Santa Fe ISD Year Overview for AP Calculus AB /10/17

Size: px
Start display at page:

Download "Santa Fe ISD Year Overview for AP Calculus AB /10/17"

Transcription

1 St Fe ISD Yer Overview for AP Clculus AB /10/17 From the College Bord AP Clculus AB is roughly equivlet to first semester college clculus course devoted to topics i differetil d itegrl clculus The AP course covers topics i these res, icludig cocepts d skills of limits, derivtives, defiite itegrls, d the Fudmetl Theorem of Clculus The course teches studets to pproch clculus cocepts d prolems whe they re represeted grphiclly, umericlly, lyticlly, d verlly, d to mke coectios mogst these represettios Studets ler how to use techology to help solve prolems, experimet, iterpret results, d support coclusios Mthemticl Prctices for AP Clculus (MPACs) The MPACs cpture the importt spects of the work tht mthemticis egge i, t the level of competece expected of AP Clculus studets The MPACs explicitly rticulte the ehviors i which studets eed to egge i order to chieve coceptul uderstdig i the AP Clculus courses Ech cocept d topic ddressed i the course c e liked to oe or more of the MPACs The MPACs re ot iteded to e viewed s discrete items tht c e checked off list; rther, they re highly iterrelted tools tht should e utilized frequetly d i diverse cotexts MPAC 1: Resoig with defiitios d theorems Studets c: use defiitios d theorems to uild rgumets, to justify coclusios or swers, d to prove results cofirm tht hypotheses hve ee stisfied i order to pply the coclusio of theorem c pply defiitios d theorems i the process of solvig prolem d iterpret qutifiers i defiitios d theorems (eg for ll, there exists ) e develop cojectures sed o explortio with techology; d f produce exmples d couterexmples to clrify uderstdig of defiitios, to ivestigte whether coverses of theorems re true or flse, or to test cojectures MPAC 2: Coectig cocepts Studets c: relte the cocept of limit to ll spects of clculus use the coectio etwee cocepts (eg rte of chge d ccumultio) or processes (eg differetitio d its iverse process, tidifferetitio) to solve prolems; c coect cocepts to their visul represettios with d without techology d idetify commo uderlyig structure i prolems ivolvig differet cotextul situtios MPAC 3: Implemetig lgeric/computtiol processes Studets c: select pproprite mthemticl strtegies sequece lgeric/computtiol procedures logiclly c complete lgeric/computtio processes correctly d pply techology strtegiclly to solve prolems e tted to precisio grphiclly, umericlly, lyticlly, d verlly d specify uits of mesure f coect the results of lgeric/computtiol processes to the questio sked MPAC 4: Coectig multiple represettios Studets c: ssocite tles, grphs, d symolic represettios of fuctios develop cocepts usig grphicl, symolicl, verl, or umericl represettios with d without techology c idetify how mthemticl chrcteristics of fuctios re relted i differet represettios d extrct d iterpret mthemticl cotet from y presettio of fuctio (eg utilize iformtio from tle of vlues) e costruct oe represettiol form from other (eg tle from grph or grph from give iformtio); d f cosider multiple represettios (grphicl, umericl, lyticl, d verl) of fuctio to select or costruct useful represettio for solvig prolem MPAC 5: Buildig ottiol fluecy Studets c: kow d use vriety of ottios (eg f ( x), y, dy ) dx coect ottio to defiitios (eg reltig ottio for the defiite itegrl to tht of the limit of Riem sum) c coect ottio to differet represettios (grphicl, umericl, lyticl, d verl), d d ssig meig to ottio, ccurtely iterpretig the ottio i give prolem d cross differet cotexts MPAC 6: Commuictig Studets c: clerly preset methods, resoig, justifictios, d coclusios use ccurte d precise lguge d ottio c expli the meig of expressios, ottio, d results i terms of cotext (icludig uits) d expli the coectios mog cocepts e criticlly iterpret d ccurtely report iformtio provided y techology; d f lyze, evlute d compre the resoig of others St Fe ISD Mthemtics Deprtmet Pge 1 of 7

