Nonlocal gravity. Conceptual aspects and cosmological consequences

Size: px
Start display at page:

Download "Nonlocal gravity. Conceptual aspects and cosmological consequences"

Transcription

1 Nonlocal gravity. Conceptual aspects and cosmological consequences Michele Maggiore Moriond 2018

2 based on recent works with Enis Belgacem, Giulia Cusin, Yves Dirian, Stefano Foffa, Martin Kunz, Michele Mancarella, Valeria Pettorino see Belgacem, Dirian, Foffa, MM, , JCAP for a recent detailed review

3 Nonlocality and the quantum effective action At the fundamental level, the action in QFT is local However, the quantum effective action is nonlocal Z e iw [J] D' e is[']+i R J' quantum effective action: W [J] J(x) = h0 '(x) 0i J [J] [ ] W [J] Z J

4 [ ] (x) = J(x) the quantum EA gives the exact eqs of motion for the vev, which include the quantum corrections e i [ ] = Z D' e is[ +'] i R [ ] ' - We are `integrating out' the quantum fluctuations, not the fields It is not a Wilsonian effective action - The regime of validity of the quatum EA is the same as that of the fundamental theory

5 light particles nonlocalities in the quantum effective action these nonolocalities are well understood in the UV. E.g. in QED QED[A µ ]= 1 4 $ Z d 4 x apple F µ 1 e 2 (2) F µ + O(F 4 ) 1 e 2 (2) ' 1 e 2 (µ) 2 log µ 2 Z log it is just the running of the coupling constant in coordinate space 0 dm 2 apple µ 2 + fermionic terms 1 1 m 2 + µ 2 m 2 2 Note: we are not integrating out light particles from the theory!

6 The quantum effective action is especially useful in GR Z e i m[g µ ] = D' e is m[g µ ;'] (vacumm quantum EA. We can also retain the vev's of the matter fields ith the Legendre transform) T µ = 2 p g S m g µ h0 T µ 0i = 2 p g m g µ It gives the exact Einstein eqs including quantum matter loops G µ =8 G h0 in T µ 0 in i Γ = S EH + Γ m is an action that, used at tree level, give the eqs of motion that include the quantum effects

7 The quantum effective action in GR can be computed perturbatively in an expansion in the curvature using heat-kernel techniques Barvinsky-Vilkovisky 1985,1987 = m2 Pl 2 Z d 4 x p gr+ Z d 4 x p g apple Rk R (2)R C µ k W (2)C µ The form factors due to a matter field of mass m s are known in closed form Gorbar-Shapiro m 2 s For m s <<E k(2) ' k(µ) k log µ 2 + c c m 4 s For m s >>E k(2) ' O(2/m 2 s)

8 However, these corrections are only relevant in the UV (ie for quantum gravity) and not in the IR (cosmology): R log( 2/m 2 s)r m 2 PlR unless R m 2 Pl unavoidable, since these are one-loop corrections, and we pay a factor 1/m Pl 2 For application to cosmology, we rather need some strong IR effect

9 Dynamical mass generation in gravity in the IR? The techniques for computing the quantum EA are well understood in the UV, but much less in the IR infrared divergences of massless fields in ds lead to dynamical mass generation, m 2 dyn / H 2p Rajaraman 2010,... the graviton propagator has exactly the same IR divergences Antoniadis and Mottola 1986,... quantum stability of ds. Decades of controversies...

10 Euclidean lattice gravity suggests dynamical generation of a mass m, and a running of G N G(k 2 )=G N "1+ m 2 k O m 2 k 2 1 # ν 1/3 Hamber 1999,.., 2017 non-perturbative functional RG techniques find interesting fixed-point structure in the IR, and strong-gravity effects Wetterich 2017 the dynamical emergences of a mass scale in the IR in gravity is a meaningful working hypothesis

11 Gauge-invariant (or diff-invariant) mass terms can be obtained with nonlocal operators eg massive electrodynamics Dvali 2006 = 1 4 in the gauge Z d 4 µ A µ =0 F µ F µ m 2 F µ 1 2 F µ a nonlocal but gauge-inv photon mass Dvali, Hofmann, Khoury m2 F µ 1 2 F µ = 1 2 m2 A µ A µ

12 Numerical results on the gluon propagator from lattice QCD and OPE are reproduced by adding to the quantum effective action a term m 2 g 2 Tr Z d 4 xf µ 1 2 F µ F µ = F a µ T a, 2 ab = D ac µ D µ,cb, D ab µ = µ gf abc A c µ (Boucaud et al 2001,Capri et al 2005,Dudal et al 2008) it is a nonlocal but gauge invariant mass term for the gluons, generated dynamically by strong IR effects

13 Our approach: we will postulate some nonlocal effective action, which depends on a mass scale, and is supposed to catch IR effects in GR phenomenological approach. Identify a non-local modification of GR that works well attempt at a more fundamental understanding

14 Our prototype model is MM and M.Mancarella 2014 RR = m2 Pl 2 Z d 4 x p g apple R 1 6 m2 R R ``RR model'' m generated dynamically, replaces Λ g µ (x) =e 2 (x) µ! R = 62 + O( 2 ) is a mass term for the conformal mode!

15 Cosmological background evolution the nonlocal term acts as an effective DE density! DE(x)/ wde(z) x ln a z define w DE from a phantom DE equation of state!

