v t 2 2t 8. Fig. 7 (i) Write down the velocity of the insect when t 0. (ii) Show that the insect is instantaneously at rest when t 2and when t 4.

Size: px
Start display at page:

Download "v t 2 2t 8. Fig. 7 (i) Write down the velocity of the insect when t 0. (ii) Show that the insect is instantaneously at rest when t 2and when t 4."

Transcription

1 1 Fig. 7 is a sketch of part of the velocity-time graph for the motion of an insect walking in a straight line. Its velocity, v ms 1, at time t seconds for the time interval 3 t 5 is given by v ms -1 v t 2 2t. O t seconds A not to scale Fig. 7 (i) Write down the velocity of the insect when t. (ii) Show that the insect is instantaneously at rest when t 2and when t 4. (iii) Determine the velocity of the insect when its acceleration is zero. Write down the coordinates of the point A shown in Fig. 7. [5] (iv) Calculate the distance travelled by the insect from t 1 to t 4. [5] (v) Write down the distance travelled by the insect in the time interval 2 t 4. (vi) How far does the insect walk in the time interval 1 t 5?

2 2 A toy car is travelling in a straight horizontal line. One model of the motion for velocity time graph Fig. 6. velocity in ms 1 v 12 t, where t is the time in seconds, is shown in the 2 4 t time in seconds Fig. 6 (i) Calculate the distance travelled by the car from t to t. (ii) How much less time would the car have taken to travel this distance if it had maintained its initial speed throughout? (iii) What is the acceleration of the car when t 1? From t to t 14, the car travels 5.5 m with a new constant acceleration, a m s 2. (iv) Find a. A second model for the velocity, v m s 1, of the toy car is v 12 t 9 4 t 2 1 t 3, for t. This model agrees with the values for v given in Fig. 6 for t, 2, 4 and 6. [Note that you are not required to verify this.] Use this second model to answer the following questions. (v) Calculate the acceleration of the car when t 1. (vi) Initially the car is at A. Find an expression in terms of t for the displacement of the car from A after the first t seconds of its motion. Hence find the displacement of the car from A when t. [5] (vii) Explain with a reason what this model predicts for the motion of the car between t 2 t 4. and

3 3 A particle travels along a straight line. lls acceleration during the time interval O..; t..; is given by the acceleration-time graph in Fig. l. acceleration a in ms t time in seconds Fig. I (i) Write down the acceleration of the particle when t = 4. Given that the particle starts from rest, find its speed when t = 4. [2) (ii) Write down an expression in terms oft for the acceleration, ams- 2, of the particle in the time interval O o;;; to;;; 4. [l) (iii) Without calculation, state the time at which the speed of the particle is greatest. Give a reason b (iv) Calculate the change in speed of the particle from t = 5 to t =, indicating whether this is an increase or a decrease. [3)

4 4 The speed of a metre runner in m s 1 is measured electronically every 4 seconds. The measurements are plotted as points on the speed-time graph in Fig. 6. The vertical dotted line is drawn through the runner s finishing time. Fig. 6 also illustrates Model P in which the points are joined by straight lines. speed in m s time in s Fig. 6 (i) Use Model P to estimate (A) the distance the runner has gone at the end of 12 seconds, (B) how long the runner took to complete m. [6] A mathematician proposes Model Q in which the runner s speed, v m s 1 at time t s, is given by v = 2 5 t - 1 t 2. (ii) Verify that Model Q gives the correct speed for t =. (iii) Use Model Q to estimate the distance the runner has gone at the end of 12 seconds. [4] (iv) The runner was timed at seconds for the m. Which model places the runner closer to the finishing line at this time? (v) Find the greatest acceleration of the runner according to each model. [4]

5 5 An object C is moving along a vertical straight line. Fig. 1 shows the velocity-time graph for part of 1 its motion. Initially C is moving upwards at 14 m s and after s it is moving downwards at 6 m s 1. v m s t s 5 Fig. 1 C then moves as follows. In the interval t 15, the velocity of C is constant at 6 m s 1 downwards. In the interval 15 t 2, the velocity of C increases uniformly so that C has zero velocity at t = 2. (i) Complete the velocity-time graph for the motion of C in the time interval t 2. (ii) Calculate the acceleration of C in the time interval < t <. (iii) Calculate the displacement of C from t = to t = 2. [4]

