPTER 7 Position, Velocity, Acceleration When we talk of acceleration we think of how quickly the velocity is changing. For example, when a stone is dropped its acceleration (due to gravity) is approximately

More information

Limit. Chapter Introduction

Limit. Chapter Introduction Chapter 9 Limit Limit is the foundation of calculus that it is so useful to understand more complicating chapters of calculus. Besides, Mathematics has black hole scenarios (dividing by zero, going to

More information

Jim Lambers MAT 460 Fall Semester Lecture 2 Notes

Jim Lambers MAT 460 Fall Semester Lecture 2 Notes Jim Lambers MAT 460 Fall Semester 2009-10 Lecture 2 Notes These notes correspond to Section 1.1 in the text. Review of Calculus Among the mathematical problems that can be solved using techniques from

More information

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x

4. We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x 4 We accept without proofs that the following functions are differentiable: (e x ) = e x, sin x = cos x, cos x = sin x, log (x) = 1 sin x x, x > 0 Since tan x = cos x, from the quotient rule, tan x = sin

More information

Solutions to Math 41 First Exam October 18, 2012

Solutions to Math 41 First Exam October 18, 2012 Solutions to Math 4 First Exam October 8, 202. (2 points) Find each of the following its, with justification. If the it does not exist, explain why. If there is an infinite it, then explain whether it

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

Linearization and Extreme Values of Functions

Linearization and Extreme Values of Functions Linearization and Extreme Values of Functions 3.10 Linearization and Differentials Linear or Tangent Line Approximations of function values Equation of tangent to y = f(x) at (a, f(a)): Tangent line approximation

More information

University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes

University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes Please complete this cover page with ALL CAPITAL LETTERS. Last name......................................................................................

More information

Math Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Essentials of Calculus by James Stewart Prepared by Jason Gaddis Chapter 3 - Applications of Differentiation 3.1 - Maximum and Minimum Values Note We continue our study of functions using derivatives.

More information

Math 1241, Spring 2014 Section 3.3. Rates of Change Average vs. Instantaneous Rates

Math 1241, Spring 2014 Section 3.3. Rates of Change Average vs. Instantaneous Rates Math 1241, Spring 2014 Section 3.3 Rates of Change Average vs. Instantaneous Rates Average Speed The concept of speed (distance traveled divided by time traveled) is a familiar instance of a rate of change.

More information

1.5 The Derivative (2.7, 2.8 & 2.9)

1.5 The Derivative (2.7, 2.8 & 2.9) 1.5. THE DERIVATIVE (2.7, 2.8 & 2.9) 47 1.5 The Derivative (2.7, 2.8 & 2.9) The concept we are about to de ne is not new. We simply give it a new name. Often in mathematics, when the same idea seems to

More information

Calculus I Sample Exam #01

Calculus I Sample Exam #01 Calculus I Sample Exam #01 1. Sketch the graph of the function and define the domain and range. 1 a) f( x) 3 b) g( x) x 1 x c) hx ( ) x x 1 5x6 d) jx ( ) x x x 3 6 . Evaluate the following. a) 5 sin 6

More information

The Mean Value Theorem and its Applications

The Mean Value Theorem and its Applications The Mean Value Theorem and its Applications Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math229 1. Extreme

More information

MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS. 1 2 x + 1. y = + 1 = x 1/ = 1. y = 1 2 x 3/2 = 1. into this equation would have then given. y 1.

MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS. 1 2 x + 1. y = + 1 = x 1/ = 1. y = 1 2 x 3/2 = 1. into this equation would have then given. y 1. MIDTERM 2 REVIEW: ADDITIONAL PROBLEMS ) If x + y =, find y. IMPLICIT DIFFERENTIATION Solution. Taking the derivative (with respect to x) of both sides of the given equation, we find that 2 x + 2 y y =

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

Calculus with Analytic Geometry I Exam 8 Take Home Part.

Calculus with Analytic Geometry I Exam 8 Take Home Part. Calculus with Analytic Geometry I Exam 8 Take Home Part. INSTRUCTIONS: SHOW ALL WORK. Write clearly, using full sentences. Use equal signs appropriately; don t use them between quantities that are not

More information

5. Introduction to limit

5. Introduction to limit 5. 5.1. The main idea in calculus is that of finding a desired quantity by pushing to the limit the process of taking ever better approximations (see 0 Introduction). In the implementation, a real number

More information

MA123, Chapter 2: Change, and the idea of the derivative (pp , Gootman)

MA123, Chapter 2: Change, and the idea of the derivative (pp , Gootman) MA123, Chapter 2: Change, and the idea of the derivative (pp. 17-45, Gootman) Chapter Goals: Understand average rates of change. Understand the ideas leading to instantaneous rates of change. Understand

More information

Charles Robert Darwin (12 February April 1882)

Charles Robert Darwin (12 February April 1882) I attempted mathematics, but it was repugnant to me, chiefly from my not being able to see any meaning in the early steps in algebra. This impatience was very foolish, and in after years I have deeply

More information

3.Applications of Differentiation

3.Applications of Differentiation 3.Applications of Differentiation 3.1. Maximum and Minimum values Absolute Maximum and Absolute Minimum Values Absolute Maximum Values( Global maximum values ): Largest y-value for the given function Absolute

More information

School of the Art Institute of Chicago. Calculus. Frank Timmes. flash.uchicago.edu/~fxt/class_pages/class_calc.