16 Cosmological perturbations well-behaved? YES Dirian, Foffa, Khosravi, Kunz, MM JCAP 2014 this step is already non-trivial, see e.g. DGP or bigravity consistent with data? YES comparison with ΛCDM Dirian, Foffa, Kunz, MM, Pettorino, JCAP 2015, 2016 Dirian, 2017 Belgacem, Dirian, Foffa, MM 2017 implement the perturbations in a Boltzmann code compute likelihood, χ 2, perform parameter estimation

17 Boltzmann code analysis and comparison with data We test the non-local models against Planck 2015 TT, TE, EE and lensing data, isotropic and anisotropic BAO data, JLA supernovae, local H_0 measurements, growth rate data and we perform Bayesian parameter estimation and model comparison we modified the CLASS code and use Montepython MCMC we vary! b = b h 2 0,! c = c h 2 0, H 0, A s, n s, z re In ΛCDM, Ω Λ is a derived parameter, fixed by the flatness condition. Similarly, in our model the mass parameter m 2 is a derived parameter, fixed again from Ω tot =1 we have the same free parameters as in ΛCDM

18 overall χ 2 statistically equivalent to ΛCDM higher value of H 0 prediction for neutrino masses forecasts for surveys with the features expected from Euclid, DESI, SKA are under way (Casas, Dirian, Maierotto, Kunz, MM, Pettorino)

19 GW propagation h 00 A +2H[1 ( )] h 0 A + k 2 ha =0 c GW =c ok with GW the ``GW luminosity distance" is different from the standard (electromagnetic) luminosity distance Z z d gw em dz 0 L (z) =dl (z)exp 1+z 0 (z 0 ) 0

20 d L gw /dl em z at ET and LISA this propagation effect dominates over that from the dark energy EoS! (after taking into account parameter estimation)

21 dl/dl z non-local model dl/dl wcdm, w= z

22 Next step: understanding from first principles where such nonlocal term comes from

23 Thank you!

24 bkup slides

25 growth rate and structure formation 0.50 f(z) 8 (z) z z

26 Absence of vdvz discontinuity the propagator is continuous for m=0 D µ (k) = i 2k 2 ( µ + µ µ ) + 1 i i 6 k 2 k 2 m 2 µ, write the eqs of motion of the non-local theory in spherical symmetry: for mr <<1: low-mass expansion A. Kehagias and MM 2014 ds 2 = A(r)dt 2 + B(r)dr 2 + r 2 (d 2 +sin 2 d 2 ) for r>>r S : Newtonian limit (perturbation over Minowski) match the solutions for r S << r << m -1 (this fixes all coefficients)

27 result: for r>>r s for r s <<r<< m -1 : m! 0 A(r) = 1 the limit is smooth! r S r B(r) = 1+ r S r A(r) ' 1 r S r apple 1+ 1 (1 cos mr) 3 apple 1 1 (1 cos mr mr sin mr) 3 1+ m2 r 2 6 By comparison, in massive gravity the same computation gives A(r) =1 4 3 vdvz discontinuity r S r 1 r S 12m 4 r 5 breakdown of linearity below r V =(r s /m^4) 1/5

28 consider Background evolution RR = m2 Pl 2 Z d 4 x p g appler m2 6 R R localize using U = 1 R, S = 1 U in FRW we have 3 variables: H(t), U(t), W(t)=H^2(t)S(t). define x=ln a(t), h(x)=h(x)/h 0, γ=(m/3h 0 ) 2 ζ(x)=h'(x)/h(x)

29 h 2 (x) = M e 3x + R e 4x + Y (U, U 0,W,W 0 ) U 00 +(3+ )U 0 = 6(2 + ) W (1 )W 0 2( )W = U there is an effective DE term, with DE (x) = 0 Y (x) 0 =3H 2 0 /(8 G) define w DE from the model has the same number of parameters as ΛCDM, with Ω Λ γ (plus the inital conditions, parametrized by u 0, c U, c W )

30 the perturbations are well-behaved and differ from ΛCDM at a few percent level = [1+µ(a; k)] GR = [1+ (a; k)]( ) GR m S z z DE-related deviations at z=0.5 of order 4% consistent with data: (Ade et al., Planck XV, 2015) µ Planck Planck+BSH Planck+WL Planck+BAO/RSD Planck+WL+BAO/RSD

31 effective Newton constant (RR model) Geff ê G z growth index: ΛCDM d log M (a; k) d ln a =[ M ] (z;k) g our model k= z

32 linear power spectrum 1.07 matter power spectrum compared to ΛCDM PHkL ê PLHkL ê MpcD 10 4 DE clusters but its linear power spectrum is small compared to that of matter ê hl 3 D Matter DE ê MpcD

33 sufficiently close to ΛCDM to be consistent with existing data, but distinctive prediction that can be clearly tested in the near future phantom DE eq of state: w(0)= (RR) + a full prediction for w(z) DES Δw=0.03 EUCLID Δw=0.01 linear structure formation µ(a) =µ s a s! µ s = 0.09, s = 2 Forecast for EUCLID, Δµ=0.01 non-linear structure formation: 10% more massive halos lensing: deviations at a few % Barreira, Li, Hellwing, Baugh, Pascoli 2014

34 Is nonlocal gravity equivalent to a scalar-tensor theory? The RR model can be put into local form introducing two auxiliary fields U = 2 1 R, S = 2 1 U then the eqs of motion read G µ = m2 6 K µ (U, S)+8 GT µ 2U = R 2S = U 4 RR = 1 12 m2 m 2 Pl are U and S associated to real quanta? Then U would be a ghost

35 Consider L = = 1 4 F µ F µ 1 2 m2 A µ A µ 1 4 F µ 1 m 2 2! F µ we could localize it, preserving gauge-invariance, introducing U µ = 2 1 F µ however, there is no new dof associated to U µν The initial conditions on the original fields (metric,a µ ) fix in principle the initial conditions on the auxiliary fields