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas

Created by T. Madas CALCULUS KINEMATICS. Created by T. Madas CALCULUS KINEMATICS CALCULUS KINEMATICS IN SCALAR FORM Question (**) A particle P is moving on the x axis and its acceleration a ms, t seconds after a given instant, is given by a = 6t 8, t 0. The particle

More information

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment Unit 6 (1-Dimensional Motion) Practice Assessment Choose the best answer to the following questions. Indicate the confidence in your answer by writing C (Confident), S (So-so), or G (Guessed) next to the

More information

Motion Graphs Refer to the following information for the next four questions.

Motion Graphs Refer to the following information for the next four questions. Motion Graphs Refer to the following information for the next four questions. 1. Match the description provided about the behavior of a cart along a linear track to its best graphical representation. Remember

More information

CHAPTER 9 MOTION ALONG A STRAIGHT LINE FORM 5 PAPER 2

CHAPTER 9 MOTION ALONG A STRAIGHT LINE FORM 5 PAPER 2 PPER. particle moves in a straight line and passes through a fixed point O, with a velocity of m s. Its acceleration, a m s, t seconds after passing through O is given by a 8 4t. The particle stops after

More information

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel Acceleration When the velocity of an object changes, we say that the object is accelerating. This acceleration can take one of three forms: 1. Speeding Up occurs when the object s velocity and acceleration

More information

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter 2 One-Dimensional Kinematics Units of Chapter 2 Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications

More information

Two boats, the Rosemary and the Sage, are having a race between two points A and B. t, where 0 t (i) Find the distance AB.

Two boats, the Rosemary and the Sage, are having a race between two points A and B. t, where 0 t (i) Find the distance AB. 5 8 In this question, positions are given relative to a fixed origin, O. The x-direction is east and the y-direction north; distances are measured in kilometres. Two boats, the Rosemary and the Sage, are

More information

Physics 30S Unit 2 Motion Graphs. Mrs. Kornelsen Teulon Collegiate Institute

Physics 30S Unit 2 Motion Graphs. Mrs. Kornelsen Teulon Collegiate Institute Physics 30S Unit 2 Motion Graphs Mrs. Kornelsen Teulon Collegiate Institute 1 Grade 11 Physics Graphing Properties Property d-t Graph v-t Graph a-t Graph Not Moving Does Not Apply Constant Velocity Change

More information

MOTION ALONG A STRAIGHT LINE

MOTION ALONG A STRAIGHT LINE MOTION ALONG A STRAIGHT LINE 2 21 IDENTIFY: The average velocity is Let be upward EXECUTE: (a) EVALUATE: For the first 115 s of the flight, When the velocity isn t constant the average velocity depends

More information

Mechanics 1. Motion MEI, 20/10/08 1/5. Chapter Assessment

Mechanics 1. Motion MEI, 20/10/08 1/5. Chapter Assessment Chapter Assessment Motion. A snail moving across the lawn for her evening constitutional crawl is attracted to a live wire. On reaching the wire her speed increases at a constant rate and it doubles from.

More information

If we plot the position of a moving object at increasing time intervals, we get a position time graph. This is sometimes called a distance time graph.

If we plot the position of a moving object at increasing time intervals, we get a position time graph. This is sometimes called a distance time graph. Physics Lecture #2: Position Time Graphs If we plot the position of a moving object at increasing time intervals, we get a position time graph. This is sometimes called a distance time graph. Suppose a

More information

an expression, in terms of t, for the distance of the particle from O at time [3]

an expression, in terms of t, for the distance of the particle from O at time [3] HORIZON EDUCATION SINGAPORE Additional Mathematics Practice Questions: Kinematics Set 1 1 A particle moves in a straight line so that t seconds after passing through O, its velocity v cm s -1, is given

More information

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below.