2 St Fe ISD Yer Overview for AP Clculus AB /10/17 1 st Nie Weeks Istructiol Uits 38 Dys August 22 d Octoer 14 th Lor Dy: Septemer 5 th Fculty/Stff PD Dy: Octoer 10 th BIG IDEA 1: Limits 20 dys (The umer of dys is lwys pproximte) Edurig Uderstdig 11: The cocept of limit c e used to uderstd the ehviors of fuctios Lerig Ojectives LO 11A: Express limits symoliclly usig correct ottio LO 11A: Iterpret limits expressed symoliclly Essetil Kowledge EK 11A1: Give fuctio f, the limit of f(x) s x pproches c is rel umer if f(x) c e mde ritrrily close to y tkig x sufficietly close to c (ut ot equl to c If the limit exists d is rel umer, the the commo ottio is lim f( x) = x c EK 11A2: The cocept of limit c e exteded to iclude oe-sided limits, limits t ifiity, d ifiite limits EK 11A3: A limit might ot exist for some fuctios t prticulr vlues of x Some wys tht the limit might ot exist re if the fuctio is uouded, if the fuctio is oscilltig er this vlue, or if the limit from the left does ot equl the limit from the right Lerig Ojective LO 11B: Estimte limits of fuctios Essetil Kowledge EK 11B1: Numericl d grphicl iformtio c e used to estimte limits Lerig Ojective LO 11C: Determie limits of fuctios Essetil Kowledge EK 11C1: Limits of sums, differeces, products, quotiets, d composite fuctios c e foud usig the sic theorems of limits d lgeric rules EK 11C2: The limit of fuctio my e foud y usig lgeric mipultio, lterte forms of trigoometric fuctios, or the squeeze theorem EK 11C3: Limits of the idetermite forms 0 0 d my e evluted usig L Hospitl s Rule Lerig Ojective LO 11D: Deduce d iterpret ehvior of fuctios usig limits Essetil Kowledge EK 11D1: Asymptotic d uouded ehvior of fuctios c e explied d descried usig limits EK 11D2: Reltive mgitudes of fuctios d their rtes of chge c e compred usig limits Edurig Uderstdig 12: Cotiuity is key property of fuctios tht is defied usig limits LO 12A: Alyze fuctios for itervls of cotiuity or poits of discotiuity EK 12A1: A fuctio f is cotiuous t x = c provided tht f(c) exists, lim f( x) exists, d lim f( x) = f( c) x c x c EK 12A2: Polyomil, rtiol, power, expoetil, logrithmic, d trigoometric fuctios re cotiuous t ll poits i their domis EK 12A3: Types of discotiuities iclude removle discotiuities, jump discotiuities, d discotiuities due to verticl symptotes LO 12B: Determie the pplictio of importt clculus theorems usig cotiuity EK 12B1: Cotiuity is essetil coditio for theorems such s the Itermedite Vlue Theorem, the Extreme Vlue Theorem, d the Me Vlue Theorem St Fe ISD Mthemtics Deprtmet Pge 2 of 7

3 St Fe ISD Yer Overview for AP Clculus AB /10/17 1 st Nie Weeks Istructiol Uits cotiued BIG IDEA 2: Derivtives 16 dys (The umer of dys is lwys pproximte) Edurig Uderstdig 21: The derivtive of fuctio is defied s the limit of differece quotiet d c e determied usig vriety of strtegies LO 21A: Idetify the derivtive of fuctio s the limit of differece quotiet f( + h) f( ) f( x) f( ) EK 21A1: The differece quotiets d express the verge rte of chge of fuctio over itervl h x ( ) ( ) EK 21A2: The istteous rte of chge of fuctio t poit c e expressed y lim f + h f ( ) ( ) or lim f x f, provided tht the limit h 0 h x x exists These re commo forms of the defiitio of the derivtive d re deoted f ( ) ( ) ( ) EK 21A3: The derivtive of f is the fuctio whose vlue t x is lim f + h f provided this limit exists h 0 h dy EK 21A4: For y = f( x), ottios for the derivtive iclude, f ( x ), d y dx EK 21A5: The derivtive c e represeted grphiclly, umericlly, lyticlly, d verlly LO 21B: Estimte derivtives EK 21B1: The derivtive t poit c e estimted from iformtio give i tles or grphs LO 21C Clculte derivtives EK 21C1: Direct pplictio of the defiitio of the derivtive c e used to fid the derivtive for selected fuctios, icludig polyomil, power, sie, cosie, expoetil, d logrithmic fuctios EK 21C2: Specific rules c e used to clculte derivtives for clsses of fuctios, icludig polyomil, rtiol, power, expoetil, logrithmic, trigoometric, d iverse trigoometric EK 21C3: Sums, differeces, products, d quotiets of fuctios c e differetited usig derivtive rules EK 21C4: The chi rule provides wy to differetite composite fuctios EK 21C5: The chi rule is the sis for implicit differetitio EK 21C6: The chi rule c e used to fid the derivtive of iverse fuctio, provided the derivtive of tht fuctio exists Review (1 Dy) St FE ISD District 1 st Nie-Weeks Test (1 Dy) St Fe ISD Mthemtics Deprtmet Pge 3 of 7

