A CRYPTANALYTIC ATTACK-ON THE LU-LEE PUBLIC-KEY CRYPTOSYSTEM

Size: px
Start display at page:

Download "A CRYPTANALYTIC ATTACK-ON THE LU-LEE PUBLIC-KEY CRYPTOSYSTEM"

Transcription

1 Philips J. Res. 35, , 1980 R J022 A CRYPTANALYTIC ATTACK-ON THE LU-LEE PUBLIC-KEY CRYPTOSYSTEM by J.-M. GOETHALS and C. COUVREUR Abstract We present a method for finding the secret decryption key of the public-key cryptosystem recently proposed by S. C. Lu and L. N. Lee 4). The method uses a technique similar to the one recently proposed by L. Adieman and R. Rivest I). 1. Introduetion Since the introduetion of the concept of public-key cryptography by Diffie and Hellman 2) 'in 1976, a number of public-key cryptosystems have been proposed in the literature. Among these, the system devised by Rivest, Shamir and Adlemarr") (usually referred to as the RSA or M.I.T. cryptosystem) seems to offer many advantages. lts security is based on the difficulty of factoring a large composite number and it has resisted so far various cryptanalytic attacks. However, its encryption and decryption operations (exponentiation modulo a large number) are relatively complex. Thus the scheme proposed by Lu and Lee 4) seemed to promise serious advantages over the RSA system, in particular in terms of speed, since the encryption/decryption operations are much simpler. Moreover at first sight it seemed to offer the same level of security, This, however, is not true. In this short note we show how the cryptanalyst can use his knowledge of the public-key to derive the secret decryption key, thus breaking the system. We like to mention that two other cryptanalytic attacks of this system have recently been proposed by Adieman and Rivest 1) and Kochanski 3). Both methods allow the cryptanalyst to decrypt a cryptogram without actually finding the secret key. In conclusion, the Lu-Lee system does not appear to be at all secure. 2. Basic principles of the Lu-Lee cryptosystem Letp1>P2 be two large (e.g. 160 bits) prime numbers, let r =PIP2' and let all' a12, a21, a22 be four moderate-sized numbers (e.g. 16 bits each) such that (1) The secret decryption key consists of the parameters (P1>P2; all, a12' a21>a22), PhilipsJouroal er Research Vol.35 Nos.4/

2 J.-M. Goethals and C. Couvreur whereas the public encryption key consists of the three numbers (r; Cl' C2) where the ci's are the unique solutions (obtained by the Chinese Remainder technique) of the congruences Cj == a ü (modj»), i = 1,2; j = 1,2. (2) The messages to be encrypted consist of pairs of numbers (mi> m2) satisfying the conditions 0 <mi <Mi for i = 1, 2, where the limits MI and M2 are also publicly available. These quantities are chosen so that, for all admissible messages (mi> m2), the following conditions are satisfied: ail m, + a«m«<pi, for i = 1,2. (3) The ciphertext X corresponding to the plaintext (mi> m2) is calculated from the public-key by the formula x == Cl m, + C2 m2 (mod r). Decryption is performed as follows. First, the residues xi == xünodp.), i = 1,2, are computed. Then the pair (mi> m2) is determined by solving the two linear equations ail m, + ai2 m«= xi, i = 1,2, which, by (1), (2), (3), have the original plaintext as their unique solution. 3. A cryptanalytic attack At first sight it seems that a knowledge of the two factors PI' P2 of r would be necessary in order to be able to decrypt a cryptogram. However, in two recently proposed attacks (refs 1 and 3), algorithms were devised which enable the cryptanalyst to recover the plaintext (m., m2) from a cryptogram x, without actually finding the factors Pi>P2' The basic fact behind these attacks is that, to a given cryptogram, there corresponds a unique pair (mi> m2) satisfying (4), within the limits 0 < mi < Mi for i = 1,2. Here we describe an attack which uses the fact that the publicly revealed coefficients Cj have small residues a ü modulo the unknown factors Pi. We observe that, if a = a ü, then Cj - a and r will have Pi as their greatest common divisor (gcd). Thus, in principle, we could use Euclid's algorithm for computing gcd (r, Cj - a) and try all possible small numbers a until we find a gcd different from 1. We would then have obtained the factorization r = PIP2, thus breaking the system. There is, however, a simpler way of finding the right number a, which we shall now explain. For this we use slightly different notations. (4) 302 Phllips Journal of Research Vol.35 Nos.4/5 1980

