problem X reduces to Problem Y solving X would be easy, if we knew how to solve Y

Size: px
Start display at page:

Download "problem X reduces to Problem Y solving X would be easy, if we knew how to solve Y"

Transcription

1 CPS220 Reducibility A reduction is a procedure to convert one problem to another problem, in such a way that a solution to the second problem can be used to solve the first problem. The conversion itself must be doable by a Turing Machine that halts. That is, there must be a concrete algorithm for a conversion. REDUCTION: problem X reduces to Problem Y means solving X would be easy, if we knew how to solve Y Example 1. The problem of having a Ferrari reduces to the problem of obtaining $200K. Proof: Say that we could obtain $200K. The following algorithm leads us to drive a Ferrari: 1. Go to a Ferrari dealer. 2. uy a Ferrari (trivial, as several good models cost < $200K) Corollary. $200K is hard to obtain. Proof. ecause if it was easy, then having a Ferrari would be easy. Since that is not the case, the corollary follows. Example 2. The problem of traveling from oston to anywhere warm reduces to the problem of deciding on a warm location and buying a plane ticket to that location. This problem of buying a plane ticket reduces to the problem of earning the money for the ticket. This problem of earning the money reduces to the problem of finding a job. This idea of reducibility plays a part in classifying problems: if a A is reducible to and is decidable, A also is decidable. <A> Reduction algorithm <> Algorithm to decide yes no Algorithm to decide A 1

2 If A is undecidable and reducible to, is undecidable. Why? ecause if is actually decidable then we could build a machine and decide A therefore must not be decidable. HALT TM = { (M, w) M is a TM and halts on input w } Note: related to the A TM problem - A TM = { <M, w> M is a TM that s w } which determines whether a machine s a particular string (ance problem) Example. HALT TM = { (M, w) M is a TM and halts on input w } Theorem. HALT TM is undecidable. Proof. We will show that solving A TM would be easy, if we could solve HALT TM. Then, since we know that solving A TM is hard, we conclude that solving HALT TM is hard. More precisely, we will reduce A TM to HALT TM, which means that if HALT TM is decidable, then A TM is decidable which it isn t. < M,w > < M,w > Machine H to decide HALT TM No halt halt Simulate M on w Let a machine H decide HALT TM. Here is a machine S that decides A TM : A := On input (M, w), 1. Run H on input (M, w) 2. If H s, 3. If H s, simulate M on input w until it halts 4. If M s, ; if M s, Proof by contradiction. How? Classifying the Computability of Problems A language can be in one of the following categories: Decidable These are the problems that we call solvable by an algorithm. To prove a language decidable, find an algorithm run by a Turing Machine that always halts. 2

3 Recognizable To prove a language recognizable, find a Turing Machine that s all strings of the language and does not any strings out of the language. The Turing Machine is allowed to loop forever instead of ing. To prove the language not decidable, use a reduction from a recognizable problem that is not decidable. Non-recognizable Those are the hopeless problems! To prove a language is not recognizable, show that it is the complement of a language that is not decidable. Or, use a reduction from a non-recognizable language. E TM = { M M is a TM and L(M) = } Theorem. E TM is undecidable. Proof. We will reduce A TM to E TM. Say that there is a machine R deciding E TM. So R can decide, given a machine description (M), whether L(M) =. For a given string w, consider the following machine: M (w) := On input x, 1. If x w,. 2. Otherwise, simulate M on w. If M s,. If M s,. Notice that M (w) has w hardwired in it. What is L(M (w))? It is simply { w }, if M s w. ut it is if M does not w. < M,w > < M,w > Construct machine M (w) M E TM Given the description of M as an input, R s if M s w, and s if M s w. So here is a machine that decides A TM : S := On input (M, w), 3

4 1. Construct the machine M (w) as described above 2. Run R (E TM ) on input <M > 3. If R s,. If R s,. means its empty or w x means its not empty and x=w Since R always halts and decides whether L(M (w)) =, S always halts and decides whether M s w. EQ TM = { M, N M and N are TMs, and L(M) = L(N) } Theorem. EQ TM is undecidable. Proof. We will reduce E TM to EQ TM. Say that a machine R decides EQ TM. Here is a machine S that decides E TM : S := On input M, where M is a TM, 1. Run R on input (M, M 1 ) where M 1 is a trivial TM that s all inputs. 2. If R s,. If R s,. < M > < M > <N> Machine R to decide EQ TM Machine S to decide E TM Proof by contradiction: if EQ TM is possible then it would be possible (by simple reduction) to create E TM - however we know that E TM is undecidable therefore it must be impossible to create EQ TM Theorem. The complement of EQ TM, L(N) } is undecidable. EQ TM = { M, N M and N are TMs and L(M) Proof. Say it is decidable, and R is a machine that on input (M, N), it s if L(M) = L(N). We show how to construct S deciding A TM : S := On input (M, w), Construct the descriptions of the following machines: M 1 := On any input, 4