1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. Kinematics 1. Joseph runs along a long straight track. The variation of his speed v with time t is shown below. After 25 seconds Joseph has run 200 m. Which of the following is correct at 25 seconds? Instantaneous

More information

Created by T. Madas KINEMATIC GRAPHS. Created by T. Madas

Created by T. Madas KINEMATIC GRAPHS. Created by T. Madas KINEMATIC GRAPHS SPEED TIME GRAPHS Question (**) A runner is running along a straight horizontal road. He starts from rest at point A, accelerating uniformly for 6 s, reaching a top speed of 7 ms. This

More information

Chapter 3: Introduction to Kinematics

Chapter 3: Introduction to Kinematics Chapter 3: Introduction to Kinematics Kari Eloranta 2018 Jyväskylän Lyseon lukio Pre Diploma Program Year October 11, 2017 1 / 17 3.1 Displacement Definition of Displacement Displacement is the change

More information

Motion Graphs Practice

Motion Graphs Practice Name Motion Graphs Practice d vs. t Graphs d vs. t Graphs d vs. t Graphs 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. 3. The

More information

The graph shows how the resultant force on the car varies with displacement.

The graph shows how the resultant force on the car varies with displacement. 1 (a) A car is moving at constant velocity when the driver applies the brakes. The graph shows how the resultant force on the car varies with displacement. Resultant force 0 A B Displacement (i) State

More information

STAAR Science Tutorial 21 TEK 6.8D: Graphing Motion

STAAR Science Tutorial 21 TEK 6.8D: Graphing Motion Distance (meters) Name: _ Teacher: Pd. Date: STAAR Science Tutorial 21 TEK 6.8D: Graphing Motion TEK 6.8D: Measure and graph changes in motion. Graphing Speed on a Distance Graph Speed is defined as the

More information

AP Physics C: One Dimensional Kinematics

AP Physics C: One Dimensional Kinematics Slide 1 / 33 P Physics : One imensional Kinematics Multiple hoice Questions Slide 2 / 33 1 In the absence of air resistance, a ball dropped near the surface of the arth experiences a constant acceleration

More information

Speed how fast an object is moving (also, the magnitude of the velocity) scalar

Speed how fast an object is moving (also, the magnitude of the velocity) scalar Mechanics Recall Mechanics Kinematics Dynamics Kinematics The description of motion without reference to forces. Terminology Distance total length of a journey scalar Time instant when an event occurs

More information

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0 Summary of motion graphs Object is moving to the right (in positive direction) Object at rest (not moving) Position is constant v (m/s) a (m/s 2 ) v = 0 a = 0 Constant velocity Position increases at constant

More information

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move).

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move). Chapter 3 Kinematics (A) Distance Vs Displacement 1. Compare distance and displacement in terms of: (a) definition Distance is the total length of travel, irrespective of direction. Displacement is the

More information

MAINIDEA Write the Main Idea for this section. Explain why the slope of a velocity-time graph is the average acceleration of the object.

MAINIDEA Write the Main Idea for this section. Explain why the slope of a velocity-time graph is the average acceleration of the object. Accelerated Motion 2 Motion with Constant Acceleration 4(A), 4(B) MAINIDEA Write the Main Idea for this section. REVIEW VOCABULARY displacement Recall and write the definition of the Review Vocabulary

More information

1.2 UNIFORM MOTION PRACTICE

1.2 UNIFORM MOTION PRACTICE Making Connections 6. car s odometer measures the distance travelled. Its speedometer measures the instantaneous velocity. 7. Sign (d) is the best because it indicates the maximum allowed velocity (as

More information

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x()

Particle Motion. Typically, if a particle is moving along the x-axis at any time, t, x() Typically, if a particle is moving along the x-axis at any time, t, x() t represents the position of the particle; along the y-axis, yt () is often used; along another straight line, st () is often used.