3 A cryptanalytic attack on the Lu-Lee public-key cryptosystem Let us assume we are given a number r = pq and. a number c, relatively prime to r, but with small residu es a and bmodulop and q, respectively. Thus we have. whence c - a == O(modp), c - b == O(modq), (c - a) (c - b) == 0 (modr). (5) Suppose that, as it is the case for the Lu-Lee system, we can obtain upper bounds on (a + b) and ab, (a + b) <A and ab <B, say, so that B < min {p, q}. Then the solution to the following minimization problem: minimize F(u) == uc - c? (mod r), for u <A, (6) will yield u = a + b, F(u) = ab. Indeed, by using the Chinese Remainder Theorem, it is easy to show that, in this case, F(u) <B, for u <A, will hold only if the residues a (u - a) and b (u - b) of F(u) modulo pand q, respectively, are equal, that is for u = a + b. The above minimization problem is easily solved using a variation of Euclid's algorithm for computing gcd (r, c), by a method similar to the one used by AdIeman and Rivest 1). The basic idea is this. Using an extended version of Euclid's algorithm one obtains a series of congruences: ecc == (-li.!i(modr), i = 0, 1,2,..., (7) where the coefficients ei increase, while the.!i's decrease, with increasing i. This can be seen from the basic recurrences they satisfy ei+l= ei-1 + qiei;.!i+l =.!i-1 - qi.!i; qi = [Ji-d.!i], with the initial values: e-1 = 0, f-1 = r; eo = 1, fo = c. The algorithm terminates when, for some n, fn+1 = 0. One then has fn = gcd (r, c) = 1, whence enc == (-lt(modr). (8) The above congruences (7) are used successively in order to solve the minimization problem (6). At each step one uses the smallest multiple of the congruence (7) which, when added to the current value of F(u), will change its sign and decrease its absolute value. This is done until it is no longer possible to add a multiple of ei to u without violating the condition u <A. Some adjustment might be necessary at the last step in order to obtain a positive value for the last F(u). We illustrate this by an example. Phillps Jouronlof Research Vol.35 Nos.4/

4 J.-M. Goethals and C. Couvreur TABLE I Extended Euclid algorithm for example 1 ei ( -1)ifi Example 1: r = , c = The values of ei,/; obtained by use of the extended Euclid algorithm are given in table I. We first compute and we begin with the state é" == (mod r), u = 0, F(u) = Then, we use the first congruence with a coefficient 1 to obtain u = 1, F(u) = We do not use the next two congruences since no multiple would decrease the current absolute value of F(u). In principle, with the next one (i = 3), we should use a coefficient 2 to obtain u = x 8 = 17, F(u) = , I 304 Phillps Journalof Research Vol.3S Nos.4/S 1980

5 A cryptanalytic attack on the Lu-Lee public-key cryptosystem but; by using the smaller coefficient 1, we obtain and we are done, since and u = 9, F(u) = 14, c2-9c + 14 = (c - 2) (c - 7), gcd (r, c - 2) = 1307;gcd (r, c - 7) = The above method requires first calculating c2 mod r. This can be avoided by considering a slightly different version of the minimization problem. We simply observe that, since gcd (r, c) = 1, each congruence (7) can be written as f;c- I == (-liei(modr). Then, by the same reasoning as above, it can be shown that the solution to the following minimization problem minimize O(iJ) == c + vc- I (mod r), for v <B, will yield v = ab, O(v) = a + b. This, of course, can be solved by the same technique' as above. We further observe that, provided e is chosen so as to satisfy ea <min rp, qj, one could slightly change the above problem into minimize eo(v) = ec + euc+, for v < B. Sometimes, the solution is given at once, as illustrated by the following examples, taken from Kochanski 3). Example 2: r = , c = Using the extended Euclid algorithm, we obtain, congruences for i = 3,4, the following 8c == (mod r), 96c- 1 == 2011 (mod r), which immediateïy give 8(c + 12c- l ) = 8 x 7 (mod r), thus v = 12, O(v) = 7. The system is broken since c2-7c + 12 = (c - 3) (c - 4), and gcd (r, c - 3) = 1979; gcd (r, c - 4) = Philip, Journalof Research Vol.35 Nos.4/

6 J.-M. Goethals and C. Couvreur Example 3: r = , c = Here we have, for i = 2 and i = 5, the two congruences 7c == (mod r), 35c- 1 == (mod r), and the system is similarly broken, as v = 5, G(v) = 6 yields a = 1, b = 5; p = 5737, q = Conclusions Although it is in principle possible to prevent our proposed attack (for example, by multiplying the coefficients Cj by a secret factor d so as to avoid small residues), we believe the Lu-Lee system is totally insecure. In our opinion the main reason for that is the fact that the encryption function is linear. This generally allows the cryptanalyst to recover plaintext from ciphertext without actually finding the secret decryption key. Our analysis ;llso shows that extreme care must be taken not to include in the public-key some parameters which could help the cryptanalyst in finding the secret decryption key. Acknowledgements We should like to thank Professor L. M. Adieman and Dr M. J. Kochanski for communicating their results to us. Philips Research Laboratory Brussels, March 1980 REFERENCES ') L. M. Adieman and R. L. Rivest, How to break the Lu-Lee (COMSAT) public-key cryptosystem, M.LT. Laberatory for Computer Science, July, ) W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans. Inf. Theory IT-22, , ) M. J. Kochanski, Remarks on Lu and Lee's proposals, Cryptologia 4, 1980, to appear. 4) S. C. Lu and L. N. Lee, A simple and effective public-key cryptosystem, COMSAT Tech. Rev. 9, 15-24, ) R. Rivest, A. Shamir and L. Adieman, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM 21, , PhIlIpsJournnI of Research Vol.35 Nos.4/5 1980

Chapter 8 Public-key Cryptography and Digital Signatures

Chapter 8 Public-key Cryptography and Digital Signatures Chapter 8 Public-key Cryptography and Digital Signatures v 1. Introduction to Public-key Cryptography 2. Example of Public-key Algorithm: Diffie- Hellman Key Exchange Scheme 3. RSA Encryption and Digital

More information

Lemma 1.2. (1) If p is prime, then ϕ(p) = p 1. (2) If p q are two primes, then ϕ(pq) = (p 1)(q 1).