36 A closer example: = N Z 48 N = 96 d 2 x p g R Z d 2 x p gr2 1 R we could localize it introducing again By definition U = 2 1 R 2U = R ie 2U =22 The most general solution is U =2 + U hom however, only U=2σ gives back the original action U is fixed in terms of the metric. There are no creation/ annihilation operators associated to U

Nonlocal gravity. Conceptual aspects and cosmological consequences

Nonlocal gravity. Conceptual aspects and cosmological consequences Nonlocal gravity. Conceptual aspects and cosmological consequences Michele Maggiore Sifnos, Sept. 18-23, 2017 based on Jaccard, MM, Mitsou, PRD 2013, 1305.3034 MM, PRD 2014, 1307.3898 Foffa, MM, Mitsou,

More information

Nonlocal gravity and comparison with cosmological datasets

Nonlocal gravity and comparison with cosmological datasets Nonlocal gravity and comparison with cosmological datasets Michele Maggiore Cosmology on Safari, Jan. 2015 based on Jaccard, MM, Mitsou, PRD 2013, 1305.3034 MM, PRD 2014, 1307.3898 Foffa, MM, Mitsou, PLB

More information

Dark energy and nonlocal gravity

Dark energy and nonlocal gravity Dark energy and nonlocal gravity Michele Maggiore Vacuum 2015, Barcelona based on Jaccard, MM, Mitsou, PRD 2013, 1305.3034 MM, PRD 2014, 1307.3898 Foffa, MM, Mitsou, PLB 2014, 1311.3421 Foffa, MM, Mitsou,

More information

Non-local infrared modifications of gravity and dark energy

Non-local infrared modifications of gravity and dark energy Non-local infrared modifications of gravity and dark energy Michele Maggiore Los Cabos, Jan. 2014 based on M. Jaccard, MM and E. Mitsou, 1305.3034, PR D88 (2013) MM, arxiv: 1307.3898 S. Foffa, MM and E.

More information

Bimetric Massive Gravity

Bimetric Massive Gravity Bimetric Massive Gravity Tomi Koivisto / Nordita (Stockholm) 21.11.2014 Outline Introduction Bimetric gravity Cosmology Matter coupling Conclusion Motivations Why should the graviton be massless? Large

More information

Quantum Gravity and the Renormalization Group

Quantum Gravity and the Renormalization Group Nicolai Christiansen (ITP Heidelberg) Schladming Winter School 2013 Quantum Gravity and the Renormalization Group Partially based on: arxiv:1209.4038 [hep-th] (NC,Litim,Pawlowski,Rodigast) and work in

More information

The nonlinear dynamical stability of infrared modifications of gravity

The nonlinear dynamical stability of infrared modifications of gravity The nonlinear dynamical stability of infrared modifications of gravity Aug 2014 In collaboration with Richard Brito, Vitor Cardoso and Matthew Johnson Why Study Modifications to Gravity? General relativity

More information

General Relativistic N-body Simulations of Cosmic Large-Scale Structure. Julian Adamek

General Relativistic N-body Simulations of Cosmic Large-Scale Structure. Julian Adamek General Relativistic N-body Simulations of Cosmic Large-Scale Structure Julian Adamek General Relativistic effects in cosmological large-scale structure, Sexten, 19. July 2018 Gravity The Newtonian limit

More information

Lorentz Center workshop Non-Linear Structure in the Modified Universe July 14 th Claudia de Rham

Lorentz Center workshop Non-Linear Structure in the Modified Universe July 14 th Claudia de Rham Lorentz Center workshop Non-Linear Structure in the Modified Universe July 14 th 2014 Claudia de Rham Modified Gravity Lorentz-Violating LV-Massive Gravity Ghost Condensate Horava- Lifshitz Cuscuton Extended

More information

D. f(r) gravity. φ = 1 + f R (R). (48)

D. f(r) gravity. φ = 1 + f R (R). (48) 5 D. f(r) gravity f(r) gravity is the first modified gravity model proposed as an alternative explanation for the accelerated expansion of the Universe [9]. We write the gravitational action as S = d 4

More information

Galileon Cosmology ASTR448 final project. Yin Li December 2012

Galileon Cosmology ASTR448 final project. Yin Li December 2012 Galileon Cosmology ASTR448 final project Yin Li December 2012 Outline Theory Why modified gravity? Ostrogradski, Horndeski and scalar-tensor gravity; Galileon gravity as generalized DGP; Galileon in Minkowski

More information

Asymptotically safe Quantum Gravity. Nonperturbative renormalizability and fractal space-times

Asymptotically safe Quantum Gravity. Nonperturbative renormalizability and fractal space-times p. 1/2 Asymptotically safe Quantum Gravity Nonperturbative renormalizability and fractal space-times Frank Saueressig Institute for Theoretical Physics & Spinoza Institute Utrecht University Rapporteur

More information

Aspects of Spontaneous Lorentz Violation

Aspects of Spontaneous Lorentz Violation Aspects of Spontaneous Lorentz Violation Robert Bluhm Colby College IUCSS School on CPT & Lorentz Violating SME, Indiana University, June 2012 Outline: I. Review & Motivations II. Spontaneous Lorentz Violation

More information

Cosmological perturbations in nonlinear massive gravity

Cosmological perturbations in nonlinear massive gravity Cosmological perturbations in nonlinear massive gravity A. Emir Gümrükçüoğlu IPMU, University of Tokyo AEG, C. Lin, S. Mukohyama, JCAP 11 (2011) 030 [arxiv:1109.3845] AEG, C. Lin, S. Mukohyama, To appear

