Local maximal operators on fractional Sobolev spaces

Size: px
Start display at page:

Download "Local maximal operators on fractional Sobolev spaces"

Transcription

1 Local maximal operators on fractional Sobolev spaces Antti Vähäkangas joint with H. Luiro University of Helsinki April 3, / 19

2 Let G R n be an open set. For f L 1 loc (G), the local Hardy Littlewood maximal function is defined at x G by M G f(x) = sup r M G f : G [0, ] 1 f(y) dy, B(x, r) B(x,r) where the supremum is taken over all 0 < r < dist(x, G), Theorem of Hardy, Littlewood and Wiener implies that, if 1 < p, then f L p (G) c(n, p) f L p (G) for every f L p (G). This is the typical size -estimate for maximal operators. 2 / 19

3 We are interested in smoothing properties of local maximal operators M G. A motivating observation: if f L 1 loc (G) is non-negative a.e. then M G f = f f is superharmonic. This suggests applications in potential theory and PDE s, where the following toolkit is standard by now: (1) Let B be a ball in G such that 3B G. Then 1 f(y) dy 2 n inf B M Gf. B B (2) Boundary values: If f C 0 (G), then M G f C 0 (G). If f W 1,p 0 (G) with 1 < p <, then M G f W 1,p 0 (G). (3) M G f 2M G f a.e. in G if f W 1,p (G) with 1 < p. (4) M G is continuous in W 1,p (G) if 1 < p < as shown by Luiro (PEMS 2010). Points (2) and (3) above are due to Kinnunen and Lindqvist (Crelle 1998). 3 / 19

4 Let us recall the fractional order Sobolev spaces in an open set G in R n. For 1 p < and s (0, 1) we let W s,p (G) be the collection of all functions f L p (G) with f W s,p (G) := f L p (G) + f W s,p (G) <, where Remarks: ( f W s,p (G) := G G f(x) f(y) p ) 1/p x y n+sp dx dy. (1) The Besov space F s pp(r n ) coincides with the Sobolev space W s,p (R n ). (2) Luiro proved the boundedness of M G on the trace space F s pp(g) when 0 < s < 1 and 1 < p <. (3) The trace space F s pp(g) need not coincide with W s,p (G)! If G is a domain, then this is true if and only if G is regular: B(x, r) G r n for every x G and 0 < r < 1. (Zhou, to appear in TAMS) 4 / 19

5 Concerning the boundedness of local maximal operators on W s,p (G), we prove: Theorem (Luiro-V. 2014) Let 1 < p < and 0 < s < 1. If G R n is an open set, then for every f W s,p (G). M G f W s,p (G) C(n, s, p) f W s,p (G) As a corollary, we see that the local maximal operator is bounded on W s,p (G). I will return to the proof in the 2nd hour; 5 / 19

6 As an application, we study Whitney localization of (s, p)-hardy inequality ; We adapt the classical case by Lehrbäck Shanmugalingam (Pot. Anal., to appear). For a compact set K G, we write cap s,p (K, G) = inf u u p W s,p (G), where the infimum is taken over all real-valued functions u C 0 (G) such that u(x) 1 for every x K. An open set G R n admits an (s, p)-hardy inequality if there exists a constant c > 0 such that dist(x, G) sp dx c cap s,p (K, G) (1) K for every compact set K G. 6 / 19

7 Theorem (Luiro-V. 2014, Dyda-V. 2013) Let 0 < s < 1 and 1 < p < be such that sp < n. A bounded open G in R n admits an (s, p)-hardy inequality if and only if (A) There exists a constant c > 0 such that for every Q W(G). l(q) n sp c cap s,p (Q, G) (2) (B) There exists a constant N > 0 such that ( ) cap s,p (Q, G) Ncap s,p Q, G. (3) Q E Q E for every finite subfamily E W(G) of Whitney cubes. 7 / 19

8 Proof of : Let us fix a compact set K G and a test function u for cap s,p (K, G). By replacing u with max{0, min{u, 1}} we may assume that 0 u 1. We partition W(G) as W 1 W 2, where W 1 = {Q W(G) : u Q := W 2 = W(G) \ W 1. Q u < 1/2}, Write K dist(x, G) sp dx { = Q W 1 + Q W 2 } dist(x, G) sp dx. K Q 8 / 19

9 For every Q W 1 and every x K Q, 1 2 = < u(x) u Q = u(x) u Q. Thus, by Jensen s inequality, dist(x, G) sp dx l(q) sp u(x) u Q p dx Q W K Q 1 Q W Q 1 u(x) u(y) p dy dx Q W 1 l(q) n sp Q W 1 Q u p W s,p (G). Q Q Q u(x) u(y) p x y n+sp dy dx 9 / 19

10 In order to estimate the series associated with W 2, we need observations: (1) Let us consider a cube Q W 2 and a point x Q; Observe that int(q) B(x, diam(q)) B(x, dist(x, G)). Hence, M G u(x) u(y) dy 1 2. (4) (2) The support of M G u is compact in G since G is bdd and u C 0 (G). (3) Since u C 0 (G), we find that M G u is continuous. Concluding from (1) (3) we find that there is ρ > 0 such that ρm G u is an admissible test function for cap s,p ( Q W2 Q, G). Q 10 / 19

11 By condition (B) and the inequality (4), dist(x, G) sp dx Q W 2 K Q The last term is dominated by l(q) n sp Q W 2 c cap s,p (Q, G) Q W 2 ( ) cncap s,p Q, G Q W 2 cnρ p G G C(n, s, p, N, c, ρ) u p W s,p (G). M G u(x) M G u(y) p x y n+sp dy dx. 11 / 19

12 We need the following lower dimensional maximal functions. Fix 1 < p < and F L p (R 2n ). For almost every (x, y) R 2n, we write M 00 (F )(x, y) = F (x, y) M 01 (F )(x, y) = sup r>0 M 10 (F )(x, y) = sup r>0 M 11 (F )(x, y) = sup r>0 B(y,r) B(x,r) B(0,r) F (x, z) dz F (z, y) dz F (x + z, y + z) dz By Fubini s theorem, operators M ij are bounded on L p (R 2n ). 12 / 19