Lemma 1.2. (1) If p is prime, then ϕ(p) = p 1. (2) If p q are two primes, then ϕ(pq) = (p 1)(q 1). 1 Background 1.1 The group of units MAT 3343, APPLIED ALGEBRA, FALL 2003 Handout 3: The RSA Cryptosystem Peter Selinger Let (R, +, ) be a ring. Then R forms an abelian group under addition. R does not

More information

Cryptography. pieces from work by Gordon Royle

Cryptography. pieces from work by Gordon Royle Cryptography pieces from work by Gordon Royle The set-up Cryptography is the mathematics of devising secure communication systems, whereas cryptanalysis is the mathematics of breaking such systems. We

More information

RSA. Ramki Thurimella

RSA. Ramki Thurimella RSA Ramki Thurimella Public-Key Cryptography Symmetric cryptography: same key is used for encryption and decryption. Asymmetric cryptography: different keys used for encryption and decryption. Public-Key

More information

Number Theory & Modern Cryptography

Number Theory & Modern Cryptography Number Theory & Modern Cryptography Week 12 Stallings: Ch 4, 8, 9, 10 CNT-4403: 2.April.2015 1 Introduction Increasing importance in cryptography Public Key Crypto and Signatures Concern operations on

More information

Discrete Mathematics GCD, LCM, RSA Algorithm

Discrete Mathematics GCD, LCM, RSA Algorithm Discrete Mathematics GCD, LCM, RSA Algorithm Abdul Hameed http://informationtechnology.pk/pucit abdul.hameed@pucit.edu.pk Lecture 16 Greatest Common Divisor 2 Greatest common divisor The greatest common

More information

Lecture Notes, Week 6

Lecture Notes, Week 6 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Week 6 (rev. 3) Professor M. J. Fischer February 15 & 17, 2005 1 RSA Security Lecture Notes, Week 6 Several

More information

Mathematics of Cryptography

Mathematics of Cryptography UNIT - III Mathematics of Cryptography Part III: Primes and Related Congruence Equations 1 Objectives To introduce prime numbers and their applications in cryptography. To discuss some primality test algorithms

More information

Number Theory. Modular Arithmetic

Number Theory. Modular Arithmetic Number Theory The branch of mathematics that is important in IT security especially in cryptography. Deals only in integer numbers and the process can be done in a very fast manner. Modular Arithmetic

More information

Chapter 4 Asymmetric Cryptography

Chapter 4 Asymmetric Cryptography Chapter 4 Asymmetric Cryptography Introduction Encryption: RSA Key Exchange: Diffie-Hellman [NetSec/SysSec], WS 2008/2009 4.1 Asymmetric Cryptography General idea: Use two different keys -K and +K for

More information

Asymmetric Cryptography

Asymmetric Cryptography Asymmetric Cryptography Chapter 4 Asymmetric Cryptography Introduction Encryption: RSA Key Exchange: Diffie-Hellman General idea: Use two different keys -K and +K for encryption and decryption Given a

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Spotlight on Science J. Robert Buchanan Department of Mathematics 2011 What is Cryptography? cryptography: study of methods for sending messages in a form that only be understood

More information

Definition: For a positive integer n, if 0<a<n and gcd(a,n)=1, a is relatively prime to n. Ahmet Burak Can Hacettepe University

Definition: For a positive integer n, if 0<a<n and gcd(a,n)=1, a is relatively prime to n. Ahmet Burak Can Hacettepe University Number Theory, Public Key Cryptography, RSA Ahmet Burak Can Hacettepe University abc@hacettepe.edu.tr The Euler Phi Function For a positive integer n, if 0

More information

Public Key Algorithms

Public Key Algorithms Public Key Algorithms Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-09/

More information

Introduction to Modern Cryptography. Benny Chor

Introduction to Modern Cryptography. Benny Chor Introduction to Modern Cryptography Benny Chor RSA Public Key Encryption Factoring Algorithms Lecture 7 Tel-Aviv University Revised March 1st, 2008 Reminder: The Prime Number Theorem Let π(x) denote the

More information

The RSA cryptosystem and primality tests

The RSA cryptosystem and primality tests Mathematics, KTH Bengt Ek November 2015 Supplementary material for SF2736, Discrete mathematics: The RSA cryptosystem and primality tests Secret codes (i.e. codes used to make messages unreadable to outsiders

More information

Implementation of the RSA algorithm and its cryptanalysis. Abstract. Introduction

Implementation of the RSA algorithm and its cryptanalysis. Abstract. Introduction Implementation of the RSA algorithm and its cryptanalysis Chandra M. Kota and Cherif Aissi 1 University of Louisiana at Lafayette, College of Engineering Lafayette, LA 70504, USA Abstract Session IVB4

More information

Lecture 1: Introduction to Public key cryptography

Lecture 1: Introduction to Public key cryptography Lecture 1: Introduction to Public key cryptography Thomas Johansson T. Johansson (Lund University) 1 / 44 Key distribution Symmetric key cryptography: Alice and Bob share a common secret key. Some means