4 St Fe ISD Yer Overview for AP Clculus AB /10/17 2 d Nie Weeks Istructiol Uits 40 Dys Octoer 17 th Decemer 16 th TAKS Retests: Octoer 17 th -20 th Pret Cofereces: Octoer 26th d 27th Erly Relese: Octoer 26th, 27th, d 28th Thksgivig Brek: Novemer 21 st -25 th EOC Retests: Decemer 5-9 th BIG IDEA 2: Derivtives cotiued 37 dys Edurig Uderstdig 21: The derivtive of fuctio is defied s the limit of differece quotiet d c e determied usig vriety of strtegies cotiued LO 21D: Determie higher order derivtives EK 21D1: Differetitig f produces the secod derivtive f, provided the derivtive of f exists; repetig this process produces higher order derivtives of f d 2 y EK 21D2: Higher order derivtives re represeted with vriety of ottios For y = f( x), ottios for the secod derivtive iclude, f ( x ), d y dx 2 d y Higher order derivtives c e deoted or f ( ) ( x) dx Edurig Uderstdig 22: A fuctio s derivtive, which is itself fuctio, c e used to uderstd the ehvior of the fuctio LO 22A: Use the derivtives to lyze properties of fuctio EK 22A1: First d secod derivtives of fuctio c provide iformtio out the fuctio d its grph icludig itervls of icrese or decrese, locl (reltive) d glol (solute) extrem, itervls of upwrd or dowwrd cocvity, d poits of iflectio EK 22A2: Key fetures of fuctios d their derivtives c e idetified d relted to their grphicl, umericl, d lyticl represettios EK 22A3: Key fetures of the grphs of f, f, d f re relted to oe other LO 22B: Recogize the coectio etwee differetiility d cotiuity EK 22B1: A cotiuous fuctio my fil to e differetile t poit i its domi EK 22B2: If fuctio is differetile t poit, the it is cotiuous t tht poit Edurig Uderstdig 23: The derivtive hs multiple iterprettios d pplictios icludig those tht ivolve istteous rtes of chge LO 23A: Iterpret the meig of derivtive withi prolem EK 23A1: The uit for f ( x) is the uit for f divided y the uit for x EK 23A2: The derivtive of fuctio c e iterpreted s the istteous rte of chge with respect to its idepedet vrile LO 23B: Solve prolems ivolvig the slope of tget lie EK 23B1: The derivtive t poit is the slope of the lie tget to grph t tht poit o the grph EK 23B2: The tget lie is the grph of loclly lier pproximtio of the fuctio er the poit of tgecy LO 23C: Solve prolems ivolvig relted rtes, optimiztio, d rectilier motio EK 23C1: The derivtive c e used to solve rectilier motio prolems ivolvig positios, speed, velocity, d ccelertio EK 23C2: The derivtive c e used to solve relted rtes prolems, tht is, fidig rte t which oe qutity is chgig y reltig it to other qutities whose rtes of chge re kow EK 23C3: The derivtive c e used to solve optimiztio prolems, tht is fidig mximum or miimum vlue of fuctio over give itervl LO 23D: Solve prolems ivolvig rtes of chge i pplied cotexts EK 23D1: The derivtive c e used to express iformtio out rtes of chge i pplied cotexts Review (2 Dys) St FE ISD District Cumultive 1 st Semester Exm (1 Dy) St Fe ISD Mthemtics Deprtmet Pge 4 of 7