13 If g L p (G), then we write S(g)(x, y) = S G,n,s,p (g)(x, y) = χ G(x)χ G (y) g(x) g(y) x y n p +s for almost every (x, y) R 2n. Observe that g W s,p (G) = Sg Lp (R 2n ). Theorem (Luiro-V. 2014) Let G R n be an open set, 1 < p < and 0 < s < 1. Then there is a constant C = C(n, p, s) > 0 such that, for almost every (x, y) R 2n, S(M G f)(x, y) C ( Mij (M kl (Sf))(x, y) + M ij (M kl (Sf))(y, x) ) (5) i,j,k,l if f L p (G) is such that Sf L p (R 2n ). 13 / 19

14 By replacing the function f with f we may assume that f 0. We may restrict ourselves to points (x, y) G G for which both x and y are Lebesgue points of f and both M G f(x) and M G f(y) are finite. By symmetry, we may further assume that M G f(x) > M G f(y). There are 0 r(x) dist(x, G) and 0 r(y) dist(y, G) such that S(M G f)(x, y) = M Gf(x) M G f(y) x y n p +s = B(x,r(x)) f B(y,r(y)) f x y n p +s B(x,r(x)) f B(y,r f 2) x y n p +s for any given number 0 r 2 dist(y, G). 14 / 19

15 Case r(x) x y. Let us denote r 1 = r(x) and choose r 2 = 0. If r 1 = 0, then we get that Suppose then that r 1 > 0. Now 1 S(M G f)(x, y) x y n p +s 1 = x y n p +s We have shown that B(x,r 1) S(M G f)(x, y) S(f)(x, y). B(x,r 1) B(x,r 1) f(z) dz B(y,r 2) f(z) f(y) dz f(z) dz χ G (z)χ G (y) f(z) f(y) z y n p +s dz M 10 (Sf)(x, y). S(M G f)(x, y) S(f)(x, y) + M 10 (Sf)(x, y) 15 / 19

16 Case r(x) > x y. Let us denote r 1 = r(x) > 0 and choose r 2 = r(x) x y > 0. We then have f(z) dz f(z) dz = f(x + z) f(y + r 2 z) dz B(x,r 1) B(y,r 2) B(0,r 1) r 1 ( ) = f(x + z) f(a) da B(0,r 1) B(y+ r 2 r1 z,2 x y ) G ( + f(a) da f(y + r ) 2 z) dz B(y+ r 2 r1 z,2 x y ) G r 1 A 1 + A 2, where we have written ( A 1 = A 2 = B(0,r 1) B(0,r 1) ( B(y+ r 2 r1 z,2 x y ) G ) f(x + z) f(a) da dz, f(y + r 2 z) f(a) da B(y+ r 2 r1 z,2 x y ) G r 1 ) dz. 16 / 19

17 Recall that r 2 = r 1 x y and fix z B(0, r 1 ). It holds that This in turn implies y + r 2 r 1 z (x + z) = y x + (r 2 r 1 ) r 1 z y x + x y r 1 z 2 y x. B(y + r 2 r 1 z, 2 x y ) B(x + z, 4 x y ). (6) Moreover, since r 1 > x y and {y + r2 r 1 z, x + z} B(x, r 1 ) G, we obtain the norm equivalences B(y + r 2 r 1 z, 2 x y ) G x y n B(x + z, 4 x y ) G. (7) Here the implied constants depend only on n. 17 / 19

18 Hence A 1 = B(0,r 1) B(x,r 1) ( ( f(x + z) f(a) da B(x+z,4 x y ) G f(z) f(a) da B(z,4 x y ) G ) dz. ) dz By observing that both z and a in the last double integral belong to G and using (7) again, we can continue as follows: ( ) A 1 χ G (z)χ G (a) f(z) f(a) x y n p +s B(x,r 1) B(z,4 x y ) z a n p +s da dz ( ) = S(f)(z, a) da dz B(x,r 1) B(z,4 x y ) B(x,r 1) ( S(f)(z, a) da B(z+y x,5 x y ) ) dz. 18 / 19

19 Applying the lower dimensional maximal operators we find that A 1 M x y n p +s 01 (Sf)(z, z + y x) dz B(x,r 1) = M 01 (Sf)(x + z, y + z) dz M 11 (M 01 (Sf))(x, y). B(0,r 1) We have shown that x y n p s A 1 M 11 (M 01 (Sf))(x, y). The estimate for A 2 is very similar, resulting in A 2 M x y n p +s 01 (Sf)(z, z + x y) dz B(y,r 2) = M 01 (Sf)(y + z, x + z) dz M 11 (M 01 (Sf))(y, x). B(0,r 1) 19 / 19

THE HARDY LITTLEWOOD MAXIMAL FUNCTION OF A SOBOLEV FUNCTION. Juha Kinnunen. 1 f(y) dy, B(x, r) B(x,r)

THE HARDY LITTLEWOOD MAXIMAL FUNCTION OF A SOBOLEV FUNCTION. Juha Kinnunen. 1 f(y) dy, B(x, r) B(x,r) Appeared in Israel J. Math. 00 (997), 7 24 THE HARDY LITTLEWOOD MAXIMAL FUNCTION OF A SOBOLEV FUNCTION Juha Kinnunen Abstract. We prove that the Hardy Littlewood maximal operator is bounded in the Sobolev

More information

ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION

ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION PIOTR HAJ LASZ, JAN MALÝ Dedicated to Professor Bogdan Bojarski Abstract. We prove that if f L 1 R n ) is approximately differentiable a.e., then

More information

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES JUHA LEHRBÄCK Abstract. We establish necessary conditions for domains Ω R n which admit the pointwise (p, β)-hardy inequality u(x) Cd Ω(x)

More information

HARMONIC ANALYSIS. Date:

HARMONIC ANALYSIS. Date: HARMONIC ANALYSIS Contents. Introduction 2. Hardy-Littlewood maximal function 3. Approximation by convolution 4. Muckenhaupt weights 4.. Calderón-Zygmund decomposition 5. Fourier transform 6. BMO (bounded

More information

ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION. 1. Introduction Juha Kinnunen [10] proved that the Hardy-Littlewood maximal function.

ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION. 1. Introduction Juha Kinnunen [10] proved that the Hardy-Littlewood maximal function. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 1, January 2010, Pages 165 174 S 0002-993909)09971-7 Article electronically published on September 3, 2009 ON APPROXIMATE DIFFERENTIABILITY

More information

FRACTIONAL HARDY INEQUALITIES AND VISIBILITY OF THE BOUNDARY

FRACTIONAL HARDY INEQUALITIES AND VISIBILITY OF THE BOUNDARY FRACTIONAL HARDY INEQUALITIES AND VISIBILITY OF THE BOUNDARY LIZAVETA IHNATSYEVA, JUHA LEHRBÄCK, HELI TUOMINEN, AND ANTTI V. VÄHÄKANAS Abstract. We prove fractional order Hardy inequalities on open sets

More information

FRACTIONAL HARDY INEQUALITIES AND VISIBILITY OF THE BOUNDARY

FRACTIONAL HARDY INEQUALITIES AND VISIBILITY OF THE BOUNDARY FRACTIONAL HARDY INEQUALITIES AND VISIBILITY OF THE BOUNDARY LIZAVETA IHNATSYEVA, JUHA LEHRBÄCK, HELI TUOMINEN, AND ANTTI V. VÄHÄKANAS Abstract. We prove fractional order Hardy inequalities on open sets

More information

Lebesgue s Differentiation Theorem via Maximal Functions

Lebesgue s Differentiation Theorem via Maximal Functions Lebesgue s Differentiation Theorem via Maximal Functions Parth Soneji LMU München Hütteseminar, December 2013 Parth Soneji Lebesgue s Differentiation Theorem via Maximal Functions 1/12 Philosophy behind

More information

JUHA KINNUNEN. Harmonic Analysis

JUHA KINNUNEN. Harmonic Analysis JUHA KINNUNEN Harmonic Analysis Department of Mathematics and Systems Analysis, Aalto University 27 Contents Calderón-Zygmund decomposition. Dyadic subcubes of a cube.........................2 Dyadic cubes

More information

JUHA KINNUNEN. Real Analysis

JUHA KINNUNEN. Real Analysis JUH KINNUNEN Real nalysis Department of Mathematics and Systems nalysis, alto University Updated 3 pril 206 Contents L p spaces. L p functions..................................2 L p norm....................................

More information

Mathematical Research Letters 4, (1997) HARDY S INEQUALITIES FOR SOBOLEV FUNCTIONS. Juha Kinnunen and Olli Martio

Mathematical Research Letters 4, (1997) HARDY S INEQUALITIES FOR SOBOLEV FUNCTIONS. Juha Kinnunen and Olli Martio Mathematical Research Letters 4, 489 500 1997) HARDY S INEQUALITIES FOR SOBOLEV FUNCTIONS Juha Kinnunen and Olli Martio Abstract. The fractional maximal function of the gradient gives a pointwise interpretation

More information

Poincaré inequalities that fail

Poincaré inequalities that fail ي ۆ Poincaré inequalities that fail to constitute an open-ended condition Lukáš Malý Workshop on Geometric Measure Theory July 14, 2017 Poincaré inequalities Setting Let (X, d, µ) be a complete metric

More information

Boot camp - Problem set

Boot camp - Problem set Boot camp - Problem set Luis Silvestre September 29, 2017 In the summer of 2017, I led an intensive study group with four undergraduate students at the University of Chicago (Matthew Correia, David Lind,

More information

ON BOUNDEDNESS OF MAXIMAL FUNCTIONS IN SOBOLEV SPACES

ON BOUNDEDNESS OF MAXIMAL FUNCTIONS IN SOBOLEV SPACES Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 29, 2004, 167 176 ON BOUNDEDNESS OF MAXIMAL FUNCTIONS IN SOBOLEV SPACES Piotr Haj lasz and Jani Onninen Warsaw University, Institute of Mathematics

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces

A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces Petteri HARJULEHTO and Peter HÄSTÖ epartment of Mathematics P.O. Box 4 (Yliopistonkatu 5) FIN-00014

More information

Sobolev Spaces. Chapter 10

Sobolev Spaces. Chapter 10 Chapter 1 Sobolev Spaces We now define spaces H 1,p (R n ), known as Sobolev spaces. For u to belong to H 1,p (R n ), we require that u L p (R n ) and that u have weak derivatives of first order in L p

More information

Boundedness, Harnack inequality and Hölder continuity for weak solutions

Boundedness, Harnack inequality and Hölder continuity for weak solutions Boundedness, Harnack inequality and Hölder continuity for weak solutions Intoduction to PDE We describe results for weak solutions of elliptic equations with bounded coefficients in divergence-form. The

More information

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition Int. J. Nonlinear Anal. Appl. 7 26) No. 2, 29-38 ISSN: 28-6822 electronic) http://dx.doi.org/.2275/ijnaa.26.439 Some functional inequalities in variable exponent spaces with a more generalization of uniform

More information

2. Function spaces and approximation

2. Function spaces and approximation 2.1 2. Function spaces and approximation 2.1. The space of test functions. Notation and prerequisites are collected in Appendix A. Let Ω be an open subset of R n. The space C0 (Ω), consisting of the C