More information

CIS 551 / TCOM 401 Computer and Network Security

CIS 551 / TCOM 401 Computer and Network Security CIS 551 / TCOM 401 Computer and Network Security Spring 2008 Lecture 15 3/20/08 CIS/TCOM 551 1 Announcements Project 3 available on the web. Get the handout in class today. Project 3 is due April 4th It

More information

Topics in Cryptography. Lecture 5: Basic Number Theory

Topics in Cryptography. Lecture 5: Basic Number Theory Topics in Cryptography Lecture 5: Basic Number Theory Benny Pinkas page 1 1 Classical symmetric ciphers Alice and Bob share a private key k. System is secure as long as k is secret. Major problem: generating

More information

CS March 17, 2009

CS March 17, 2009 Discrete Mathematics CS 2610 March 17, 2009 Number Theory Elementary number theory, concerned with numbers, usually integers and their properties or rational numbers mainly divisibility among integers

More information

Introduction to Public-Key Cryptosystems:

Introduction to Public-Key Cryptosystems: Introduction to Public-Key Cryptosystems: Technical Underpinnings: RSA and Primality Testing Modes of Encryption for RSA Digital Signatures for RSA 1 RSA Block Encryption / Decryption and Signing Each

More information

Cryptography. P. Danziger. Transmit...Bob...

Cryptography. P. Danziger. Transmit...Bob... 10.4 Cryptography P. Danziger 1 Cipher Schemes A cryptographic scheme is an example of a code. The special requirement is that the encoded message be difficult to retrieve without some special piece of

More information

RSA RSA public key cryptosystem

RSA RSA public key cryptosystem RSA 1 RSA As we have seen, the security of most cipher systems rests on the users keeping secret a special key, for anyone possessing the key can encrypt and/or decrypt the messages sent between them.

More information

Theme : Cryptography. Instructor : Prof. C Pandu Rangan. Speaker : Arun Moorthy CS

Theme : Cryptography. Instructor : Prof. C Pandu Rangan. Speaker : Arun Moorthy CS 1 C Theme : Cryptography Instructor : Prof. C Pandu Rangan Speaker : Arun Moorthy 93115 CS 2 RSA Cryptosystem Outline of the Talk! Introduction to RSA! Working of the RSA system and associated terminology!

More information

Slides by Kent Seamons and Tim van der Horst Last Updated: Oct 1, 2013

Slides by Kent Seamons and Tim van der Horst Last Updated: Oct 1, 2013 RSA Slides by Kent Seamons and Tim van der Horst Last Updated: Oct 1, 2013 Recap Recap Number theory o What is a prime number? o What is prime factorization? o What is a GCD? o What does relatively prime

More information

10 Modular Arithmetic and Cryptography

10 Modular Arithmetic and Cryptography 10 Modular Arithmetic and Cryptography 10.1 Encryption and Decryption Encryption is used to send messages secretly. The sender has a message or plaintext. Encryption by the sender takes the plaintext and

More information

Introduction to Cybersecurity Cryptography (Part 5)

Introduction to Cybersecurity Cryptography (Part 5) Introduction to Cybersecurity Cryptography (Part 5) Prof. Dr. Michael Backes 13.01.2017 February 17 th Special Lecture! 45 Minutes Your Choice 1. Automotive Security 2. Smartphone Security 3. Side Channel

More information

CRYPTOGRAPHY AND NUMBER THEORY

CRYPTOGRAPHY AND NUMBER THEORY CRYPTOGRAPHY AND NUMBER THEORY XINYU SHI Abstract. In this paper, we will discuss a few examples of cryptographic systems, categorized into two different types: symmetric and asymmetric cryptography. We

More information

Asymmetric Encryption

Asymmetric Encryption -3 s s Encryption Comp Sci 3600 Outline -3 s s 1-3 2 3 4 5 s s Outline -3 s s 1-3 2 3 4 5 s s Function Using Bitwise XOR -3 s s Key Properties for -3 s s The most important property of a hash function

More information

An Introduction to Probabilistic Encryption

An Introduction to Probabilistic Encryption Osječki matematički list 6(2006), 37 44 37 An Introduction to Probabilistic Encryption Georg J. Fuchsbauer Abstract. An introduction to probabilistic encryption is given, presenting the first probabilistic

More information

1 Number Theory Basics

1 Number Theory Basics ECS 289M (Franklin), Winter 2010, Crypto Review 1 Number Theory Basics This section has some basic facts about number theory, mostly taken (or adapted) from Dan Boneh s number theory fact sheets for his

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 11 February 21, 2013 CPSC 467b, Lecture 11 1/27 Discrete Logarithm Diffie-Hellman Key Exchange ElGamal Key Agreement Primitive Roots

More information

10 Public Key Cryptography : RSA

10 Public Key Cryptography : RSA 10 Public Key Cryptography : RSA 10.1 Introduction The idea behind a public-key system is that it might be possible to find a cryptosystem where it is computationally infeasible to determine d K even if

More information

Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography

Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography Security Issues in Cloud Computing Modern Cryptography II Asymmetric Cryptography Peter Schwabe October 21 and 28, 2011 So far we assumed that Alice and Bob both have some key, which nobody else has. How

More information

Number Theory: Applications. Number Theory Applications. Hash Functions II. Hash Functions III. Pseudorandom Numbers

Number Theory: Applications. Number Theory Applications. Hash Functions II. Hash Functions III. Pseudorandom Numbers Number Theory: Applications Number Theory Applications Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Results from Number Theory have many applications

More information

Elliptic Curve Cryptography

Elliptic Curve Cryptography Elliptic Curve Cryptography Elliptic Curves An elliptic curve is a cubic equation of the form: y + axy + by = x 3 + cx + dx + e where a, b, c, d and e are real numbers. A special addition operation is

More information

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used.