School of the Art Institute of Chicago. Calculus. Frank Timmes. flash.uchicago.edu/~fxt/class_pages/class_calc. School of the Art Institute of Chicago Calculus Frank Timmes ftimmes@artic.edu flash.uchicago.edu/~fxt/class_pages/class_calc.shtml Syllabus 1 Aug 29 Pre-calculus 2 Sept 05 Rates and areas 3 Sept 12 Trapezoids

More information

Calculus AB Topics Limits Continuity, Asymptotes

Calculus AB Topics Limits Continuity, Asymptotes Calculus AB Topics Limits Continuity, Asymptotes Consider f x 2x 1 x 3 1 x 3 x 3 Is there a vertical asymptote at x = 3? Do not give a Precalculus answer on a Calculus exam. Consider f x 2x 1 x 3 1 x 3

More information

Unit 1: Mechanical Equilibrium

Unit 1: Mechanical Equilibrium Unit 1: Mechanical Equilibrium Chapter: Two Mechanical Equilibrium Big Idea / Key Concepts Student Outcomes 2.1: Force 2.2: Mechanical Equilibrium 2.3: Support Force 2.4: Equilibrium for Moving Objects

More information

We first review various rules for easy differentiation of common functions: The same procedure works for a larger number of terms.

We first review various rules for easy differentiation of common functions: The same procedure works for a larger number of terms. 1 Math 182 Lecture Notes 1. Review of Differentiation To differentiate a function y = f(x) is to find its derivative f '(x). Another standard notation for the derivative is Dx(f(x)). Recall the meanings

More information

Lecture 7 3.5: Derivatives - Graphically and Numerically MTH 124

Lecture 7 3.5: Derivatives - Graphically and Numerically MTH 124 Procedural Skills Learning Objectives 1. Given a function and a point, sketch the corresponding tangent line. 2. Use the tangent line to estimate the value of the derivative at a point. 3. Recognize keywords

More information

Math 125: Exam 3 Review

Math 125: Exam 3 Review Math 125: Exam 3 Review Since we re using calculators, to keep the playing field level between all students, I will ask that you refrain from using certain features of your calculator, including graphing.

More information

Formulas that must be memorized:

Formulas that must be memorized: Formulas that must be memorized: Position, Velocity, Acceleration Speed is increasing when v(t) and a(t) have the same signs. Speed is decreasing when v(t) and a(t) have different signs. Section I: Limits

More information

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0 8.7 Taylor s Inequality Math 00 Section 005 Calculus II Name: ANSWER KEY Taylor s Inequality: If f (n+) is continuous and f (n+) < M between the center a and some point x, then f(x) T n (x) M x a n+ (n

More information

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a)

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a) MATH 2250 Calculus I Eric Perkerson Test 3 Review Sections Covered: 3.11, 4.1 4.6. Topics Covered: Linearization, Extreme Values, The Mean Value Theorem, Consequences of the Mean Value Theorem, Concavity

More information

MA 102 Mathematics II Lecture Feb, 2015

MA 102 Mathematics II Lecture Feb, 2015 MA 102 Mathematics II Lecture 1 20 Feb, 2015 Differential Equations An equation containing derivatives is called a differential equation. The origin of differential equations Many of the laws of nature

More information

Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016

Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016 Name: Class: Date: Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016 Short Answer 1. Decide whether the following problem can be solved using precalculus, or whether calculus is required.