More information

ON A MAXIMAL OPERATOR IN REARRANGEMENT INVARIANT BANACH FUNCTION SPACES ON METRIC SPACES

ON A MAXIMAL OPERATOR IN REARRANGEMENT INVARIANT BANACH FUNCTION SPACES ON METRIC SPACES Vasile Alecsandri University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 27207), No., 49-60 ON A MAXIMAL OPRATOR IN RARRANGMNT INVARIANT BANACH

More information

On the Brezis and Mironescu conjecture concerning a Gagliardo-Nirenberg inequality for fractional Sobolev norms

On the Brezis and Mironescu conjecture concerning a Gagliardo-Nirenberg inequality for fractional Sobolev norms On the Brezis and Mironescu conjecture concerning a Gagliardo-Nirenberg inequality for fractional Sobolev norms Vladimir Maz ya Tatyana Shaposhnikova Abstract We prove the Gagliardo-Nirenberg type inequality

More information

J. Kinnunen and R. Korte, Characterizations of Sobolev inequalities on metric spaces, arxiv: v2 [math.ap] by authors

J. Kinnunen and R. Korte, Characterizations of Sobolev inequalities on metric spaces, arxiv: v2 [math.ap] by authors J. Kinnunen and R. Korte, Characterizations of Sobolev inequalities on metric spaces, arxiv:79.197v2 [math.ap]. 28 by authors CHARACTERIZATIONS OF SOBOLEV INEQUALITIES ON METRIC SPACES JUHA KINNUNEN AND

More information

Jordan Journal of Mathematics and Statistics (JJMS) 9(1), 2016, pp BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT

Jordan Journal of Mathematics and Statistics (JJMS) 9(1), 2016, pp BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT Jordan Journal of Mathematics and Statistics (JJMS 9(1, 2016, pp 17-30 BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT WANG HONGBIN Abstract. In this paper, we obtain the boundedness

More information

Function spaces with variable exponents

Function spaces with variable exponents Function spaces with variable exponents Henning Kempka September 22nd 2014 September 22nd 2014 Henning Kempka 1 / 50 http://www.tu-chemnitz.de/ Outline 1. Introduction & Motivation First motivation Second

More information

Remarks on the Gauss-Green Theorem. Michael Taylor

Remarks on the Gauss-Green Theorem. Michael Taylor Remarks on the Gauss-Green Theorem Michael Taylor Abstract. These notes cover material related to the Gauss-Green theorem that was developed for work with S. Hofmann and M. Mitrea, which appeared in [HMT].

More information

Tools from Lebesgue integration

Tools from Lebesgue integration Tools from Lebesgue integration E.P. van den Ban Fall 2005 Introduction In these notes we describe some of the basic tools from the theory of Lebesgue integration. Definitions and results will be given

More information

Geometric intuition: from Hölder spaces to the Calderón-Zygmund estimate

Geometric intuition: from Hölder spaces to the Calderón-Zygmund estimate Geometric intuition: from Hölder spaces to the Calderón-Zygmund estimate A survey of Lihe Wang s paper Michael Snarski December 5, 22 Contents Hölder spaces. Control on functions......................................2

More information

REGULARITY OF THE LOCAL FRACTIONAL MAXIMAL FUNCTION

REGULARITY OF THE LOCAL FRACTIONAL MAXIMAL FUNCTION REGULARITY OF THE LOCAL FRACTIONAL MAXIMAL FUNCTION TONI HEIKKINEN, JUHA KINNUNEN, JANNE KORVENPÄÄ AND HELI TUOMINEN Abstract. This paper studies smoothing properties of the local fractional maximal operator,

More information

Math The Laplacian. 1 Green s Identities, Fundamental Solution

Math The Laplacian. 1 Green s Identities, Fundamental Solution Math. 209 The Laplacian Green s Identities, Fundamental Solution Let be a bounded open set in R n, n 2, with smooth boundary. The fact that the boundary is smooth means that at each point x the external

More information

Measure density and extendability of Sobolev functions

Measure density and extendability of Sobolev functions Measure density and extendability of Sobolev functions Piotr Haj lasz, Pekka Koskela and Heli Tuominen Abstract We study necessary and sufficient conditions for a domain to be a Sobolev extension domain

More information

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm Chapter 13 Radon Measures Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm (13.1) f = sup x X f(x). We want to identify

More information

Hardy-Littlewood maximal operator in weighted Lorentz spaces

Hardy-Littlewood maximal operator in weighted Lorentz spaces Hardy-Littlewood maximal operator in weighted Lorentz spaces Elona Agora IAM-CONICET Based on joint works with: J. Antezana, M. J. Carro and J. Soria Function Spaces, Differential Operators and Nonlinear

More information

SELF-IMPROVEMENT OF UNIFORM FATNESS REVISITED

SELF-IMPROVEMENT OF UNIFORM FATNESS REVISITED SELF-IMPROVEMENT OF UNIFORM FATNESS REVISITED JUHA LEHRBÄCK, HELI TUOMINEN, AND ANTTI V. VÄHÄKANGAS Abstract. We give a new proof for the self-improvement of uniform p-fatness in the setting of general

More information

SOLUTION OF THE DIRICHLET PROBLEM WITH L p BOUNDARY CONDITION. Dagmar Medková

SOLUTION OF THE DIRICHLET PROBLEM WITH L p BOUNDARY CONDITION. Dagmar Medková 29 Kragujevac J. Math. 31 (2008) 29 42. SOLUTION OF THE DIRICHLET PROBLEM WITH L p BOUNDARY CONDITION Dagmar Medková Czech Technical University, Faculty of Mechanical Engineering, Department of Technical

More information

Hardy inequalities and thickness conditions

Hardy inequalities and thickness conditions Hardy inequalities and thickness conditions Juha Lehrbäck University of Jyväskylä November 23th 2010 Symposium on function theory Nagoya, Japan Juha Lehrbäck (University of Jyväskylä) Hardy inequalities

More information

LUSIN PROPERTIES AND INTERPOLATION OF SOBOLEV SPACES. Fon-Che Liu Wei-Shyan Tai. 1. Introduction and preliminaries

LUSIN PROPERTIES AND INTERPOLATION OF SOBOLEV SPACES. Fon-Che Liu Wei-Shyan Tai. 1. Introduction and preliminaries Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 9, 997, 63 77 LUSIN PROPERTIES AND INTERPOLATION OF SOBOLEV SPACES Fon-Che Liu Wei-Shyan Tai. Introduction and preliminaries

More information

CHAPTER 6. Differentiation

CHAPTER 6. Differentiation CHPTER 6 Differentiation The generalization from elementary calculus of differentiation in measure theory is less obvious than that of integration, and the methods of treating it are somewhat involved.