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used. UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2010 2011 CRYPTOGRAPHY Time allowed: 2 hours Attempt THREE questions. Candidates must show on each answer book the type of calculator

More information

Solving Systems of Modular Equations in One Variable: How Many RSA-Encrypted Messages Does Eve Need to Know?

Solving Systems of Modular Equations in One Variable: How Many RSA-Encrypted Messages Does Eve Need to Know? Solving Systems of Modular Equations in One Variable: How Many RSA-Encrypted Messages Does Eve Need to Know? Alexander May, Maike Ritzenhofen Faculty of Mathematics Ruhr-Universität Bochum, 44780 Bochum,

More information

Public Key Cryptography

Public Key Cryptography T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A Public Key Cryptography EECE 412 1 What is it? Two keys Sender uses recipient s public key to encrypt Receiver uses his private key to decrypt

More information

Addition. Ch1 - Algorithms with numbers. Multiplication. al-khwārizmī. al-khwārizmī. Division 53+35=88. Cost? (n number of bits) 13x11=143. Cost?

Addition. Ch1 - Algorithms with numbers. Multiplication. al-khwārizmī. al-khwārizmī. Division 53+35=88. Cost? (n number of bits) 13x11=143. Cost? Ch - Algorithms with numbers Addition Basic arithmetic Addition ultiplication Division odular arithmetic factoring is hard Primality testing 53+35=88 Cost? (n number of bits) O(n) ultiplication al-khwārizmī

More information

Introduction to Cryptography. Lecture 6

Introduction to Cryptography. Lecture 6 Introduction to Cryptography Lecture 6 Benny Pinkas page 1 Public Key Encryption page 2 Classical symmetric ciphers Alice and Bob share a private key k. System is secure as long as k is secret. Major problem:

More information

Number Theory and Algebra: A Brief Introduction

Number Theory and Algebra: A Brief Introduction Number Theory and Algebra: A Brief Introduction Indian Statistical Institute Kolkata May 15, 2017 Elementary Number Theory: Modular Arithmetic Definition Let n be a positive integer and a and b two integers.

More information

8.1 Principles of Public-Key Cryptosystems

8.1 Principles of Public-Key Cryptosystems Public-key cryptography is a radical departure from all that has gone before. Right up to modern times all cryptographic systems have been based on the elementary tools of substitution and permutation.

More information

The Elliptic Curve in https

The Elliptic Curve in https The Elliptic Curve in https Marco Streng Universiteit Leiden 25 November 2014 Marco Streng (Universiteit Leiden) The Elliptic Curve in https 25-11-2014 1 The s in https:// HyperText Transfer Protocol

More information

PROPERTIES OF THE EULER TOTIENT FUNCTION MODULO 24 AND SOME OF ITS CRYPTOGRAPHIC IMPLICATIONS

PROPERTIES OF THE EULER TOTIENT FUNCTION MODULO 24 AND SOME OF ITS CRYPTOGRAPHIC IMPLICATIONS PROPERTIES OF THE EULER TOTIENT FUNCTION MODULO 24 AND SOME OF ITS CRYPTOGRAPHIC IMPLICATIONS Raouf N. Gorgui-Naguib and Satnam S. Dlay Cryptology Research Group Department of Electrical and Electronic

More information

CPE 776:DATA SECURITY & CRYPTOGRAPHY. Some Number Theory and Classical Crypto Systems

CPE 776:DATA SECURITY & CRYPTOGRAPHY. Some Number Theory and Classical Crypto Systems CPE 776:DATA SECURITY & CRYPTOGRAPHY Some Number Theory and Classical Crypto Systems Dr. Lo ai Tawalbeh Computer Engineering Department Jordan University of Science and Technology Jordan Some Number Theory

More information

ECE596C: Handout #11

ECE596C: Handout #11 ECE596C: Handout #11 Public Key Cryptosystems Electrical and Computer Engineering, University of Arizona, Loukas Lazos Abstract In this lecture we introduce necessary mathematical background for studying

More information

Public-Key Cryptosystems CHAPTER 4

Public-Key Cryptosystems CHAPTER 4 Public-Key Cryptosystems CHAPTER 4 Introduction How to distribute the cryptographic keys? Naïve Solution Naïve Solution Give every user P i a separate random key K ij to communicate with every P j. Disadvantage:

More information

Notes. Number Theory: Applications. Notes. Number Theory: Applications. Notes. Hash Functions I

Notes. Number Theory: Applications. Notes. Number Theory: Applications. Notes. Hash Functions I Number Theory: Applications Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Fall 2007 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 3.4 3.7 of Rosen cse235@cse.unl.edu

More information

A New Knapsack Public-Key Cryptosystem Based on Permutation Combination Algorithm

A New Knapsack Public-Key Cryptosystem Based on Permutation Combination Algorithm A New Knapsack Public-Key Cryptosystem Based on Permutation Combination Algorithm Min-Shiang Hwang Cheng-Chi Lee Shiang-Feng Tzeng Department of Management Information System National Chung Hsing University