More information

Module 4: One-Dimensional Kinematics

Module 4: One-Dimensional Kinematics 4.1 Introduction Module 4: One-Dimensional Kinematics Kinematics is the mathematical description of motion. The term is derived from the Greek word kinema, meaning movement. In order to quantify motion,

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

The First Derivative Test for Rise and Fall Suppose that a function f has a derivative at every poin x of an interval A. Then

The First Derivative Test for Rise and Fall Suppose that a function f has a derivative at every poin x of an interval A. Then Derivatives - Applications - c CNMiKnO PG - 1 Increasing and Decreasing Functions A function y = f(x) is said to increase throughout an interval A if y increases as x increases. That is, whenever x 2 >

More information

Chapter 5 - Differentiating Functions

Chapter 5 - Differentiating Functions Chapter 5 - Differentiating Functions Section 5.1 - Differentiating Functions Differentiation is the process of finding the rate of change of a function. We have proven that if f is a variable dependent

More information

Archdiocese of Washington Catholic Schools Academic Standards Mathematics

Archdiocese of Washington Catholic Schools Academic Standards Mathematics ALGEBRA 1 Standard 1 Operations with Real Numbers Students simplify and compare expressions. They use rational exponents, and simplify square roots. A1.1.1 A1.1.2 A1.1.3 A1.1.4 A1.1.5 Compare real number

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Concepts Paul Dawkins Table of Contents Preface... Basic Concepts... 1 Introduction... 1 Definitions... Direction Fields... 8 Final Thoughts...19 007 Paul Dawkins i http://tutorial.math.lamar.edu/terms.aspx

More information

Math 651 Introduction to Numerical Analysis I Fall SOLUTIONS: Homework Set 1

Math 651 Introduction to Numerical Analysis I Fall SOLUTIONS: Homework Set 1 ath 651 Introduction to Numerical Analysis I Fall 2010 SOLUTIONS: Homework Set 1 1. Consider the polynomial f(x) = x 2 x 2. (a) Find P 1 (x), P 2 (x) and P 3 (x) for f(x) about x 0 = 0. What is the relation

More information

The Method Of Direction Fields With Illustrative Examples

The Method Of Direction Fields With Illustrative Examples The Method Of Direction Fields With Illustrative Examples By Lei Zeng Abstract. When the exact solution of a differential equation is impossible to find, the study of its direction field can provide valuable

More information

Unit #4 : Interpreting Derivatives, Local Linearity, Marginal Rates

Unit #4 : Interpreting Derivatives, Local Linearity, Marginal Rates Unit #4 : Interpreting Derivatives, Local Linearity, Marginal Rates Goals: Develop natural language interpretations of the derivative Create and use linearization/tangent line formulae Describe marginal

More information

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C)

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C) Math 1120 Calculus Test 3 November 4, 1 Name In the first 10 problems, each part counts 5 points (total 50 points) and the final three problems count 20 points each Multiple choice section Circle the correct

More information

Unit 2: Solving Scalar Equations. Notes prepared by: Amos Ron, Yunpeng Li, Mark Cowlishaw, Steve Wright Instructor: Steve Wright

Unit 2: Solving Scalar Equations. Notes prepared by: Amos Ron, Yunpeng Li, Mark Cowlishaw, Steve Wright Instructor: Steve Wright cs416: introduction to scientific computing 01/9/07 Unit : Solving Scalar Equations Notes prepared by: Amos Ron, Yunpeng Li, Mark Cowlishaw, Steve Wright Instructor: Steve Wright 1 Introduction We now

More information

WEEK 7 NOTES AND EXERCISES

WEEK 7 NOTES AND EXERCISES WEEK 7 NOTES AND EXERCISES RATES OF CHANGE (STRAIGHT LINES) Rates of change are very important in mathematics. Take for example the speed of a car. It is a measure of how far the car travels over a certain

More information

Position, Velocity, and Acceleration. Mr. Miehl

Position, Velocity, and Acceleration. Mr. Miehl Position, Velocity, and Acceleration Mr. Miehl www.tesd.net/miehl miehlm@tesd.net Velocity is the rate of change of position with respect to time. Velocity ΔD = Δ T Acceleration is the rate of change of

More information

Intro to Scientific Computing: How long does it take to find a needle in a haystack?

Intro to Scientific Computing: How long does it take to find a needle in a haystack? Intro to Scientific Computing: How long does it take to find a needle in a haystack? Dr. David M. Goulet Intro Binary Sorting Suppose that you have a detector that can tell you if a needle is in a haystack,

More information

Chapter 2. Motion in One Dimension. AIT AP Physics C

Chapter 2. Motion in One Dimension. AIT AP Physics C Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension Along a straight line Will use the particle

More information

Definition: For nonempty sets X and Y, a function, f, from X to Y is a relation that associates with each element of X exactly one element of Y.

Definition: For nonempty sets X and Y, a function, f, from X to Y is a relation that associates with each element of X exactly one element of Y. Functions Definition: A relation is a correspondence between two sets. If x and y are two elements in these sets and if a relation exists between x and y, then we say that x corresponds to y or that y

More information

Math 241 Homework 7 Solutions

Math 241 Homework 7 Solutions Math 241 Homework 7 s Section 4.2 Problem 1. Find the value or values c that satisfy the equation = f (c) in the conclusion of the Mean Value Theorem for functions and intervals: f(b) f(a) b a f(x) = x

More information