5 St Fe ISD Yer Overview for AP Clculus AB /10/17 3 rd Nie Weeks Istructiol Uits 46 Dys Jury 5 th Mrch 10 th Jury 5 Mrch 11 Techer Workdy: Jury 3 rd Fculty/Stff PD Dys: Jury 16 th d Ferury 20 th Sprig Brek: Mrch 13 th -17 th BIG IDEA 2: Derivtives cotiued 12 dys Edurig Uderstdig 23: The derivtive hs multiple iterprettios d pplictios icludig those tht ivolve istteous rtes of chge LO 23E: Verify solutios to differetil equtios EK 23E1: Solutios to differetil equtios re fuctios or fmilies of fuctios EK 23E2: Derivtives c e used to verify tht fuctio is solutio to give differetil equtio LO 23F: Estimte solutios to differetil equtios EK 23F1: Slope fields provide visul clues to the ehvior of solutios to first order differetil equtios Edurig Uderstdig 24: The Me Vlue Thereom coects the ehvior of differetile fuctio over itervl to the ehvior of the derivtive of tht fuctios t prticulr poit i the itervl LO 24A: Apply the Me Vlue Theorem to descrie the ehvior of fuctio over itervl EK 24A1: If fuctio f is cotiuous over the itervl [, ] d differetile over the itervl (, ), the Me Vlue Theorem gurtees poit withi tht ope itervl where the istteous rte of chge equls the verge rte of chge over the itervl BIG IDEA 3: Itegrls d the Fudmetl Theorem of Clculus 32 Dys Edurig Uderstdig 31: Atidifferetitio is the iverse process of differetitio LO 31A: Recogize tiderivtives of sic fuctios EK 31A1: A tiderivtive of fuctio f is fuctio g whose derivtive is f EK 31A2: Differetitio rules provide the foudtio for fidig tiderivtives Edurig Uderstdig 32: The defiite itegrl of fuctios over itervl is the limit of Riem sum over tht itervl d c e clculted usig vriety of strtegies LO 32A(): Iterpret the defiite itegrl s the limit of Riem sum LO 32A(): Express the limit of Riem sum i itegrl ottio EK 32A1: A Riem sum, which requires prtitio of itervl, I, is the sum of products, ech of which is the vlue of the fuctio t poit i suitervl multiplied y the legth of tht suitervl of the prtitio EK 32A2: The defiite itegrl of cotiuous fuctio f over the itervl [, ], deoted y f ( x ) dx, is the limit of Riem sums s the widths of the suitervls pproch 0 Tht is ( ) lim ( i ) x i is vlue i the ith suitervl, f x dx = f x x i where x i is the width of the ith suitervl, is mx xi 0i= 1 the umer of suitervls, d mx x i is the width of the lrgest suitervl Aother form of the defiitio is ( ) lim f x dx = f ( x ) x i i where i=1 x i = d x is vlue i the ith suitervl i EK 32A3: The iformtio i defiite itegrl c e trslted ito the limit of relted Riem sum, d the limit of Riem sum c e writte s defiite itegrl LO 32B: Approximte defiite itegrl EK 32B1: Defiite itegrls c e pproximted for fuctios tht re represeted grphiclly, umericlly, lgericlly, d verlly EK 32B2: Defiite itegrls c e pproximted usig left Riem sum, right Riem sum, midpoit Riem sum, or trpezoid sum; pproximtios c e computed usig either uiform or ouiform prtitios LO 32C: Clculte defiite itegrl usig res d properties of defiite itegrls EK 32C1: I some cses, defiite itegrl c e evluted y usig geometry d the coectio etwee the defiite itegrl d re EK 32C2: Properties of defiite itegrls iclude the itegrl of costt times fuctio, the itegrl of the sum of two fuctios, reversl of limits of itegrtio, d the itegrl of fuctio over djcet itervls EK 32C3: The defiitio of the defiite itegrl my e exteded to fuctio with removle or jump discotiuities d x EK 33A2: If f is cotiuous fuctio o the itervl [, ], the f () t dt = f ( x), where x is etwee d dx x EK 33A3: Grphicl, umericl, lyticl d verl represettios of fuctio f provide iformtio out the fuctio g defied s g( x) = f () t dt St Fe ISD Mthemtics Deprtmet Pge 5 of 7

6 St Fe ISD Yer Overview for AP Clculus AB /10/17 3 rd Nie Weeks Istructiol Uits cotiued BIG IDEA 3: Itegrls d the Fudmetl Theorem of Clculus cotiued Edurig Uderstdig 33: The Fudmetl Thereom of Clculus, which hs two distict formultios, coects differetitio d itegrtio LO 33A: Alyze fuctios defied y itegrl x 2 EK 33A1: The defiite itegrl c e used to defie ew fuctios, for exmple, f ( x) = e t dt 0 LO 33B(): Clculte tiderivtives LO 33B(): Evlute defiite itegrls EK 33B1: The fuctio defied y f iis tiderivtive of f EK 33B2: If f is cotiuous o the itervl [, ] d F is tiderivtive of f, the f ( x ) dx = F ( ) F ( ) EK 33B3: The ottio f ( x ) dx = F ( x ) + C mes tht F( x) = f( x) d f ( x) dx is clled the idefiite itegrl of the fuctio f EK 33B4: My fuctios do ot hve closed form tidervtives EK 33B5: Techiques for fidig tiderivtives iclude lgeric mipultio such s log divisio d completig the squre d sustitutio of vriles Edurig Uderstdig 34: The defiite itegrl of fuctio over itervl is mthemticl tool with my iterprettios d pplictios ivolvig cculumtio LO 34A: Iterpret the meig of defiite itegrl withi prolem EK 34A1: A fuctio defied s itegrl represets ccumultio of rte of chge EK 34A2: The defiite itegrl of the rte of chge of qutity over itervl gives the et chge of tht qutity over tht itervl EK 34A3: The limit of pproximtig Riem sum c e iterpreted s defiite itegrl LO 34B: Apply defiite itegrls to prolems ivolvig the verge vlue of fuctio 1 EK 34B1: The verge vlue of fuctio f over itervl [, ] is f ( x ) dx LO 34C: Apply defiite itegrls to prolems ivolvig motio EK 34C1: For prticle i rectilier motio over itervl of time, the defiite itegrl of velocity represets the prticle s displcemet over the itervl of time, d the defiite itegrl of speed represets the prticle s totl distce trveled over the itervl of time Review (1 Dy) St FE ISD District 3 rd Nie-Weeks Test (1 Dy) St Fe ISD Mthemtics Deprtmet Pge 6 of 7