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Instructor: Michael Fischer Lecture by Ewa Syta Lecture 13 March 3, 2013 CPSC 467b, Lecture 13 1/52 Elliptic Curves Basics Elliptic Curve Cryptography CPSC

More information

Fast Cryptanalysis of the Matsumoto-Imai Public Key Scheme

Fast Cryptanalysis of the Matsumoto-Imai Public Key Scheme Fast Cryptanalysis of the Matsumoto-Imai Public Key Scheme P. Delsarte Philips Research Laboratory, Avenue Van Becelaere, 2 B-1170 Brussels, Belgium Y. Desmedt Katholieke Universiteit Leuven, Laboratorium

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I ICS141: Discrete Mathematics for Computer Science I Dept. Information & Computer Sci., Jan Stelovsky based on slides by Dr. Baek and Dr. Still Originals by Dr. M. P. Frank and Dr. J.L. Gross Provided by

More information

Lecture V : Public Key Cryptography

Lecture V : Public Key Cryptography Lecture V : Public Key Cryptography Internet Security: Principles & Practices John K. Zao, PhD (Harvard) SMIEEE Amir Rezapoor Computer Science Department, National Chiao Tung University 2 Outline Functional

More information

Review. CS311H: Discrete Mathematics. Number Theory. Computing GCDs. Insight Behind Euclid s Algorithm. Using this Theorem. Euclidian Algorithm

Review. CS311H: Discrete Mathematics. Number Theory. Computing GCDs. Insight Behind Euclid s Algorithm. Using this Theorem. Euclidian Algorithm Review CS311H: Discrete Mathematics Number Theory Instructor: Işıl Dillig What does it mean for two ints a, b to be congruent mod m? What is the Division theorem? If a b and a c, does it mean b c? What

More information

My brief introduction to cryptography

My brief introduction to cryptography My brief introduction to cryptography David Thomson dthomson@math.carleton.ca Carleton University September 7, 2013 introduction to cryptography September 7, 2013 1 / 28 Outline 1 The general framework

More information

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467a: Cryptography and Computer Security Notes 13 (rev. 2) Professor M. J. Fischer October 22, 2008 53 Chinese Remainder Theorem Lecture Notes 13 We

More information

MATH 158 FINAL EXAM 20 DECEMBER 2016

MATH 158 FINAL EXAM 20 DECEMBER 2016 MATH 158 FINAL EXAM 20 DECEMBER 2016 Name : The exam is double-sided. Make sure to read both sides of each page. The time limit is three hours. No calculators are permitted. You are permitted one page

More information

Other Public-Key Cryptosystems

Other Public-Key Cryptosystems Other Public-Key Cryptosystems Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: 10-1 Overview 1. How to exchange

More information

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev

Cryptography. Lecture 2: Perfect Secrecy and its Limitations. Gil Segev Cryptography Lecture 2: Perfect Secrecy and its Limitations Gil Segev Last Week Symmetric-key encryption (KeyGen, Enc, Dec) Historical ciphers that are completely broken The basic principles of modern

More information

Security II: Cryptography exercises

Security II: Cryptography exercises Security II: Cryptography exercises Markus Kuhn Lent 2015 Part II Some of the exercises require the implementation of short programs. The model answers use Perl (see Part IB Unix Tools course), but you

More information

during transmission safeguard information Cryptography: used to CRYPTOGRAPHY BACKGROUND OF THE MATHEMATICAL

during transmission safeguard information Cryptography: used to CRYPTOGRAPHY BACKGROUND OF THE MATHEMATICAL THE MATHEMATICAL BACKGROUND OF CRYPTOGRAPHY Cryptography: used to safeguard information during transmission (e.g., credit card number for internet shopping) as opposed to Coding Theory: used to transmit

More information

Introduction to Modern Cryptography. Benny Chor

Introduction to Modern Cryptography. Benny Chor Introduction to Modern Cryptography Benny Chor RSA: Review and Properties Factoring Algorithms Trapdoor One Way Functions PKC Based on Discrete Logs (Elgamal) Signature Schemes Lecture 8 Tel-Aviv University

More information

OWO Lecture: Modular Arithmetic with Algorithmic Applications

OWO Lecture: Modular Arithmetic with Algorithmic Applications OWO Lecture: Modular Arithmetic with Algorithmic Applications Martin Otto Winter Term 2008/09 Contents 1 Basic ingredients 1 2 Modular arithmetic 2 2.1 Going in circles.......................... 2 2.2

More information

THE RSA CRYPTOSYSTEM

THE RSA CRYPTOSYSTEM THE RSA CRYPTOSYSTEM SILVIA ROBLES Abstract. This paper explores the history and mathematics behind the RSA cryptosystem, including the idea of public key cryptosystems and number theory. It outlines the

More information

A New Attack on RSA with Two or Three Decryption Exponents

A New Attack on RSA with Two or Three Decryption Exponents A New Attack on RSA with Two or Three Decryption Exponents Abderrahmane Nitaj Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France nitaj@math.unicaen.fr http://www.math.unicaen.fr/~nitaj