More information

Position, Velocity, Acceleration

Position, Velocity, Acceleration 191 CHAPTER 7 Position, Velocity, Acceleration When we talk of acceleration we think of how quickly the velocity is changing. For example, when a stone is dropped its acceleration (due to gravity) is approximately

More information

2 Representing Motion 4 How Fast? MAINIDEA Write the Main Idea for this section.

2 Representing Motion 4 How Fast? MAINIDEA Write the Main Idea for this section. 2 Representing Motion 4 How Fast? MAINIDEA Write the Main Idea for this section. REVIEW VOCABULARY absolute value Recall and write the definition of the Review Vocabulary term. absolute value NEW VOCABULARY

More information

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1 University Physics, 13e (Young/Freedman) Chapter 2 Motion Along a Straight Line 2.1 Conceptual Questions 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

Topic 2.1 Motion. Topic 2.1 Motion. Kari Eloranta Jyväskylän Lyseon lukio. August 18, Kari Eloranta 2017 Topic 2.

Topic 2.1 Motion. Topic 2.1 Motion. Kari Eloranta Jyväskylän Lyseon lukio. August 18, Kari Eloranta 2017 Topic 2. Topic 2.1 Motion Kari Eloranta 2017 Jyväskylän Lyseon lukio August 18, 2017 Velocity and Speed 2.1: Kinematic Quanties: Displacement Definition of Displacement Displacement is the change in position. The

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity 3 Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity Distance An important part of describing the motion of an object is to describe how far it has moved, which is distance. The SI unit

More information

Part I: Review Data Tables & Graphing Part II: Speed Acceleration

Part I: Review Data Tables & Graphing Part II: Speed Acceleration Part I: Review Data Tables & Graphing Part II: Speed Acceleration A Standard Data table consist of two columns. The left-hand column contains the values for the Independent Variable in numerical order.

More information

1. How could you determine the average speed of an object whose motion is represented in the graphs above?

1. How could you determine the average speed of an object whose motion is represented in the graphs above? AP Physics Lesson 1 b Kinematics Graphical Analysis and Kinematic Equation Use Outcomes Interpret graphical evidence of motion (uniform speed & uniform acceleration). Apply an understanding of position

More information

PART A: MULTIPLE CHOICE QUESTIONS

PART A: MULTIPLE CHOICE QUESTIONS PART A: MULTIPLE CHOICE QUESTIONS QUESTION 1. Which of the following defines a scalar quantity? (a) (b) (c) (d) Magnitude only Magnitude and direction Direction None of the above QUESTION 2. Which of the

More information

Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a

Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer. C potential difference

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

State the condition under which the distance covered and displacement of moving object will have the same magnitude.

State the condition under which the distance covered and displacement of moving object will have the same magnitude. Exercise CBSE-Class IX Science Motion General Instructions: (i) (ii) (iii) (iv) Question no. 1-15 are very short answer questions. These are required to be answered in one sentence each. Questions no.

More information

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity

Each dot represents an object moving, between constant intervals of time. Describe the motion that you see. equation symbol: units: Velocity What is displacement, velocity and acceleration? what units do they have? vector vs scalar? One dimensional motion, and graphing Moving man worksheet moving man doc - todo Introduction to simple graphing

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

Solving Problems In Physics

Solving Problems In Physics Solving Problems In Physics 1. Read the problem carefully. 2. Identify what is given. 3. Identify the unknown. 4. Find a useable equation and solve for the unknown quantity. 5. Substitute the given quantities.

More information

Chapter 2: Motion along a straight line

Chapter 2: Motion along a straight line Chapter 2: Motion along a straight line This chapter uses the definitions of length and time to study the motions of particles in space. This task is at the core of physics and applies to all objects irregardless

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

1.1 Graphing Motion. IB Physics 11 Kinematics

1.1 Graphing Motion. IB Physics 11 Kinematics IB Physics 11 Kinematics 1.1 Graphing Motion Kinematics is the study of motion without reference to forces and masses. We will need to learn some definitions: A Scalar quantity is a measurement that has

More information

Chapter 2: Kinematics

Chapter 2: Kinematics Section 1 Chapter 2: Kinematics To simplify the concept of motion, we will first consider motion that takes place in one direction. To measure motion, you must choose a frame of reference. Frame of reference

More information

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once.