More information

arxiv: v1 [hep-th] 1 Oct 2008

arxiv: v1 [hep-th] 1 Oct 2008 Cascading Gravity and Degravitation Claudia de Rham Dept. of Physics & Astronomy, McMaster University, Hamilton ON, Canada Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada arxiv:0810.069v1

More information

Status of Hořava Gravity

Status of Hořava Gravity Status of Institut d Astrophysique de Paris based on DV & T. P. Sotiriou, PRD 85, 064003 (2012) [arxiv:1112.3385 [hep-th]] DV & T. P. Sotiriou, JPCS 453, 012022 (2013) [arxiv:1212.4402 [hep-th]] DV, arxiv:1502.06607

More information

Non-local Modifications of Gravity and Cosmic Acceleration

Non-local Modifications of Gravity and Cosmic Acceleration Non-local Modifications of Gravity and Cosmic Acceleration Valeri Vardanyan Cargese-2017 In collaboration with: Yashar Akrami Luca Amendola Alessandra Silvestri arxiv:1702.08908 Late time cosmology The

More information

Cosmological Tests of Gravity

Cosmological Tests of Gravity Cosmological Tests of Gravity Levon Pogosian Simon Fraser University, Canada VIA Lecture, 16 May, 2014 Workshop on Testing Gravity at SFU Harbour Centre January 15-17, 2015 Alternative theories of gravity

More information

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 We are directly observing the history of the universe as we look deeply into the sky. JUN 30, 2016 ZZXianyu (CMSA) 2 At ~10 4 yrs the universe becomes

More information

Massive gravity meets simulations?

Massive gravity meets simulations? Massive gravity meets simulations? Kazuya Koyama University of Portsmouth Non-linear massive gravity theory (de Rham, Gadadadze & Tolley 10) Two key features Self-acceleration A graviton mass accounts

More information

Dilaton and IR-Driven Inflation

Dilaton and IR-Driven Inflation Dilaton and IR-Driven Inflation Chong-Sun Chu National Center for Theoretical Science NCTS and National Tsing-Hua University, Taiwan Third KIAS-NCTS Joint Workshop High 1 Feb 1, 2016 1506.02848 in collaboration

More information

Oddities of the Universe

Oddities of the Universe Oddities of the Universe Koushik Dutta Theory Division, Saha Institute Physics Department, IISER, Kolkata 4th November, 2016 1 Outline - Basics of General Relativity - Expanding FRW Universe - Problems

More information

Observational evidence and cosmological constant. Kazuya Koyama University of Portsmouth

Observational evidence and cosmological constant. Kazuya Koyama University of Portsmouth Observational evidence and cosmological constant Kazuya Koyama University of Portsmouth Basic assumptions (1) Isotropy and homogeneity Isotropy CMB fluctuation ESA Planck T 5 10 T Homogeneity galaxy distribution

More information

TESTING GRAVITY WITH COSMOLOGY

TESTING GRAVITY WITH COSMOLOGY 21 IV. TESTING GRAVITY WITH COSMOLOGY We now turn to the different ways with which cosmological observations can constrain modified gravity models. We have already seen that Solar System tests provide

More information

Nonlinear massive gravity and Cosmology

Nonlinear massive gravity and Cosmology Nonlinear massive gravity and Cosmology Shinji Mukohyama (Kavli IPMU, U of Tokyo) Based on collaboration with Antonio DeFelice, Emir Gumrukcuoglu, Chunshan Lin Why alternative gravity theories? Inflation

More information

Massive gravity and cosmology

Massive gravity and cosmology Massive gravity and cosmology Shinji Mukohyama (YITP Kyoto) Based on collaboration with Antonio DeFelice, Garrett Goon, Emir Gumrukcuoglu, Lavinia Heisenberg, Kurt Hinterbichler, David Langlois, Chunshan

More information

The cosmological constant puzzle

The cosmological constant puzzle The cosmological constant puzzle Steven Bass Cosmological constant puzzle: Accelerating Universe: believed to be driven by energy of nothing (vacuum) Vacuum energy density (cosmological constant or dark

More information

Aspects of massive gravity

Aspects of massive gravity Aspects of massive gravity Sébastien Renaux-Petel CNRS - IAP Paris Rencontres de Moriond, 22.03.2015 Motivations for modifying General Relativity in the infrared Present acceleration of the Universe: {z

More information

Constraining Modified Gravity and Coupled Dark Energy with Future Observations Matteo Martinelli

Constraining Modified Gravity and Coupled Dark Energy with Future Observations Matteo Martinelli Coupled Dark University of Rome La Sapienza Roma, October 28th 2011 Outline 1 2 3 4 5 1 2 3 4 5 Accelerated Expansion Cosmological data agree with an accelerated expansion of the Universe d L [Mpc] 16000

More information

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight MATHEMATICAL TRIPOS Part III Friday 31 May 00 9 to 1 PAPER 71 COSMOLOGY Attempt THREE questions There are seven questions in total The questions carry equal weight You may make free use of the information

More information

Modified Gravity and Dark Matter

Modified Gravity and Dark Matter Modified Gravity and Dark Matter Jose A. R. Cembranos University Complutense of Madrid, Spain J. Cembranos, PRL102:141301 (2009) Modifications of Gravity We do not know any consistent renormalizable Quantum

More information

Graviton contributions to the graviton self-energy at one loop order during inflation

Graviton contributions to the graviton self-energy at one loop order during inflation Graviton contributions to the graviton self-energy at one loop order during inflation PEDRO J. MORA DEPARTMENT OF PHYSICS UNIVERSITY OF FLORIDA PASI2012 1. Description of my thesis problem. i. Graviton