More information

Mathematical Foundations of Public-Key Cryptography

Mathematical Foundations of Public-Key Cryptography Mathematical Foundations of Public-Key Cryptography Adam C. Champion and Dong Xuan CSE 4471: Information Security Material based on (Stallings, 2006) and (Paar and Pelzl, 2010) Outline Review: Basic Mathematical

More information

Outline. Available public-key technologies. Diffie-Hellman protocol Digital Signature. Elliptic curves and the discrete logarithm problem

Outline. Available public-key technologies. Diffie-Hellman protocol Digital Signature. Elliptic curves and the discrete logarithm problem Outline Public-key cryptography A collection of hard problems Mathematical Background Trapdoor Knapsack Integer factorization Problem Discrete logarithm problem revisited Case of Study: The Sun NFS Cryptosystem

More information

Encryption: The RSA Public Key Cipher

Encryption: The RSA Public Key Cipher Encryption: The RSA Public Key Cipher Michael Brockway March 5, 2018 Overview Transport-layer security employs an asymmetric public cryptosystem to allow two parties (usually a client application and a

More information

1 What are Physical Attacks. 2 Physical Attacks on RSA. Today:

1 What are Physical Attacks. 2 Physical Attacks on RSA. Today: Today: Introduction to the class. Examples of concrete physical attacks on RSA A computational approach to cryptography Pseudorandomness 1 What are Physical Attacks Tampering/Leakage attacks Issue of how

More information

Cryptanalysis of a Fast Public Key Cryptosystem Presented at SAC 97

Cryptanalysis of a Fast Public Key Cryptosystem Presented at SAC 97 Cryptanalysis of a Fast Public Key Cryptosystem Presented at SAC 97 Phong Nguyen and Jacques Stern École Normale Supérieure, Laboratoire d Informatique 45, rue d Ulm, F 75230 Paris Cedex 05 {Phong.Nguyen,Jacques.Stern}@ens.fr

More information

A Knapsack Cryptosystem Based on The Discrete Logarithm Problem

A Knapsack Cryptosystem Based on The Discrete Logarithm Problem A Knapsack Cryptosystem Based on The Discrete Logarithm Problem By K.H. Rahouma Electrical Technology Department Technical College in Riyadh Riyadh, Kingdom of Saudi Arabia E-mail: kamel_rahouma@yahoo.com

More information

Discrete mathematics I - Number theory

Discrete mathematics I - Number theory Discrete mathematics I - Number theory Emil Vatai (based on hungarian slides by László Mérai) 1 January 31, 2018 1 Financed from the financial support ELTE won from the Higher Education

More information

Ti Secured communications

Ti Secured communications Ti5318800 Secured communications Pekka Jäppinen September 20, 2007 Pekka Jäppinen, Lappeenranta University of Technology: September 20, 2007 Relies on use of two keys: Public and private Sometimes called

More information

THE RSA ENCRYPTION SCHEME

THE RSA ENCRYPTION SCHEME THE RSA ENCRYPTION SCHEME Contents 1. The RSA Encryption Scheme 2 1.1. Advantages over traditional coding methods 3 1.2. Proof of the decoding procedure 4 1.3. Security of the RSA Scheme 4 1.4. Finding

More information

LECTURE 5: APPLICATIONS TO CRYPTOGRAPHY AND COMPUTATIONS

LECTURE 5: APPLICATIONS TO CRYPTOGRAPHY AND COMPUTATIONS LECTURE 5: APPLICATIONS TO CRYPTOGRAPHY AND COMPUTATIONS Modular arithmetics that we have discussed in the previous lectures is very useful in Cryptography and Computer Science. Here we discuss several

More information

5199/IOC5063 Theory of Cryptology, 2014 Fall

5199/IOC5063 Theory of Cryptology, 2014 Fall 5199/IOC5063 Theory of Cryptology, 2014 Fall Homework 2 Reference Solution 1. This is about the RSA common modulus problem. Consider that two users A and B use the same modulus n = 146171 for the RSA encryption.

More information

ALG 4.0 Number Theory Algorithms:

ALG 4.0 Number Theory Algorithms: Algorithms Professor John Reif ALG 4.0 Number Theory Algorithms: (a) GCD (b) Multiplicative Inverse (c) Fermat & Euler's Theorems (d) Public Key Cryptographic Systems (e) Primality Testing Greatest Common

More information

Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography

Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography David R. Wilkins Copyright c David R. Wilkins 2006 Contents 9 Introduction to Number Theory and Cryptography 1 9.1 Subgroups

More information

19. Coding for Secrecy

19. Coding for Secrecy 19. Coding for Secrecy 19.1 Introduction Protecting sensitive information from the prying eyes and ears of others is an important issue today as much as it has been for thousands of years. Government secrets,

More information

Public Key Encryption

Public Key Encryption Public Key Encryption 3/13/2012 Cryptography 1 Facts About Numbers Prime number p: p is an integer p 2 The only divisors of p are 1 and p s 2, 7, 19 are primes -3, 0, 1, 6 are not primes Prime decomposition

More information

RSA ENCRYPTION USING THREE MERSENNE PRIMES

RSA ENCRYPTION USING THREE MERSENNE PRIMES Int. J. Chem. Sci.: 14(4), 2016, 2273-2278 ISSN 0972-768X www.sadgurupublications.com RSA ENCRYPTION USING THREE MERSENNE PRIMES Ch. J. L. PADMAJA a*, V. S. BHAGAVAN a and B. SRINIVAS b a Department of