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. PART III. KINEMATICS A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. 1. rise (Δy) The vertical separation of any two points on a curve is

More information

V-t graphs and acceleration. Book page 5 8 Syllabus

V-t graphs and acceleration. Book page 5 8 Syllabus V-t graphs and acceleration Book page 5 8 Syllabus 1.5 1.8 What does the graph show? Multiple-choice quiz Does this show acceleration? Aim Interpret velocity / time graphs to: - compare acceleration between

More information

Position-Time Graphs

Position-Time Graphs Position-Time Graphs Suppose that a man is jogging at a constant velocity of 5.0 m / s. A data table representing the man s motion is shown below: If we plot this data on a graph, we get: 0 0 1.0 5.0 2.0

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3 A.P. Physics B Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters - 3 * In studying for your test, make sure to study this review sheet along with your quizzes and homework assignments.

More information

a. Determine the sprinter's constant acceleration during the first 2 seconds.

a. Determine the sprinter's constant acceleration during the first 2 seconds. AP Physics 1 FR Practice Kinematics 1d 1 The first meters of a 100-meter dash are covered in 2 seconds by a sprinter who starts from rest and accelerates with a constant acceleration. The remaining 90

More information

8.1 THE LANGUAGE OF MOTION

8.1 THE LANGUAGE OF MOTION Unit 3 Motion 8.1 THE LANGUAGE OF MOTION 8.1 LEARNING OUTCOMES Vector quantities, such as displacement and velocity, have both a magnitude and a direction. An object in uniform motion will travel equal

More information

Which car/s is/are undergoing an acceleration?

Which car/s is/are undergoing an acceleration? Which car/s is/are undergoing an acceleration? Which car experiences the greatest acceleration? Match a Graph Consider the position-time graphs below. Each one of the 3 lines on the position-time graph

More information

Physics 1100: 1D Kinematics Solutions

Physics 1100: 1D Kinematics Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Physics 1100: 1D Kinematics Solutions 1. Neatly sketch the following dot motion diagrams: (a) A particle moving right

More information

STRAIGHT LINE MOTION TEST

STRAIGHT LINE MOTION TEST STRAIGHT LINE MOTION TEST Name: 1. The number of significant figures in the number 0.030 is a) b) 3 c) d) 5. The number 35.5 rounded to significant figures is a) 35.0 b) 35 c) 35.5 d) 0 3. Five different

More information

1 D motion: know your variables, position, displacement, velocity, speed acceleration, average and instantaneous.

1 D motion: know your variables, position, displacement, velocity, speed acceleration, average and instantaneous. General: Typically, there will be multiple choice, short answer, and big problems. Multiple Choice and Short Answer On the multiple choice and short answer, explanations are typically not required (only

More information

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t).

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Example 1: For s( t) t t 3, show its position on the

More information

Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable:

Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable: Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable: Dependent Variable: Controlled Variable: Sample Data Table: Sample Graph: Graph shapes and Variable Relationships (written

More information

Chapter 2. Kinematics in One Dimension

Chapter 2. Kinematics in One Dimension Register Clickers Chapter 2 Kinematics in One Dimension Kinematics deals with the concepts that are needed to describe motion. Dynamics deals with the effect that forces have on motion. Together, kinematics

More information

BHASVIC MαTHS. Convert the below into the form ax m + bx n : (b) (c) (e) (f)

BHASVIC MαTHS. Convert the below into the form ax m + bx n : (b) (c) (e) (f) Convert the below into the form ax m + bx n : (a) 1+5x 4x 1 (b) 3x 4 x x 3 (c) 4 16x 3 3 27x 3 2x 2 (d) 4 5x 3x 2 (e) (f) 4x 3 1 2x 3 x 4x+ 81x2 9 x 2 Co-ordinate Geometry line The equation of straight

More information

AP Physics C Mechanics Vectors

AP Physics C Mechanics Vectors 1 AP Physics C Mechanics Vectors 2015 12 03 www.njctl.org 2 Scalar Versus Vector A scalar has only a physical quantity such as mass, speed, and time. A vector has both a magnitude and a direction associated

More information

Motion in one dimension

Motion in one dimension Work Sheet - 1 1. Define rest and motion. 2. Define distance and displacement. Write their S.I unit. 3. Distinguish between distance and displacement. Write five points of differences. Work Sheet - 2 1.