7 St Fe ISD Yer Overview for AP Clculus AB /10/17 4 th Nie Weeks Istructiol Uits 48 Dys Mrch 20th My 26 th Erly Relese: Thursdy, April 13 th District Holidy: Fridy, April 14 th EOC Week: My 1 st -5 th AP Clculus AB Exm: My 9 th Erly Relese: Fridy, My 26 th Memoril Dy District Holidy: Mody, My 29 th Techer Work Dy: Tuesdy, My 30 th Fculty/Stff PD Dy: Wedesdy, My 31 st Techer PD Exchge Dy: Thursdy, Jue 1st BIG IDEA 3: Itegrls d the Fudmetl Theorem of Clculus cotiued 17 Dys Edurig Uderstdig 34: The defiite itegrl of fuctio over itervl is mthemticl tool with my iterprettios d pplictios ivolvig cculumtio cotiued LO 34D: Apply defiite itegrls to prolems ivolvig re d volume EK 34D1: Ares of certi regios i the ple c e clculted with defiite itegrls EK 34D2: Volumes of solids with kow cross sectios, icludig discs d wshers, c e clculted with defiite itegrls LO 34E: Use the defiite itegrl to solve prolems i vrious cotexts EK 34E1: The defiite itegrl c e used to express iformtio out ccumultio d et chge i my pplied cotexts Edurig Uderstdig 35: Atidifferetitio is uderlyig cocept ivolved i solvig seprle differetil equtios Solvig seprle differetil equtios ivolves determiig fuctio or reltio give its rte of chge LO 35A: Alyze differetil equtios to oti geerl d specific prolems EK 35A1: Atidifferetitio c e used to fid specific solutios to differetil equtios with give iitil coditios, icludig pplictios to motio log lie d expoetil growth d decy EK 35A2: Some differetil equtios c e solved y seprtio of vriles EK 35A3: Solutios to differetil equtios c e solved y seprtio restrictios dy EK 35A4: The fuctio F defied y F ( x) = c + f () t dt is geerl solutio to the differetil equtio = f ( x ), d F ( x) = y0 + f () t dt is prticulr dx dy solutio to the differetil equtio f ( x ) dx = stisfyig F( ) = y 0 LO 35B: Iterpret, crete, d solve differetil equtios from prolems i cotext EK 35B1: The model for expoetil growth d decy tht rises from the sttemet The rte of chge of qutity is proportiol to the size of the qutity is dy ky dx = Free Respose Prctice Multiple Choice Prctice AP Exm Preprtio 15 Dys (The umer of dys is lwys pproximte) AP Clculus AB Exm Tuesdy, My 9, 2017, 8 m After the AP Exm Suggestios Project to icorporte this yer s lerig A look t college mth requiremets d expecttios, icludig plcemet exms Advced itegrtio techiques 9 Dys (The umer of dys is lwys pproximte) Review (2 Dy) St FE ISD District Cumultive 2 d Semester Test (1 Dy) St Fe ISD Mthemtics Deprtmet Pge 7 of 7

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled mth 3 more o the fudmetl theorem of clculus The FTC d Riem Sums A Applictio of Defiite Itegrls: Net Distce Trvelled I the ext few sectios (d the ext few chpters) we will see severl importt pplictios of

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

BC Calculus Path to a Five Problems

BC Calculus Path to a Five Problems BC Clculus Pth to Five Problems # Topic Completed U -Substitutio Rule Itegrtio by Prts 3 Prtil Frctios 4 Improper Itegrls 5 Arc Legth 6 Euler s Method 7 Logistic Growth 8 Vectors & Prmetrics 9 Polr Grphig

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information

The Definite Riemann Integral

The Definite Riemann Integral These otes closely follow the presettio of the mteril give i Jmes Stewrt s textook Clculus, Cocepts d Cotexts (d editio). These otes re iteded primrily for i-clss presettio d should ot e regrded s sustitute

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

Section 6.3: Geometric Sequences

Section 6.3: Geometric Sequences 40 Chpter 6 Sectio 6.: Geometric Sequeces My jobs offer ul cost-of-livig icrese to keep slries cosistet with ifltio. Suppose, for exmple, recet college grdute fids positio s sles mger erig ul slry of $6,000.