More information

Real Analysis II, Winter 2018

Real Analysis II, Winter 2018 Real Analysis II, Winter 2018 From the Finnish original Moderni reaalianalyysi 1 by Ilkka Holopainen adapted by Tuomas Hytönen January 18, 2018 1 Version dated September 14, 2011 Contents 1 General theory

More information

ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS

ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS LOUKAS GRAFAKOS Abstract. It is shown that maximal truncations of nonconvolution L -bounded singular integral operators with kernels satisfying Hörmander s condition

More information

Continuity of convex functions in normed spaces

Continuity of convex functions in normed spaces Continuity of convex functions in normed spaces In this chapter, we consider continuity properties of real-valued convex functions defined on open convex sets in normed spaces. Recall that every infinitedimensional

More information

POINTWISE CHARACTERIZATIONS OF HARDY-SOBOLEV FUNCTIONS

POINTWISE CHARACTERIZATIONS OF HARDY-SOBOLEV FUNCTIONS POINTWISE CHARACTERIZATIONS OF HARDY-SOBOLEV FUNCTIONS PEKKA KOSKELA AND EERO SAKSMAN Abstract. We establish pointwise characterizations of functions in the Hardy- Sobolev spaces H 1,p within the range

More information

VISCOSITY SOLUTIONS. We follow Han and Lin, Elliptic Partial Differential Equations, 5.

VISCOSITY SOLUTIONS. We follow Han and Lin, Elliptic Partial Differential Equations, 5. VISCOSITY SOLUTIONS PETER HINTZ We follow Han and Lin, Elliptic Partial Differential Equations, 5. 1. Motivation Throughout, we will assume that Ω R n is a bounded and connected domain and that a ij C(Ω)

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

is a weak solution with the a ij,b i,c2 C 1 ( )

is a weak solution with the a ij,b i,c2 C 1 ( ) Thus @u @x i PDE 69 is a weak solution with the RHS @f @x i L. Thus u W 3, loc (). Iterating further, and using a generalized Sobolev imbedding gives that u is smooth. Theorem 3.33 (Local smoothness).

More information

Differentiation of Measures and Functions

Differentiation of Measures and Functions Chapter 6 Differentiation of Measures and Functions This chapter is concerned with the differentiation theory of Radon measures. In the first two sections we introduce the Radon measures and discuss two

More information

Nonlinear aspects of Calderón-Zygmund theory

Nonlinear aspects of Calderón-Zygmund theory Ancona, June 7 2011 Overture: The standard CZ theory Consider the model case u = f in R n Overture: The standard CZ theory Consider the model case u = f in R n Then f L q implies D 2 u L q 1 < q < with

More information

Quantitative Homogenization of Elliptic Operators with Periodic Coefficients

Quantitative Homogenization of Elliptic Operators with Periodic Coefficients Quantitative Homogenization of Elliptic Operators with Periodic Coefficients Zhongwei Shen Abstract. These lecture notes introduce the quantitative homogenization theory for elliptic partial differential

More information

TD M1 EDP 2018 no 2 Elliptic equations: regularity, maximum principle

TD M1 EDP 2018 no 2 Elliptic equations: regularity, maximum principle TD M EDP 08 no Elliptic equations: regularity, maximum principle Estimates in the sup-norm I Let be an open bounded subset of R d of class C. Let A = (a ij ) be a symmetric matrix of functions of class

More information

POTENTIAL THEORY OF QUASIMINIMIZERS

POTENTIAL THEORY OF QUASIMINIMIZERS Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 28, 2003, 459 490 POTENTIAL THEORY OF QUASIMINIMIZERS Juha Kinnunen and Olli Martio Institute of Mathematics, P.O. Box 1100 FI-02015 Helsinki University

More information

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University February 7, 2007 2 Contents 1 Metric Spaces 1 1.1 Basic definitions...........................

More information

Jordan Journal of Mathematics and Statistics (JJMS) 5(4), 2012, pp

Jordan Journal of Mathematics and Statistics (JJMS) 5(4), 2012, pp Jordan Journal of Mathematics and Statistics (JJMS) 5(4), 2012, pp223-239 BOUNDEDNESS OF MARCINKIEWICZ INTEGRALS ON HERZ SPACES WITH VARIABLE EXPONENT ZONGGUANG LIU (1) AND HONGBIN WANG (2) Abstract In

More information

ORLICZ-SOBOLEV SPACES WITH ZERO BOUNDARY VALUES ON METRIC SPACES

ORLICZ-SOBOLEV SPACES WITH ZERO BOUNDARY VALUES ON METRIC SPACES Electronic Journal: Southwest Journal of Pure and Applied Mathematics Internet: http://rattler.cameron.edu/swjpam.html ISBN 1083-0464 Issue 1 July 2004, pp. 10 32 Submitted: September 10, 2003. Published:

More information

ANALYSIS IN METRIC SPACES

ANALYSIS IN METRIC SPACES ANALYSIS IN METRIC SPACES HELI TUOMINEN Contents 1. About these notes 2 2. Classical extension results 3 2.1. Tietze(-Urysohn) extension theorem 3 2.2. Extension of Lipschitz functions 5 2.3. Whitney covering,

More information

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1 Problem set 5, Real Analysis I, Spring, 25. (5) Consider the function on R defined by f(x) { x (log / x ) 2 if x /2, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, R f /2