More information

Public Key Cryptography

Public Key Cryptography Public Key Cryptography Introduction Public Key Cryptography Unlike symmetric key, there is no need for Alice and Bob to share a common secret Alice can convey her public key to Bob in a public communication:

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science Lecture 22: Cryptography November 12th, 2015 What is cryptography about? Adversary Eavesdropper I will cut your throat I will cut your throat What is

More information

Cryptography and RSA. Group (1854, Cayley) Upcoming Interview? Outline. Commutative or Abelian Groups

Cryptography and RSA. Group (1854, Cayley) Upcoming Interview? Outline. Commutative or Abelian Groups Great Theoretical Ideas in CS V. Adamchik CS 15-251 Upcoming Interview? Lecture 24 Carnegie Mellon University Cryptography and RSA How the World's Smartest Company Selects the Most Creative Thinkers Groups

More information

NUMBER THEORY AND CODES. Álvaro Pelayo WUSTL

NUMBER THEORY AND CODES. Álvaro Pelayo WUSTL NUMBER THEORY AND CODES Álvaro Pelayo WUSTL Talk Goal To develop codes of the sort can tell the world how to put messages in code (public key cryptography) only you can decode them Structure of Talk Part

More information

Gurgen Khachatrian Martun Karapetyan

Gurgen Khachatrian Martun Karapetyan 34 International Journal Information Theories and Applications, Vol. 23, Number 1, (c) 2016 On a public key encryption algorithm based on Permutation Polynomials and performance analyses Gurgen Khachatrian

More information

Discrete Logarithm Problem

Discrete Logarithm Problem Discrete Logarithm Problem Finite Fields The finite field GF(q) exists iff q = p e for some prime p. Example: GF(9) GF(9) = {a + bi a, b Z 3, i 2 = i + 1} = {0, 1, 2, i, 1+i, 2+i, 2i, 1+2i, 2+2i} Addition:

More information

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 33 The Diffie-Hellman Problem

More information

Integers and Division

Integers and Division Integers and Division Notations Z: set of integers N : set of natural numbers R: set of real numbers Z + : set of positive integers Some elements of number theory are needed in: Data structures, Random

More information

Partial Key Exposure: Generalized Framework to Attack RSA

Partial Key Exposure: Generalized Framework to Attack RSA Partial Key Exposure: Generalized Framework to Attack RSA Cryptology Research Group Indian Statistical Institute, Kolkata 12 December 2011 Outline of the Talk 1 RSA - A brief overview 2 Partial Key Exposure

More information

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation Quantum logic gates Logic gates Classical NOT gate Quantum NOT gate (X gate) A NOT A α 0 + β 1 X α 1 + β 0 A N O T A 0 1 1 0 Matrix form representation 0 1 X = 1 0 The only non-trivial single bit gate

More information

Side Channel Attack to Actual Cryptanalysis: Breaking CRT-RSA with Low Weight Decryption Exponents

Side Channel Attack to Actual Cryptanalysis: Breaking CRT-RSA with Low Weight Decryption Exponents Side Channel Attack to Actual Cryptanalysis: Breaking CRT-RSA with Low Weight Decryption Exponents Santanu Sarkar and Subhamoy Maitra Leuven, Belgium 12 September, 2012 Outline of the Talk RSA Cryptosystem

More information

Public Key Encryption

Public Key Encryption Public Key Encryption KG October 17, 2017 Contents 1 Introduction 1 2 Public Key Encryption 2 3 Schemes Based on Diffie-Hellman 3 3.1 ElGamal.................................... 5 4 RSA 7 4.1 Preliminaries.................................

More information

L7. Diffie-Hellman (Key Exchange) Protocol. Rocky K. C. Chang, 5 March 2015

L7. Diffie-Hellman (Key Exchange) Protocol. Rocky K. C. Chang, 5 March 2015 L7. Diffie-Hellman (Key Exchange) Protocol Rocky K. C. Chang, 5 March 2015 1 Outline The basic foundation: multiplicative group modulo prime The basic Diffie-Hellman (DH) protocol The discrete logarithm

More information

9 Knapsack Cryptography

9 Knapsack Cryptography 9 Knapsack Cryptography In the past four weeks, we ve discussed public-key encryption systems that depend on various problems that we believe to be hard: prime factorization, the discrete logarithm, and

More information

Mathematics of Public Key Cryptography

Mathematics of Public Key Cryptography Mathematics of Public Key Cryptography Eric Baxter April 12, 2014 Overview Brief review of public-key cryptography Mathematics behind public-key cryptography algorithms What is Public-Key Cryptography?

More information

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018 Faculty of Mathematics and Computer Science Exam Cryptology, Tuesday 30 October 2018 Name : TU/e student number : Exercise 1 2 3 4 5 total points Notes: Please hand in all sheets at the end of the exam.

More information

Implementation Tutorial on RSA

Implementation Tutorial on RSA Implementation Tutorial on Maciek Adamczyk; m adamczyk@umail.ucsb.edu Marianne Magnussen; mariannemagnussen@umail.ucsb.edu Adamczyk and Magnussen Spring 2018 1 / 13 Overview Implementation Tutorial Introduction

More information