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles.

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles. AP Clculus Notes: Uit 6 Defiite Itegrls Sllus Ojective:.4 The studet will pproimte defiite itegrl usig rectgles. Recll: If cr is trvelig t costt rte (cruise cotrol), the its distce trveled is equl to rte

More information

1 Tangent Line Problem

1 Tangent Line Problem October 9, 018 MAT18 Week Justi Ko 1 Tget Lie Problem Questio: Give the grph of fuctio f, wht is the slope of the curve t the poit, f? Our strteg is to pproimte the slope b limit of sect lies betwee poits,

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6)

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6) WQ017 MAT16B Lecture : Mrch 8, 017 Aoucemets W -4p Wellm 115-4p Wellm 115 Q4 ue F T 3/1 10:30-1:30 FINAL Expoetil Logrithmic Fuctios (4.1, 4., 4.4, 4.6) Properties of Expoets Let b be positive rel umbers.

More information

Things I Should Know In Calculus Class

Things I Should Know In Calculus Class Thigs I Should Kow I Clculus Clss Qudrtic Formul = 4 ± c Pythgore Idetities si cos t sec cot csc + = + = + = Agle sum d differece formuls ( ) ( ) si ± y = si cos y± cos si y cos ± y = cos cos ym si si

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

Feedback & Assessment of Your Success. 1 Calculus AP U5 Integration (AP) Name: Antiderivatives & Indefinite Integration (AP) Journal #1 3days

Feedback & Assessment of Your Success. 1 Calculus AP U5 Integration (AP) Name: Antiderivatives & Indefinite Integration (AP) Journal #1 3days Clculus AP U5 Itegrtio (AP) Nme: Big ide Clculus is etire rch of mthemtics. Clculus is uilt o two mjor complemetry ides. The first is differetil clculus, which is cocered with the istteous rte of chge.

More information

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x Chpter 6 Applictios Itegrtio Sectio 6. Regio Betwee Curves Recll: Theorem 5.3 (Cotiued) The Fudmetl Theorem of Clculus, Prt :,,, the If f is cotiuous t ever poit of [ ] d F is tiderivtive of f o [ ] (

More information

Limits and an Introduction to Calculus

Limits and an Introduction to Calculus Nme Chpter Limits d Itroductio to Clculus Sectio. Itroductio to Limits Objective: I this lesso ou lered how to estimte limits d use properties d opertios of limits. I. The Limit Cocept d Defiitio of Limit

More information

Test Info. Test may change slightly.

Test Info. Test may change slightly. 9. 9.6 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

f ( x) ( ) dx =

f ( x) ( ) dx = Defiite Itegrls & Numeric Itegrtio Show ll work. Clcultor permitted o, 6,, d Multiple Choice. (Clcultor Permitted) If the midpoits of equl-width rectgles is used to pproximte the re eclosed etwee the x-xis

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Math 3B Midterm Review

Math 3B Midterm Review Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 643u Office Hours: R 11:00 m - 1:00 pm Lst updted /15/015 Here re some short otes o Sectios 7.1-7.8 i your ebook. The best idictio of wht

More information

5.1 - Areas and Distances

5.1 - Areas and Distances Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 63u Office Hours: R 9:5 - :5m The midterm will cover the sectios for which you hve received homework d feedbck Sectios.9-6.5 i your book.

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

y udv uv y v du 7.1 INTEGRATION BY PARTS

y udv uv y v du 7.1 INTEGRATION BY PARTS 7. INTEGRATION BY PARTS Ever differetitio rule hs correspodig itegrtio rule. For istce, the Substitutio Rule for itegrtio correspods to the Chi Rule for differetitio. The rule tht correspods to the Product

More information

YOUR FINAL IS THURSDAY, MAY 24 th from 10:30 to 12:15

YOUR FINAL IS THURSDAY, MAY 24 th from 10:30 to 12:15 Algebr /Trig Fil Em Study Guide (Sprig Semester) Mrs. Duphy YOUR FINAL IS THURSDAY, MAY 4 th from 10:30 to 1:15 Iformtio About the Fil Em The fil em is cumultive for secod semester, coverig Chpters, 3,

More information

Numerical Integration by using Straight Line Interpolation Formula

Numerical Integration by using Straight Line Interpolation Formula Glol Jourl of Pure d Applied Mthemtics. ISSN 0973-1768 Volume 13, Numer 6 (2017), pp. 2123-2132 Reserch Idi Pulictios http://www.ripulictio.com Numericl Itegrtio y usig Stright Lie Iterpoltio Formul Mhesh