More information

g(x) = P (y) Proof. This is true for n = 0. Assume by the inductive hypothesis that g (n) (0) = 0 for some n. Compute g (n) (h) g (n) (0)

g(x) = P (y) Proof. This is true for n = 0. Assume by the inductive hypothesis that g (n) (0) = 0 for some n. Compute g (n) (h) g (n) (0) Mollifiers and Smooth Functions We say a function f from C is C (or simply smooth) if all its derivatives to every order exist at every point of. For f : C, we say f is C if all partial derivatives to

More information

THE DIRICHLET PROBLEM WITH BM O BOUNDARY DATA AND ALMOST-REAL COEFFICIENTS

THE DIRICHLET PROBLEM WITH BM O BOUNDARY DATA AND ALMOST-REAL COEFFICIENTS THE DIRICHLET PROBLEM WITH BM O BOUNDARY DATA AND ALMOST-REAL COEFFICIENTS ARIEL BARTON Abstract. It is known that a function, harmonic in a Lipschitz domain, is the Poisson extension of a BMO function

More information

THE VARIABLE EXPONENT SOBOLEV CAPACITY AND QUASI-FINE PROPERTIES OF SOBOLEV FUNCTIONS IN THE CASE p = 1

THE VARIABLE EXPONENT SOBOLEV CAPACITY AND QUASI-FINE PROPERTIES OF SOBOLEV FUNCTIONS IN THE CASE p = 1 THE VARIABLE EXPONENT SOBOLEV CAPACITY AND QUASI-FINE PROPERTIES OF SOBOLEV FUNCTIONS IN THE CASE p = 1 HEIKKI HAKKARAINEN AND MATTI NUORTIO Abstract. In this article we extend the known results concerning

More information

PROPERTIES OF CAPACITIES IN VARIABLE EXPONENT SOBOLEV SPACES

PROPERTIES OF CAPACITIES IN VARIABLE EXPONENT SOBOLEV SPACES PROPERTIES OF CAPACITIES IN VARIABLE EXPONENT SOBOLEV SPACES PETTERI HARJULEHTO, PETER HÄSTÖ, AND MIKA KOSKENOJA Abstract. In this paper we introduce two new capacities in the variable exponent setting:

More information

Math 127C, Spring 2006 Final Exam Solutions. x 2 ), g(y 1, y 2 ) = ( y 1 y 2, y1 2 + y2) 2. (g f) (0) = g (f(0))f (0).

Math 127C, Spring 2006 Final Exam Solutions. x 2 ), g(y 1, y 2 ) = ( y 1 y 2, y1 2 + y2) 2. (g f) (0) = g (f(0))f (0). Math 27C, Spring 26 Final Exam Solutions. Define f : R 2 R 2 and g : R 2 R 2 by f(x, x 2 (sin x 2 x, e x x 2, g(y, y 2 ( y y 2, y 2 + y2 2. Use the chain rule to compute the matrix of (g f (,. By the chain

More information

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n Solve the following 6 problems. 1. Prove that if series n=1 a nx n converges for all x such that x < 1, then the series n=1 a n xn 1 x converges as well if x < 1. n For x < 1, x n 0 as n, so there exists

More information

arxiv: v1 [math.ca] 9 Jul 2018

arxiv: v1 [math.ca] 9 Jul 2018 On the Sobolev space of functions with derivative of logarithmic order Elia Brué Quoc-Hung Nguyen Scuola Normale Superiore, Piazza dei Cavalieri 7, I-5600 Pisa, Italy. arxiv:807.03262v [math.ca] 9 Jul

More information

Both these computations follow immediately (and trivially) from the definitions. Finally, observe that if f L (R n ) then we have that.

Both these computations follow immediately (and trivially) from the definitions. Finally, observe that if f L (R n ) then we have that. Lecture : One Parameter Maximal Functions and Covering Lemmas In this first lecture we start studying one of the basic and fundamental operators in harmonic analysis, the Hardy-Littlewood maximal function.

More information

Geometric implications of the Poincaré inequality

Geometric implications of the Poincaré inequality Geometric implications of the Poincaré inequality Riikka Korte Abstract. The purpose of this work is to prove the following result: If a doubling metric measure space supports a weak (1, p) Poincaré inequality

More information

Sobolev spaces. May 18

Sobolev spaces. May 18 Sobolev spaces May 18 2015 1 Weak derivatives The purpose of these notes is to give a very basic introduction to Sobolev spaces. More extensive treatments can e.g. be found in the classical references

More information

Sobolev Spaces. Chapter Hölder spaces

Sobolev Spaces. Chapter Hölder spaces Chapter 2 Sobolev Spaces Sobolev spaces turn out often to be the proper setting in which to apply ideas of functional analysis to get information concerning partial differential equations. Here, we collect

More information

APPROXIMATE IDENTITIES AND YOUNG TYPE INEQUALITIES IN VARIABLE LEBESGUE ORLICZ SPACES L p( ) (log L) q( )

APPROXIMATE IDENTITIES AND YOUNG TYPE INEQUALITIES IN VARIABLE LEBESGUE ORLICZ SPACES L p( ) (log L) q( ) Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 35, 200, 405 420 APPROXIMATE IDENTITIES AND YOUNG TYPE INEQUALITIES IN VARIABLE LEBESGUE ORLICZ SPACES L p( ) (log L) q( ) Fumi-Yuki Maeda, Yoshihiro

More information

A comparison theorem for nonsmooth nonlinear operators

A comparison theorem for nonsmooth nonlinear operators A comparison theorem for nonsmooth nonlinear operators Vladimir Kozlov and Alexander Nazarov arxiv:1901.08631v1 [math.ap] 24 Jan 2019 Abstract We prove a comparison theorem for super- and sub-solutions

More information

Maths 212: Homework Solutions

Maths 212: Homework Solutions Maths 212: Homework Solutions 1. The definition of A ensures that x π for all x A, so π is an upper bound of A. To show it is the least upper bound, suppose x < π and consider two cases. If x < 1, then