More information

2008 FXA. DISPLACEMENT (s) / metre (m) 1. Candidates should be able to : The distance moved by a body in a specified direction.

2008 FXA. DISPLACEMENT (s) / metre (m) 1. Candidates should be able to : The distance moved by a body in a specified direction. DISPLACEMENT (s) / metre (m) 1 Candidates should be able to : Define displacement, instantaneous speed, average speed, velocity and acceleration. Select and use the relationships : average speed = distance

More information

Choose the correct answer:

Choose the correct answer: Choose the correct answer: 1. An object moves at a constant speed of 6 m/s. This means that the object (a) Decreases its speed by 6 m/s every second (b) Doesn t move (c) Has a positive acceleration (d)

More information

The area under a graph can be estimated by counting squares.

The area under a graph can be estimated by counting squares. A15 CALCULATE OR ESTIMATE GRADIENTS OF GRAPHS AND AREAS UNDER GRAPHS (INCLUDING QUADRATIC AND OTHER NON-LINEAR GRAPHS), AND INTERPRET RESULTS IN CASES SUCH AS DISTANCE- TIME GRAPHS, VELOCITY-TIME GRAPHS

More information

Vectors. Coordinates & Vectors. Chapter 2 One-Dimensional Kinematics. Chapter 2 One-Dimensional Kinematics

Vectors. Coordinates & Vectors. Chapter 2 One-Dimensional Kinematics. Chapter 2 One-Dimensional Kinematics Chapter 2 One-Dimensional Kinematics Chapter 2 One-Dimensional Kinematics James Walker, Physics, 2 nd Ed. Prentice Hall One dimensional kinematics refers to motion along a straight line. Even though we

More information

Forces and Motion in One Dimension. Chapter 3

Forces and Motion in One Dimension. Chapter 3 Forces and Motion in One Dimension Chapter 3 Constant velocity on an x-versus-t graph Velocity and Position In general, the average velocity is the slope of the line segment that connects the positions

More information

Chapter 3. Accelerated Motion

Chapter 3. Accelerated Motion Chapter 3 Accelerated Motion Chapter 3 Accelerated Motion In this chapter you will: Develop descriptions of accelerated motions. Use graphs and equations to solve problems involving moving objects. Describe

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101 Fall 2013 (Purcell), Fake Midterm #1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The figure shows the graph of the position x as a

More information

Displacement, Velocity and Acceleration in one dimension

Displacement, Velocity and Acceleration in one dimension Displacement, Velocity and Acceleration in one dimension In this document we consider the general relationship between displacement, velocity and acceleration. Displacement, velocity and acceleration are

More information

Chapter 2. Kinematic Equations. Problem 1. Kinematic Equations, specific. Motion in One Dimension

Chapter 2. Kinematic Equations. Problem 1. Kinematic Equations, specific. Motion in One Dimension Kinematic Equations Chapter Motion in One Dimension The kinematic equations may be used to solve any problem involving one-dimensional motion with a constant You may need to use two of the equations to

More information

AP Calculus Worksheet: Chapter 2 Review Part I

AP Calculus Worksheet: Chapter 2 Review Part I AP Calculus Worksheet: Chapter 2 Review Part I 1. Given y = f(x), what is the average rate of change of f on the interval [a, b]? What is the graphical interpretation of your answer? 2. The derivative

More information

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box?