More information

Mimetic dark matter. The mimetic DM is of gravitational origin. Consider a conformal transformation of the type:

Mimetic dark matter. The mimetic DM is of gravitational origin. Consider a conformal transformation of the type: Mimetic gravity Frederico Arroja FA, N. Bartolo, P. Karmakar and S. Matarrese, JCAP 1509 (2015) 051 [arxiv:1506.08575 [gr-qc]] and JCAP 1604 (2016) no.04, 042 [arxiv:1512.09374 [gr-qc]]; S. Ramazanov,

More information

One-loop renormalization in a toy model of Hořava-Lifshitz gravity

One-loop renormalization in a toy model of Hořava-Lifshitz gravity 1/0 Università di Roma TRE, Max-Planck-Institut für Gravitationsphysik One-loop renormalization in a toy model of Hořava-Lifshitz gravity Based on (hep-th:1311.653) with Dario Benedetti Filippo Guarnieri

More information

Gravitational Waves and New Perspectives for Quantum Gravity

Gravitational Waves and New Perspectives for Quantum Gravity Gravitational Waves and New Perspectives for Quantum Gravity Ilya L. Shapiro Universidade Federal de Juiz de Fora, Minas Gerais, Brazil Supported by: CAPES, CNPq, FAPEMIG, ICTP Challenges for New Physics

More information

The Dark Sector ALAN HEAVENS

The Dark Sector ALAN HEAVENS The Dark Sector ALAN HEAVENS INSTITUTE FOR ASTRONOMY UNIVERSITY OF EDINBURGH AFH@ROE.AC.UK THIRD TRR33 WINTER SCHOOL PASSO DEL TONALE (ITALY) 6-11 DECEMBER 2009 Outline Dark Matter Dark Energy Dark Gravity

More information

Quantum Fields in Curved Spacetime

Quantum Fields in Curved Spacetime Quantum Fields in Curved Spacetime Lecture 3 Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 22, 2016. Recap AdS 3 is an instructive application of quantum fields in curved space. The

More information

Analyzing WMAP Observation by Quantum Gravity

Analyzing WMAP Observation by Quantum Gravity COSMO 07 Conference 21-25 August, 2007 Analyzing WMAP Observation by Quantum Gravity Ken-ji Hamada (KEK) with Shinichi Horata, Naoshi Sugiyama, and Tetsuyuki Yukawa arxiv:0705.3490[astro-ph], Phys. Rev.

More information

Gravitational Waves. GR: 2 polarizations

Gravitational Waves. GR: 2 polarizations Gravitational Waves GR: 2 polarizations Gravitational Waves GR: 2 polarizations In principle GW could have 4 other polarizations 2 vectors 2 scalars Potential 4 `new polarizations Massive Gravity When

More information

Introduction to the Vainshtein mechanism

Introduction to the Vainshtein mechanism Introduction to the Vainshtein mechanism Eugeny Babichev LPT, Orsay School Paros 23-28 September 2013 based on arxiv:1107.1569 with C.Deffayet OUTLINE Introduction and motivation k-mouflage Galileons Non-linear

More information

Extended mimetic gravity:

Extended mimetic gravity: Extended mimetic gravity: Hamiltonian analysis and gradient instabilities Kazufumi Takahashi (JSPS fellow) Rikkyo University Based on KT, H. Motohashi, T. Suyama, and T. Kobayashi Phys. Rev. D 95, 084053

More information

Massive gravity and cosmology

Massive gravity and cosmology Massive gravity and cosmology Shinji Mukohyama (Kavli IPMU, U of Tokyo) Based on collaboration with Antonio DeFelice, Emir Gumrukcuoglu, Kurt Hinterbichler, Chunshan Lin, Mark Trodden Why alternative gravity

More information

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises SM, EWSB & Higgs MITP Summer School 017 Joint Challenges for Cosmology and Colliders Homework & Exercises Ch!"ophe Grojean Ch!"ophe Grojean DESY (Hamburg) Humboldt University (Berlin) ( christophe.grojean@desy.de

More information

New Model of massive spin-2 particle

New Model of massive spin-2 particle New Model of massive spin-2 particle Based on Phys.Rev. D90 (2014) 043006, Y.O, S. Akagi, S. Nojiri Phys.Rev. D90 (2014) 123013, S. Akagi, Y.O, S. Nojiri Yuichi Ohara QG lab. Nagoya univ. Introduction

More information

Universal Dynamics from the Conformal Bootstrap

Universal Dynamics from the Conformal Bootstrap Universal Dynamics from the Conformal Bootstrap Liam Fitzpatrick Stanford University! in collaboration with Kaplan, Poland, Simmons-Duffin, and Walters Conformal Symmetry Conformal = coordinate transformations

More information

Holographic self-tuning of the cosmological constant

Holographic self-tuning of the cosmological constant Holographic self-tuning of the cosmological constant Francesco Nitti Laboratoire APC, U. Paris Diderot IX Crete Regional Meeting in String Theory Kolymbari, 10-07-2017 work with Elias Kiritsis and Christos

More information

Critical exponents in quantum Einstein gravity

Critical exponents in quantum Einstein gravity Critical exponents in quantum Einstein gravity Sándor Nagy Department of Theoretical physics, University of Debrecen MTA-DE Particle Physics Research Group, Debrecen Leibnitz, 28 June Critical exponents

More information

Green s function of the Vector fields on DeSitter Background

Green s function of the Vector fields on DeSitter Background Green s function of the Vector fields on DeSitter Background Gaurav Narain The Institute for Fundamental Study (IF) March 10, 2015 Talk Based On Green s function of the Vector fields on DeSitter Background,