More information

The infinity-laplacian and its properties

The infinity-laplacian and its properties U.U.D.M. Project Report 2017:40 Julia Landström Examensarbete i matematik, 15 hp Handledare: Kaj Nyström Examinator: Martin Herschend December 2017 Department of Mathematics Uppsala University Department

More information

Weighted a priori estimates for elliptic equations

Weighted a priori estimates for elliptic equations arxiv:7.00879v [math.ap] Nov 07 Weighted a priori estimates for elliptic equations María E. Cejas Departamento de Matemática Facultad de Ciencias Exactas Universidad Nacional de La Plata CONICET Calle

More information

Walker Ray Econ 204 Problem Set 2 Suggested Solutions July 22, 2017

Walker Ray Econ 204 Problem Set 2 Suggested Solutions July 22, 2017 Walker Ray Econ 204 Problem Set 2 Suggested s July 22, 2017 Problem 1. Show that any set in a metric space (X, d) can be written as the intersection of open sets. Take any subset A X and define C = x A

More information

The oblique derivative problem for general elliptic systems in Lipschitz domains

The oblique derivative problem for general elliptic systems in Lipschitz domains M. MITREA The oblique derivative problem for general elliptic systems in Lipschitz domains Let M be a smooth, oriented, connected, compact, boundaryless manifold of real dimension m, and let T M and T

More information

arxiv: v1 [math.ca] 15 Dec 2016

arxiv: v1 [math.ca] 15 Dec 2016 L p MAPPING PROPERTIES FOR NONLOCAL SCHRÖDINGER OPERATORS WITH CERTAIN POTENTIAL arxiv:62.0744v [math.ca] 5 Dec 206 WOOCHEOL CHOI AND YONG-CHEOL KIM Abstract. In this paper, we consider nonlocal Schrödinger

More information

Wavelets and modular inequalities in variable L p spaces

Wavelets and modular inequalities in variable L p spaces Wavelets and modular inequalities in variable L p spaces Mitsuo Izuki July 14, 2007 Abstract The aim of this paper is to characterize variable L p spaces L p( ) (R n ) using wavelets with proper smoothness

More information

NOTES ON SCHAUDER ESTIMATES. r 2 x y 2

NOTES ON SCHAUDER ESTIMATES. r 2 x y 2 NOTES ON SCHAUDER ESTIMATES CRISTIAN E GUTIÉRREZ JULY 26, 2005 Lemma 1 If u f in B r y), then ux) u + r2 x y 2 B r y) B r y) f, x B r y) Proof Let gx) = ux) Br y) u r2 x y 2 Br y) f We have g = u + Br

More information

Continuous Functions on Metric Spaces

Continuous Functions on Metric Spaces Continuous Functions on Metric Spaces Math 201A, Fall 2016 1 Continuous functions Definition 1. Let (X, d X ) and (Y, d Y ) be metric spaces. A function f : X Y is continuous at a X if for every ɛ > 0

More information

1. Introduction. The non-centered fractionalhardy-littlewoodmaximal operatorm β is defined by setting for f L 1 loc (Rn ) and 0 β < n that r β

1. Introduction. The non-centered fractionalhardy-littlewoodmaximal operatorm β is defined by setting for f L 1 loc (Rn ) and 0 β < n that r β THE VARIATION OF THE FRACTIONAL MAXIMAL FUNCTION OF A RADIAL FUNCTION arxiv:70.07233v [math.ca] 9 Oct 207 HANNES LUIRO AND JOSÉ MADRID Abstract. In this paper we study the regularity of the noncentered

More information

ANALYSIS QUALIFYING EXAM FALL 2016: SOLUTIONS. = lim. F n

ANALYSIS QUALIFYING EXAM FALL 2016: SOLUTIONS. = lim. F n ANALYSIS QUALIFYING EXAM FALL 206: SOLUTIONS Problem. Let m be Lebesgue measure on R. For a subset E R and r (0, ), define E r = { x R: dist(x, E) < r}. Let E R be compact. Prove that m(e) = lim m(e /n).

More information

EXTENDED HARNACK INEQUALITIES WITH EXCEPTIONAL SETS AND A BOUNDARY HARNACK PRINCIPLE

EXTENDED HARNACK INEQUALITIES WITH EXCEPTIONAL SETS AND A BOUNDARY HARNACK PRINCIPLE to appear in J. d Anal. Math. [Author s final version with cross reference for bibliography, equations, theorems etc] EXTENDED HARNACK INEQUALITIES WITH EXCEPTIONAL SETS AND A BOUNDARY HARNACK PRINCIPLE

More information

Perron method for the Dirichlet problem.

Perron method for the Dirichlet problem. Introduzione alle equazioni alle derivate parziali, Laurea Magistrale in Matematica Perron method for the Dirichlet problem. We approach the question of existence of solution u C (Ω) C(Ω) of the Dirichlet

More information

MODULUS AND CONTINUOUS CAPACITY

MODULUS AND CONTINUOUS CAPACITY Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 26, 2001, 455 464 MODULUS AND CONTINUOUS CAPACITY Sari Kallunki and Nageswari Shanmugalingam University of Jyväskylä, Department of Mathematics

More information

Remarks on localized sharp functions on certain sets in R n

Remarks on localized sharp functions on certain sets in R n Monatsh Math (28) 85:397 43 https://doi.org/.7/s65-7-9-5 Remarks on localized sharp functions on certain sets in R n Jacek Dziubański Agnieszka Hejna Received: 7 October 26 / Accepted: August 27 / Published

More information

CHARACTERIZATION OF ORLICZ-SOBOLEV SPACE

CHARACTERIZATION OF ORLICZ-SOBOLEV SPACE CHRCTERIZTION OF ORLICZ-SOBOLEV SPCE HELI TUOMINEN bstract. We give a new characterization of the Orlicz-Sobolev space W 1,Ψ (R n ) in terms of a pointwise inequality connected to the Young function Ψ.