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box? Review Packet Name: _ 1. A box is sliding to the right along a horizontal surface with a velocity of 2 m/s. There is friction between the box and the horizontal surface. The box is tied to a hanging stone

More information

Motion Section 3 Acceleration

Motion Section 3 Acceleration Section 3 Acceleration Review velocity Scan Use the checklist below to preview Section 3 of your book. Read all section titles. Read all boldfaced words. Read all graphs and equations. Look at all the

More information

Motion Along a Straight Line

Motion Along a Straight Line Chapter 2 Motion Along a Straight Line 2.1 Displacement, Time, and Average Velocity 1D motion. Very often it is convenient to model an object whose motion you analyze e.g. car, runner, stone, etc.) as

More information

Kinematics. Vector solutions. Vectors

Kinematics. Vector solutions. Vectors Kinematics Study of motion Accelerated vs unaccelerated motion Translational vs Rotational motion Vector solutions required for problems of 2- directional motion Vector solutions Possible solution sets

More information

What does the lab partner observe during the instant the student pushes off?

What does the lab partner observe during the instant the student pushes off? Motion Unit Review State Test Questions 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer.

More information

Angel International School - Manipay 1 st Term Examination November, 2015

Angel International School - Manipay 1 st Term Examination November, 2015 Grade 09 Angel International School - Manipay 1 st Term Examination November, 2015 Physics Duration: 3.00 Hours Index No:- Part 1 1) What is the SI unit of mass? a) kg b) mg c) g d) t 2) Which list contains

More information

Physics Pre-comp diagnostic Answers

Physics Pre-comp diagnostic Answers Name Element Physics Pre-comp diagnostic Answers Grade 8 2017-2018 Instructions: THIS TEST IS NOT FOR A GRADE. It is to help you determine what you need to study for the precomps. Just do your best. Put

More information

IB Math SL Year 2 Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited

IB Math SL Year 2 Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited Learning Goals: How do you apply integrals to real-world scenarios? Recall: Linear Motion When an object is moving, a ball in the air

More information

AP Physics Free Response Practice Kinematics ANSWERS 1982B1 2

AP Physics Free Response Practice Kinematics ANSWERS 1982B1 2 AP Physics Free Response Practice Kinematics ANSWERS 198B1 a. For the first seconds, while acceleration is constant, d = ½ at Substituting the given values d = 10 meters, t = seconds gives a = 5 m/s b.

More information

M1 Exam Workshop 1. Workbook

M1 Exam Workshop 1. Workbook M1 Exam Workshop 1 Workbook 1. A racing car moves with constant acceleration along a straight horizontal road. It passes the point O with speed 12 m s 1. It passes the point A 4 s later with speed 60 m

More information

Misconceptions in Mechanics

Misconceptions in Mechanics Misconceptions in Mechanics Sharon Tripconey MEI Conference 2014 Sometimes, always or never true? Sometimes, always or never true? Sort the cards into three piles For each of the three piles, order the

More information

Calculus I Homework: The Tangent and Velocity Problems Page 1

Calculus I Homework: The Tangent and Velocity Problems Page 1 Calculus I Homework: The Tangent and Velocity Problems Page 1 Questions Example The point P (1, 1/2) lies on the curve y = x/(1 + x). a) If Q is the point (x, x/(1 + x)), use Mathematica to find the slope

More information

Chapter 2 Describing Motion: Kinematics in One Dimension

Chapter 2 Describing Motion: Kinematics in One Dimension Chapter 2 Describing Motion: Kinematics in One Dimension Units of Chapter 2 Reference Frames and Displacement Average Velocity Instantaneous Velocity Acceleration Motion at Constant Acceleration Solving

More information

Chapter 1 Problem 28: Agenda. Quantities in Motion. Displacement Isn t Distance. Velocity. Speed 1/23/14

Chapter 1 Problem 28: Agenda. Quantities in Motion. Displacement Isn t Distance. Velocity. Speed 1/23/14 Agenda We need a note-taker! If you re interested, see me after class. Today: HW Quiz #1, 1D Motion Lecture for this week: Chapter 2 (finish reading Chapter 2 by Thursday) Homework #2: continue to check

More information

AP Physics 1 Dynamics Free Response Problems ANS KEY

AP Physics 1 Dynamics Free Response Problems ANS KEY AP Physics 1 Dynamics ree Response Problems ANS KEY 1. A block of mass m, acted on by a force directed horizontally, slides up an inclined plane that makes an angle θ with the horizontal. The coefficient