More information

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2] Mrkig Scheme for HCI 8 Prelim Pper Q Suggested Solutio Mrkig Scheme y G Shpe with t lest [] fetures correct y = f'( ) G ll fetures correct SR: The mimum poit could be i the first or secod qudrt. -itercept

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Harold s Calculus Notes Cheat Sheet 15 December 2015

Harold s Calculus Notes Cheat Sheet 15 December 2015 Hrol s Clculus Notes Chet Sheet 5 Decemer 05 AP Clculus Limits Defiitio of Limit Let f e fuctio efie o ope itervl cotiig c let L e rel umer. The sttemet: lim x f(x) = L mes tht for ech ε > 0 there exists

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

Math 104: Final exam solutions

Math 104: Final exam solutions Mth 14: Fil exm solutios 1. Suppose tht (s ) is icresig sequece with coverget subsequece. Prove tht (s ) is coverget sequece. Aswer: Let the coverget subsequece be (s k ) tht coverges to limit s. The there

More information

Course 121, , Test III (JF Hilary Term)

Course 121, , Test III (JF Hilary Term) Course 2, 989 9, Test III (JF Hilry Term) Fridy 2d Februry 99, 3. 4.3pm Aswer y THREE questios. Let f: R R d g: R R be differetible fuctios o R. Stte the Product Rule d the Quotiet Rule for differetitig

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

For students entering Honors Precalculus Summer Packet

For students entering Honors Precalculus Summer Packet Hoors PreClculus Summer Review For studets eterig Hoors Preclculus Summer Pcket The prolems i this pcket re desiged to help ou review topics from previous mthemtics courses tht re importt to our success

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Riemann Integration. Chapter 1

Riemann Integration. Chapter 1 Mesure, Itegrtio & Rel Alysis. Prelimiry editio. 8 July 2018. 2018 Sheldo Axler 1 Chpter 1 Riem Itegrtio This chpter reviews Riem itegrtio. Riem itegrtio uses rectgles to pproximte res uder grphs. This

More information

We saw in Section 5.1 that a limit of the form. 2 DEFINITION OF A DEFINITE INTEGRAL If f is a function defined for a x b,

We saw in Section 5.1 that a limit of the form. 2 DEFINITION OF A DEFINITE INTEGRAL If f is a function defined for a x b, 3 6 6 CHAPTER 5 INTEGRALS CAS 5. Fid the ect re uder the cosie curve cos from to, where. (Use computer lger sstem oth to evlute the sum d compute the it.) I prticulr, wht is the re if? 6. () Let A e the

More information

10.5 Test Info. Test may change slightly.

10.5 Test Info. Test may change slightly. 0.5 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow sum)

More information

Mathematical Notation Math Calculus for Business and Social Science

Mathematical Notation Math Calculus for Business and Social Science Mthemticl Nottio Mth 190 - Clculus for Busiess d Socil Sciece Use Word or WordPerfect to recrete the followig documets. Ech rticle is worth 10 poits d should e emiled to the istructor t jmes@richld.edu.

More information

The Definite Integral

The Definite Integral The Defiite Itegrl A Riem sum R S (f) is pproximtio to the re uder fuctio f. The true re uder the fuctio is obtied by tkig the it of better d better pproximtios to the re uder f. Here is the forml defiitio,

More information

Indices and Logarithms

Indices and Logarithms the Further Mthemtics etwork www.fmetwork.org.uk V 7 SUMMARY SHEET AS Core Idices d Logrithms The mi ides re AQA Ed MEI OCR Surds C C C C Lws of idices C C C C Zero, egtive d frctiol idices C C C C Bsic

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before 8.1 Arc Legth Wht is the legth of curve? How c we pproximte it? We could do it followig the ptter we ve used efore Use sequece of icresigly short segmets to pproximte the curve: As the segmets get smller

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n. Sclrs-9.0-ADV- Algebric Tricks d Where Tylor Polyomils Come From 207.04.07 A.docx Pge of Algebric tricks ivolvig x. You c use lgebric tricks to simplify workig with the Tylor polyomils of certi fuctios..

More information

Calculus Summary Sheet

Calculus Summary Sheet Clculus Summry Sheet Limits Trigoometric Limits: siθ lim θ 0 θ = 1, lim 1 cosθ = 0 θ 0 θ Squeeze Theorem: If f(x) g(x) h(x) if lim f(x) = lim h(x) = L, the lim g(x) = L x x x Ietermite Forms: 0 0,,, 0,

More information

Name: A2RCC Midterm Review Unit 1: Functions and Relations Know your parent functions!

Name: A2RCC Midterm Review Unit 1: Functions and Relations Know your parent functions! Nme: ARCC Midterm Review Uit 1: Fuctios d Reltios Kow your pret fuctios! 1. The ccompyig grph shows the mout of rdio-ctivity over time. Defiitio of fuctio. Defiitio of 1-1. Which digrm represets oe-to-oe

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -, 0,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls.