More information

HIGHER INTEGRABILITY WITH WEIGHTS

HIGHER INTEGRABILITY WITH WEIGHTS Annales Academiæ Scientiarum Fennicæ Series A. I. Mathematica Volumen 19, 1994, 355 366 HIGHER INTEGRABILITY WITH WEIGHTS Juha Kinnunen University of Jyväskylä, Department of Mathematics P.O. Box 35, SF-4351

More information

Fractional superharmonic functions and the Perron method for nonlinear integro-differential equations

Fractional superharmonic functions and the Perron method for nonlinear integro-differential equations Fractional superharmonic functions and the Perron method for nonlinear integro-differential equations Janne Korvenpää Tuomo Kuusi Giampiero Palatucci Abstract We deal with a class of equations driven by

More information

1 Riesz Potential and Enbeddings Theorems

1 Riesz Potential and Enbeddings Theorems Riesz Potential and Enbeddings Theorems Given 0 < < and a function u L loc R, the Riesz otential of u is defined by u y I u x := R x y dy, x R We begin by finding an exonent such that I u L R c u L R for

More information

M ath. Res. Lett. 16 (2009), no. 1, c International Press 2009

M ath. Res. Lett. 16 (2009), no. 1, c International Press 2009 M ath. Res. Lett. 16 (2009), no. 1, 149 156 c International Press 2009 A 1 BOUNDS FOR CALDERÓN-ZYGMUND OPERATORS RELATED TO A PROBLEM OF MUCKENHOUPT AND WHEEDEN Andrei K. Lerner, Sheldy Ombrosi, and Carlos

More information

ON THE ENDPOINT REGULARITY OF DISCRETE MAXIMAL OPERATORS

ON THE ENDPOINT REGULARITY OF DISCRETE MAXIMAL OPERATORS ON THE ENDPOINT REGULARITY OF DISCRETE MAXIMAL OPERATORS EMANUEL CARNEIRO AND KEVIN HUGHES Abstract. Given a discrete function f : Z d R we consider the maximal operator X Mf n = sup f n m, r 0 Nr m Ω

More information

Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains

Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains Sergey E. Mikhailov Brunel University West London, Department of Mathematics, Uxbridge, UB8 3PH, UK J. Math. Analysis

More information

Continuity. Matt Rosenzweig

Continuity. Matt Rosenzweig Continuity Matt Rosenzweig Contents 1 Continuity 1 1.1 Rudin Chapter 4 Exercises........................................ 1 1.1.1 Exercise 1............................................. 1 1.1.2 Exercise

More information

V. CHOUSIONIS AND X. TOLSA

V. CHOUSIONIS AND X. TOLSA THE T THEOEM V. CHOUSIONIS AND X. TOLSA Introduction These are the notes of a short course given by X. Tolsa at the Universitat Autònoma de Barcelona between November and December of 202. The notes have

More information

SHARP L p WEIGHTED SOBOLEV INEQUALITIES

SHARP L p WEIGHTED SOBOLEV INEQUALITIES Annales de l Institut de Fourier (3) 45 (995), 6. SHARP L p WEIGHTED SOBOLEV INEUALITIES Carlos Pérez Departmento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid, Spain e mail: cperezmo@ccuam3.sdi.uam.es

More information

Borderline variants of the Muckenhoupt-Wheeden inequality

Borderline variants of the Muckenhoupt-Wheeden inequality Borderline variants of the Muckenhoupt-Wheeden inequality Carlos Domingo-Salazar Universitat de Barcelona joint work with M Lacey and G Rey 3CJI Murcia, Spain September 10, 2015 The Hardy-Littlewood maximal

More information

Essential norms and localization moduli of Sobolev embeddings for general domains

Essential norms and localization moduli of Sobolev embeddings for general domains Essential norms and localization moduli of Sobolev embeddings for general domains J. Lang V. Maz ya 1 Introduction Starting with the classical Rellich and Sobolev-Kondrashov theorems see [18], [9]), it

More information

GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS

GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS LE MATEMATICHE Vol. LI (1996) Fasc. II, pp. 335347 GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS CARLO SBORDONE Dedicated to Professor Francesco Guglielmino on his 7th birthday W

More information

CHARACTERIZATIONS FOR HARDY S INEQUALITY. 1. Introduction

CHARACTERIZATIONS FOR HARDY S INEQUALITY. 1. Introduction CHARACTERIZATIONS FOR HARDY S INEQUALITY JUHA KINNUNEN AND RIIKKA KORTE 1. Introduction We discuss necessary and sufficient conditions for validity of the following multidimensional version of Hardy s

More information

CHAPTER 2. Laplace s equation

CHAPTER 2. Laplace s equation 18 CHAPTER 2 Laplace s equation There can be but one option as to the beauty and utility of this analysis by Laplace; but the manner in which it has hitherto been presented has seemed repulsive to the

More information

Sobolev embeddings and interpolations

Sobolev embeddings and interpolations embed2.tex, January, 2007 Sobolev embeddings and interpolations Pavel Krejčí This is a second iteration of a text, which is intended to be an introduction into Sobolev embeddings and interpolations. The

More information

EXISTENCE AND UNIQUENESS OF p(x)-harmonic FUNCTIONS FOR BOUNDED AND UNBOUNDED p(x)

EXISTENCE AND UNIQUENESS OF p(x)-harmonic FUNCTIONS FOR BOUNDED AND UNBOUNDED p(x) UNIVERSITY OF JYVÄSKYLÄ DEPARTMENT OF MATHEMATICS AND STATISTICS REPORT 30 UNIVERSITÄT JYVÄSKYLÄ INSTITUT FÜR MATHEMATIK UND STATISTIK BERICHT 30 EXISTENCE AND UNIQUENESS OF p(x)-harmonic FUNCTIONS FOR

More information