More information

RECAP!! Paul is a safe driver who always drives the speed limit. Here is a record of his driving on a straight road. Time (s)

RECAP!! Paul is a safe driver who always drives the speed limit. Here is a record of his driving on a straight road. Time (s) RECAP!! What is uniform motion? > Motion in a straight line > Moving at a constant speed Yes or No? Yes or No? Paul is a safe driver who always drives the speed limit. Here is a record of his driving on

More information

Accl g Motion graph prac

Accl g Motion graph prac Accl g Motion graph prac 1. An object starts from rest and falls freely. What is the velocity of the object at the end of 3.00 seconds? A) 9.81 m/s B) 19.6 m/s C) 29.4 m/s D) 88.2 m/s 2. An object is dropped

More information

PH 1110 Summary Homework 1

PH 1110 Summary Homework 1 PH 111 Summary Homework 1 Name Section Number These exercises assess your readiness for Exam 1. Solutions will be available on line. 1a. During orientation a new student is given instructions for a treasure

More information

Motion, Forces, and Energy

Motion, Forces, and Energy Motion, Forces, and Energy What is motion? Motion - when an object changes position Types of Motion There are 2 ways of describing motion: Distance Displacement Distance Distance is the total path traveled.

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

CHAPTER 2 TEST REVIEW

CHAPTER 2 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 69 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 2 TEST REVIEW 1. Samantha walks along a horizontal path in the direction shown. The curved

More information

Velocity Time graphs. v = final velocity. u = initial velocity. a = acceleration. s= displacement. t = time

Velocity Time graphs. v = final velocity. u = initial velocity. a = acceleration. s= displacement. t = time ExamLearn.ie Acceleration Acceleration Acceleration is the rate of change of velocity with respect to time*. The unit of acceleration is the metre per second squared (m/s 2 ) Acceleration =change in velocity

More information

KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES

KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES 014.08.06. KINETICS: MOTION ON A STRAIGHT LINE. VELOCITY, ACCELERATION. FREELY FALLING BODIES www.biofizika.aok.pte.hu Premedical course 04.08.014. Fluids Kinematics Dynamics MECHANICS Velocity and acceleration

More information

1.1 Motion and Motion Graphs

1.1 Motion and Motion Graphs Figure 1 A highway is a good example of the physics of motion in action. kinematics the study of motion without considering the forces that produce the motion dynamics the study of the causes of motion

More information

KINEMATICS & DYNAMICS

KINEMATICS & DYNAMICS KINEMATICS & DYNAMICS BY ADVANCED DIFFERENTIAL EQUATIONS Question (**+) In this question take g = 0 ms. A particle of mass M kg is released from rest from a height H m, and allowed to fall down through

More information

Describing Mo tion. Speed and Velocity. What is speed?

Describing Mo tion. Speed and Velocity. What is speed? CHAPTER 1 LESSON 2 Describing Mo tion Speed and Velocity Key Concepts What is speed? How can you use a dis tance-time graph to calculate average speed? What are ways velocity can change? What do you think?

More information

2. KINEMATICS. By Liew Sau Poh

2. KINEMATICS. By Liew Sau Poh 2. KINEMATICS By Liew Sau Poh 1 OBJECTIVES 2.1 Linear motion 2.2 Projectiles 2.3 Free falls and air resistance 2 OUTCOMES Derive and use equations of motion with constant acceleration Sketch and use the

More information

Unit 4 Review. inertia interaction pair net force Newton s first law Newton s second law Newton s third law position-time graph

Unit 4 Review. inertia interaction pair net force Newton s first law Newton s second law Newton s third law position-time graph Unit 4 Review Vocabulary Review Each term may be used once. acceleration constant acceleration constant velocity displacement force force of gravity friction force inertia interaction pair net force Newton

More information

Some Motion Terms. Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector

Some Motion Terms. Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector Motion Some Motion Terms Distance & Displacement Velocity & Speed Acceleration Uniform motion Scalar.vs. vector Scalar versus Vector Scalar - magnitude only (e.g. volume, mass, time) Vector - magnitude

More information