More information

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials Jourl of Al-Nhri Uiversity Vol.5 (), Mrch,, pp.-9 Sciece Numericl Solutio of Fuzzy Fredholm Itegrl Equtios of the Secod Kid usig Berstei Polyomils Srmd A. Altie Deprtmet of Computer Egieerig d Iformtio

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning Hdout # Title: FAE Course: Eco 8/ Sprig/5 Istructor: Dr I-Mig Chiu Itroductio to Mtrix: Mtrix opertios & Geometric meig Mtrix: rectgulr rry of umers eclosed i pretheses or squre rckets It is covetiolly

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the Lecture. Rtiol Epoets d Rdicls Rtiol Epoets d Rdicls Lier Equtios d Iequlities i Oe Vrile Qudrtic Equtios Appedi A6 Nth Root - Defiitio Rtiol Epoets d Rdicls For turl umer, c e epressed usig the r is th

More information

Pre-Calculus - Chapter 3 Sections Notes

Pre-Calculus - Chapter 3 Sections Notes Pre-Clculus - Chpter 3 Sectios 3.1-3.4- Notes Properties o Epoets (Review) 1. ( )( ) = + 2. ( ) =, (c) = 3. 0 = 1 4. - = 1/( ) 5. 6. c Epoetil Fuctios (Sectio 3.1) Deiitio o Epoetil Fuctios The uctio deied

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

Differentiation Formulas

Differentiation Formulas AP CALCULUS BC Fil Notes Trigoometric Formuls si θ + cos θ = + t θ = sec θ 3 + cot θ = csc θ 4 si( θ ) = siθ 5 cos( θ ) = cosθ 6 t( θ ) = tθ 7 si( A + B) = si Acos B + si B cos A 8 si( A B) = si Acos B

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -,,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls. ex:

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Nme : Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits c e prite give to the istructor or emile to the istructor t jmes@richl.eu.

More information

Mean Value Theorem for Integrals If f(x) is a continuous function on [a,b] then there

Mean Value Theorem for Integrals If f(x) is a continuous function on [a,b] then there Itegrtio, Prt 5: The Me Vlue Theorem for Itegrls d the Fudmetl Theorem of Clculus, Prt The me vlue theorem for derivtives tells us tht if fuctio f() is sufficietly ice over the itervl [,] the t some poit

More information

Application: Volume. 6.1 Overture. Cylinders

Application: Volume. 6.1 Overture. Cylinders Applictio: Volume 6 Overture I this chpter we preset other pplictio of the defiite itegrl, this time to fid volumes of certi solids As importt s this prticulr pplictio is, more importt is to recogize ptter

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

MTH213 Calculus. Trigonometry: Unit Circle ( ) ( ) ( )

MTH213 Calculus. Trigonometry: Unit Circle ( ) ( ) ( ) MTH3 Clculus Formuls from Geometry: Trigle A = h Pythgore: + = c Prllelogrm A = h Trpezoi A = h ( + ) Circle A = π r C = π r = π Trigoometry: Uit Circle 0, π 3,, 3 35, 3π 4,, 50, 5π 6, 3, 90 π 0, Coe V

More information

Numerical Integration

Numerical Integration Numericl tegrtio Newto-Cotes Numericl tegrtio Scheme Replce complicted uctio or tulted dt with some pproimtig uctio tht is esy to itegrte d d 3-7 Roerto Muscedere The itegrtio o some uctios c e very esy

More information

4 The Integral. 4.0 Area. (base) (height). If the units for each side of the rectangle are meters,

4 The Integral. 4.0 Area. (base) (height). If the units for each side of the rectangle are meters, 4 The Itegrl Previous chpters delt with differetil clculus. They strted with the simple geometricl ide of the slope of tget lie to curve, developed it ito combitio of theory bout derivtives d their properties,

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information

3 Monte Carlo Methods

3 Monte Carlo Methods 3 Mote Crlo Methods Brodly spekig, Mote Crlo method is y techique tht employs rdomess s tool to clculte, estimte, or simply ivestigte qutity of iterest. Mote Crlo methods c e used i pplictios s diverse

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

RULES FOR MANIPULATING SURDS b. This is the addition law of surds with the same radicals. (ii)

RULES FOR MANIPULATING SURDS b. This is the addition law of surds with the same radicals. (ii) SURDS Defiitio : Ay umer which c e expressed s quotiet m of two itegers ( 0 ), is clled rtiol umer. Ay rel umer which is ot rtiol is clled irrtiol. Irrtiol umers which re i the form of roots re clled surds.

More information