More information

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory Anisotropic Interior Solutions in and Einstein-Æther Theory CENTRA, Instituto Superior Técnico based on DV and S. Carloni, arxiv:1706.06608 [gr-qc] Gravity and Cosmology 2018 Yukawa Institute for Theoretical

More information

Dark Energy at the Speed of Gravitational Waves

Dark Energy at the Speed of Gravitational Waves New probes of gravity and cosmic acceleration Nordita & BCCP Theoretical Cosmology in the Light of Data - July 2017 with A. Barreira, F. Montanari, J. Renk (1707.xxxxx) D. Bettoni, JM Ezquiaga, K. Hinterbichler

More information

A brief introduction to modified theories of gravity

A brief introduction to modified theories of gravity (Vinc)Enzo Vitagliano CENTRA, Lisboa May, 14th 2015 IV Amazonian Workshop on Black Holes and Analogue Models of Gravity Belém do Pará The General Theory of Relativity dynamics of the Universe behavior

More information

Towards a manifestly diffeomorphism invariant Exact Renormalization Group

Towards a manifestly diffeomorphism invariant Exact Renormalization Group Towards a manifestly diffeomorphism invariant Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for UK QFT-V, University of Nottingham,

More information

Gravity vs Yang-Mills theory. Kirill Krasnov (Nottingham)

Gravity vs Yang-Mills theory. Kirill Krasnov (Nottingham) Gravity vs Yang-Mills theory Kirill Krasnov (Nottingham) This is a meeting about Planck scale The problem of quantum gravity Many models for physics at Planck scale This talk: attempt at re-evaluation

More information

Holographic self-tuning of the cosmological constant

Holographic self-tuning of the cosmological constant Holographic self-tuning of the cosmological constant Francesco Nitti Laboratoire APC, U. Paris Diderot IX Aegean Summer School Sifnos, 19-09-2017 work with Elias Kiritsis and Christos Charmousis, 1704.05075

More information

A First Class Formulation of Massive Gravity - or Massive Gravity as a Gauge Theory

A First Class Formulation of Massive Gravity - or Massive Gravity as a Gauge Theory A First Class Formulation of Massive Gravity - or Massive Gravity as a Gauge Theory Andrew J Tolley Case Western Reserve University Based on work to appear Why Massive Gravity? Massive Gravity Theories

More information

Claudia de Rham July 30 th 2013

Claudia de Rham July 30 th 2013 Claudia de Rham July 30 th 2013 GR has been a successful theory from mm length scales to Cosmological scales Then why Modify Gravity? Why Modify Gravity in the IR? Late time acceleration & CC problem First

More information

Scale symmetry a link from quantum gravity to cosmology

Scale symmetry a link from quantum gravity to cosmology Scale symmetry a link from quantum gravity to cosmology scale symmetry fluctuations induce running couplings violation of scale symmetry well known in QCD or standard model Fixed Points Quantum scale symmetry

More information

Stephen Blaha, Ph.D. M PubHsMtw

Stephen Blaha, Ph.D. M PubHsMtw Quantum Big Bang Cosmology: Complex Space-time General Relativity, Quantum Coordinates,"Dodecahedral Universe, Inflation, and New Spin 0, 1 / 2,1 & 2 Tachyons & Imagyons Stephen Blaha, Ph.D. M PubHsMtw

More information

Local RG, Quantum RG, and Holographic RG. Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis

Local RG, Quantum RG, and Holographic RG. Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis Local RG, Quantum RG, and Holographic RG Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis Local renormalization group The main idea dates back to Osborn NPB 363 (1991) See also my recent review

More information

What can Cosmology tell us about Gravity? Levon Pogosian Simon Fraser University

What can Cosmology tell us about Gravity? Levon Pogosian Simon Fraser University What can Cosmology tell us about Gravity? Levon Pogosian Simon Fraser University Rob Crittenden ICG, Portsmouth Kazuya Koyama ICG, Portsmouth Simone Peirone U. Leiden Alessandra Silvestri U. Leiden Marco

More information

Effective Field Theory approach for Dark Energy/ Modified Gravity. Bin HU BNU

Effective Field Theory approach for Dark Energy/ Modified Gravity. Bin HU BNU Effective Field Theory approach for Dark Energy/ Modified Gravity Bin HU BNU NAOC Nov. 2016 Outline 1. Evidence of late-time cosmic acceleration 2. Effective Field Theory approach for DE/MG 3. The structure

More information

Constraints on the deviations from general relativity

Constraints on the deviations from general relativity 14/10/2010 Minneapolis Constraints on the deviations from general relativity From local to cosmological scales Jean-Philippe UZAN GR in a nutshell Underlying hypothesis Equivalence principle Universality

More information

Massless field perturbations around a black hole in Hořava-Lifshitz gravity

Massless field perturbations around a black hole in Hořava-Lifshitz gravity 5 Massless field perturbations around a black hole in 5.1 Gravity and quantization Gravity, one among all the known four fundamental interactions, is well described by Einstein s General Theory of Relativity

More information

On Acceleration of the Universe. Waseda University Kei-ichi Maeda

On Acceleration of the Universe. Waseda University Kei-ichi Maeda On Acceleration of the Universe Waseda University Kei-ichi Maeda Acceleration of cosmic expansion Inflation: early stage of the Universe Inflaton? Present Acceleration cosmological constant Dark Energy

More information

Gravitational waves, solitons, and causality in modified gravity

Gravitational waves, solitons, and causality in modified gravity Gravitational waves, solitons, and causality in modified gravity Arthur Suvorov University of Melbourne December 14, 2017 1 of 14 General ideas of causality Causality as a hand wave Two events are causally

More information

N-body Simulations and Dark energy

N-body Simulations and Dark energy N-Body Simulations and models of Dark Energy Elise Jennings Supported by a Marie Curie Early Stage Training Fellowship N-body Simulations and Dark energy elise jennings Introduction N-Body simulations

More information

arxiv: v2 [hep-th] 21 Oct 2013

arxiv: v2 [hep-th] 21 Oct 2013 Perturbative quantum damping of cosmological expansion Bogusław Broda arxiv:131.438v2 [hep-th] 21 Oct 213 Department of Theoretical Physics, Faculty of Physics and Applied Informatics, University of Łódź,

More information

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

A5682: Introduction to Cosmology Course Notes. 2. General Relativity 2. General Relativity Reading: Chapter 3 (sections 3.1 and 3.2) Special Relativity Postulates of theory: 1. There is no state of absolute rest. 2. The speed of light in vacuum is constant, independent

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Manifestly diffeomorphism invariant classical Exact Renormalization Group

Manifestly diffeomorphism invariant classical Exact Renormalization Group Manifestly diffeomorphism invariant classical Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for Asymptotic Safety seminar,

More information

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 1 2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 2 Special Relativity (1905) A fundamental change in viewing the physical space and time, now unified

More information

Massive Photon and Cosmology

Massive Photon and Cosmology Massive Photon and Cosmology Phillial Oh Sungkyunkwan University KIAS 2014. 6. Contents I. Introduction II. Massive QED and Cosmology III. Massive Dark Photon and Cosmology IV. Conslusions Massive Photon:

More information

Galileons. Axions and the Low Energy Frontier. Philippe Brax IPhT Saclay

Galileons. Axions and the Low Energy Frontier. Philippe Brax IPhT Saclay Galileons Axions and the Low Energy Frontier Philippe Brax IPhT Saclay Comment le sait-on? Mesure de distances! Dark Energy: anything which leads to the late time acceleration of the expansion of the Universe!

More information

Equation of state of dark energy. Phys. Rev. D 91, (2015)

Equation of state of dark energy. Phys. Rev. D 91, (2015) Equation of state of dark energy in f R gravity The University of Tokyo, RESCEU K. Takahashi, J. Yokoyama Phys. Rev. D 91, 084060 (2015) Motivation Many modified theories of gravity have been considered

More information

Mimetic Cosmology. Alexander Vikman. New Perspectives on Cosmology Institute of Physics of the Czech Academy of Sciences

Mimetic Cosmology. Alexander Vikman. New Perspectives on Cosmology Institute of Physics of the Czech Academy of Sciences New Perspectives on Cosmology Mimetic Cosmology Alexander Vikman Institute of Physics of the Czech Academy of Sciences 07.01.2016 This talk is mostly based on arxiv: 1512.09118, K. Hammer, A. Vikman arxiv:

More information

On the Perturbative Stability of des QFT s

On the Perturbative Stability of des QFT s On the Perturbative Stability of des QFT s D. Boyanovsky, R.H. arxiv:3.4648 PPCC Workshop, IGC PSU 22 Outline Is de Sitter space stable? Polyakov s views Some quantum Mechanics: The Wigner- Weisskopf Method

More information

Unparticles in High T_c Superconductors

Unparticles in High T_c Superconductors Unparticles in High T_c Superconductors Thanks to: NSF, EFRC (DOE) Kiaran dave Charlie Kane Brandon Langley J. A. Hutasoit Correlated Electron Matter Correlated Electron Matter What is carrying the current?

More information

Dimensional Reduction in the Renormalisation Group:

Dimensional Reduction in the Renormalisation Group: Dimensional Reduction in the Renormalisation Group: From Scalar Fields to Quantum Einstein Gravity Natália Alkofer Advisor: Daniel Litim Co-advisor: Bernd-Jochen Schaefer 11/01/12 PhD Seminar 1 Outline

More information

de Sitter Tachyons (at the LHC Era)

de Sitter Tachyons (at the LHC Era) de Sitter Tachyons (at the LHC Era) Rigorous QFT at the LHC era. ESI-Vienna. September 28, 2011 Ugo Moschella Università dell Insubria, Como, Italia SPhT Saclay ugomoschella@gmail.com Tachyons Relativistic

More information

The Nature of Dark Energy and its Implications for Particle Physics and Cosmology

The Nature of Dark Energy and its Implications for Particle Physics and Cosmology The Nature of Dark Energy and its Implications for Particle Physics and Cosmology May 3, 27@ University of Tokyo Tomo Takahashi Department of Physics, Saga University 1. Introduction Current cosmological

More information

EFTCAMB: exploring Large Scale Structure observables with viable dark energy and modified gravity models

EFTCAMB: exploring Large Scale Structure observables with viable dark energy and modified gravity models EFTCAMB: exploring Large Scale Structure observables with viable dark energy and modified gravity models Noemi Frusciante Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade

More information

Inflationary Massive Gravity

Inflationary Massive Gravity New perspectives on cosmology APCTP, 15 Feb., 017 Inflationary Massive Gravity Misao Sasaki Yukawa Institute for Theoretical Physics, Kyoto University C. Lin & MS, PLB 75, 84 (016) [arxiv:1504.01373 ]

More information

A Panorama of Modified Gravity. Philippe Brax IPhT Saclay

A Panorama of Modified Gravity. Philippe Brax IPhT Saclay A Panorama of Modified Gravity Philippe Brax IPhT Saclay The Universe accelerates: why? Maybe a landscape of Universes? Or not? The acceleration of the Universe could also be due to many mundane causes:

More information

A Modern View of Quantum Gravity. John F. Donoghue at Universität Wien October 13, 2015

A Modern View of Quantum Gravity. John F. Donoghue at Universität Wien October 13, 2015 A Modern View of Quantum Gravity John F. Donoghue at Universität Wien October 13, 2015 Goal: We have made progress! 1) Bad quotes good quotes 2) The Effective Field Theory revolution 3) A minimal primer

More information

On the uniqueness of Einstein-Hilbert kinetic term (in massive (multi-)gravity)

On the uniqueness of Einstein-Hilbert kinetic term (in massive (multi-)gravity) On the uniqueness of Einstein-Hilbert kinetic term (in massive (multi-)gravity) Andrew J. Tolley Case Western Reserve University Based on: de Rham, Matas, Tolley, ``New Kinetic Terms for Massive Gravity

More information

Testing gravity on cosmological scales with the observed abundance of massive clusters

Testing gravity on cosmological scales with the observed abundance of massive clusters Testing gravity on cosmological scales with the observed abundance of massive clusters David Rapetti, KIPAC (Stanford/SLAC) In collaboration with Steve Allen (KIPAC), Adam Mantz (KIPAC), Harald Ebeling

More information

Dark Energy and Dark Matter Interaction. f (R) A Worked Example. Wayne Hu Florence, February 2009

Dark Energy and Dark Matter Interaction. f (R) A Worked Example. Wayne Hu Florence, February 2009 Dark Energy and Dark Matter Interaction f (R) A Worked Example Wayne Hu Florence, February 2009 Why Study f(r)? Cosmic acceleration, like the cosmological constant, can either be viewed as arising from

More information

Dark Energy & General Relativity «Some theoretical thoughts»

Dark Energy & General Relativity «Some theoretical thoughts» IAS workshop 24/11/2008 Dark Energy & General Relativity «Some theoretical thoughts» Jean-Philippe UZAN Cosmological models Theoretical physics Principles Local law of nature Extrapolations Cosmology models

More information

Relativity, Gravitation, and Cosmology

Relativity, Gravitation, and Cosmology Relativity, Gravitation, and Cosmology A basic introduction TA-PEI CHENG University of Missouri St. Louis OXFORD UNIVERSITY PRESS Contents Parti RELATIVITY Metric Description of Spacetime 1 Introduction

More information

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29 Analog Duality Sabine Hossenfelder Nordita Sabine Hossenfelder, Nordita Analog Duality 1/29 Dualities A duality, in the broadest sense, identifies two theories with each other. A duality is especially

More information

Unication models of dark matter and dark energy

Unication models of dark matter and dark energy Unication models of dark matter and dark energy Neven ƒaplar March 14, 2012 Neven ƒaplar () Unication models March 14, 2012 1 / 25 Index of topics Some basic cosmology Unication models Chaplygin gas Generalized

More information

Black holes in massive gravity

Black holes in massive gravity Black holes in massive gravity Eugeny Babichev LPT, Orsay IAP PARIS, MARCH 14 2016 REVIEW: in collaboration with: R. Brito, M. Crisostomi, C. Deffayet, A. Fabbri,P. Pani, ARXIV:1503.07529 1512.04058 1406.6096

More information

arxiv:hep-th/ v1 2 May 1997

arxiv:hep-th/ v1 2 May 1997 Exact Renormalization Group and Running Newtonian Coupling in Higher Derivative Gravity arxiv:hep-th/9705008v 2 May 997 A.A. Bytseno State Technical University, St. Petersburg, 95252, Russia L.N. Granda

More information

PAPER 310 COSMOLOGY. Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

PAPER 310 COSMOLOGY. Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. MATHEMATICAL TRIPOS Part III Wednesday, 1 June, 2016 9:00 am to 12:00 pm PAPER 310 COSMOLOGY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

Duality and Holography

Duality and Holography Duality and Holography? Joseph Polchinski UC Davis, 5/16/11 Which of these interactions doesn t belong? a) Electromagnetism b) Weak nuclear c) Strong nuclear d) a) Electromagnetism b) Weak nuclear c) Strong

More information

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds Introduction to String Theory ETH Zurich, HS11 Chapter 9 Prof. N. Beisert 9 String Backgrounds Have seen that string spectrum contains graviton. Graviton interacts according to laws of General Relativity.

More information

Introduction to the SM (5)

Introduction to the SM (5) Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 1 Introduction to the SM (5) Yuval Grossman Cornell Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 2 Yesterday... Yesterday: Symmetries Today SSB the

More information

Non-linear structure formation in modified gravity

Non-linear structure formation in modified gravity Non-linear structure formation in modified gravity Kazuya Koyama Institute of Cosmology and Gravitation, University of Portsmouth Cosmic acceleration Many independent data sets indicate the expansion of

More information

Narrowing down the possible explanations of cosmic acceleration with geometric probes

Narrowing down the possible explanations of cosmic acceleration with geometric probes Prepared for submission to JCAP arxiv:1705.05768v1 [astro-ph.co] 16 May 2017 Narrowing down the possible explanations of cosmic acceleration with geometric probes Suhail Dhawan, a Ariel Goobar, a Edvard

More information

The impact of relativistic effects on cosmological parameter estimation

The impact of relativistic effects on cosmological parameter estimation The impact of relativistic effects on cosmological parameter estimation arxiv:1710.02477 (PRD) with David Alonso and Pedro Ferreira Christiane S. Lorenz University of Oxford Rencontres de Moriond, La Thuile,

More information