5 M 2 := On any input, Simulate M on w, and if M s,. Pass (M 1, M 2 ) to R. If R s,. If it s,. If R s, then L(M 2 ) = {w}, so M s w. Corollary. Therefore, both EQ TM and EQ TM are non-recognizable. <A> Mapping Reducibility eing able to reduce problem A to problem by using a mapping reducibility means that a computable function (reduction) exists that converts instances of problem A to instances of problem. Reduction algorithm Algorithm to decide A <> Algorithm to decide yes no Computable functions * A function f : " # "* is a computable function if some Turing machine M, on every input w, halts with just f(w) on its tape. - All math operations are computable functions. It is possible to make a machine that takes <M,N> and halts with M+N on its tape. - Computable functions may be transformations of machine descriptions. Formal Definition of Mapping Reducibility Language A is mapping reducible to language ( A " m ) if there is a computable function f : "* # " *, where for every w, w " A # f (w) " The function f is called the reduction of A to. 5

6 A f f Theorem 5.22 and is decidable, then A is decidable. Corollary 5.23 and A is undecidable, then is undecidable. <A> Reduction algorithm f(w) f(<a>)=<> Algorithm to decide yes no Algorithm to decide A Theorem 5.28 and is Turing-recognizable, then A is Turing-recognizable. Corollary 5.29 and A is not Turing-recognizable, then is not Turing-recognizable. Example 5.24 Reduction from A TM to HALT TM to prove HALT TM is undecidable Previously used: < M,w > < M,w > Machine H to decide HALT TM No halt halt Simulate M on w 6

7 Mapping reducibility from A TM to HALT TM must present a computable function f that takes <M,w> and returns output <M,w >, where M,w " A TM if and only if M #, w # " HALT TM f = On input <M,w>: 1. Construct the following machine M M = On input x: 1. Run M on x. 2. If M s,. 3. If M s, enter a loop. 2. Output <M,w>. Mapping function < M,w > < M,w > <M,w> Machine to decide HALT TM 7

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2018 http://cseweb.ucsd.edu/classes/sp18/cse105-ab/ Today's learning goals Sipser Ch 5.1, 5.3 Define and explain core examples of computational problems, including

More information

Computational Models Lecture 9, Spring 2009

Computational Models Lecture 9, Spring 2009 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. p. 1 Computational Models Lecture 9, Spring 2009 Reducibility among languages Mapping reductions More undecidable

More information

Lecture 12: Mapping Reductions

Lecture 12: Mapping Reductions Lecture 12: Mapping Reductions October 18, 2016 CS 1010 Theory of Computation Topics Covered 1. The Language EQ T M 2. Mapping Reducibility 3. The Post Correspondence Problem 1 The Language EQ T M The

More information

Computation Histories

Computation Histories 208 Computation Histories The computation history for a Turing machine on an input is simply the sequence of configurations that the machine goes through as it processes the input. An accepting computation

More information

Mapping Reducibility. Human-aware Robotics. 2017/11/16 Chapter 5.3 in Sipser Ø Announcement:

Mapping Reducibility. Human-aware Robotics. 2017/11/16 Chapter 5.3 in Sipser Ø Announcement: Mapping Reducibility 2017/11/16 Chapter 5.3 in Sipser Ø Announcement: q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse355/lectures/mapping.pdf 1 Last time Reducibility

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 4.1, 5.1 Define reductions from one problem to another. Use reductions to prove

More information

Computability and Complexity

Computability and Complexity Computability and Complexity Lecture 5 Reductions Undecidable problems from language theory Linear bounded automata given by Jiri Srba Lecture 5 Computability and Complexity 1/14 Reduction Informal Definition

More information

Non-emptiness Testing for TMs

Non-emptiness Testing for TMs 180 5. Reducibility The proof of unsolvability of the halting problem is an example of a reduction: a way of converting problem A to problem B in such a way that a solution to problem B can be used to

More information

1 Reducability. CSCC63 Worksheet Reducability. For your reference, A T M is defined to be the language { M, w M accepts w}. Theorem 5.

1 Reducability. CSCC63 Worksheet Reducability. For your reference, A T M is defined to be the language { M, w M accepts w}. Theorem 5. CSCC63 Worksheet Reducability For your reference, A T M is defined to be the language { M, w M accepts w}. 1 Reducability Theorem 5.1 HALT TM = { M, w M is a T M that halts on input w} is undecidable.

More information

Decidability. Linz 6 th, Chapter 12: Limits of Algorithmic Computation, page 309ff

Decidability. Linz 6 th, Chapter 12: Limits of Algorithmic Computation, page 309ff Decidability Linz 6 th, Chapter 12: Limits of Algorithmic Computation, page 309ff 1 A property P of strings is said to be decidable if the set of all strings having property P is a recursive set; that

More information

Undecidability. We are not so much concerned if you are slow as when you come to a halt. (Chinese Proverb)

Undecidability. We are not so much concerned if you are slow as when you come to a halt. (Chinese Proverb) We are not so much concerned if you are slow as when you come to a halt. (Chinese Proverb) CS /55 Theory of Computation The is A TM = { M,w M is a TM and w L(M)} A TM is Turing-recognizable. Proof Sketch:

More information

CSCE 551: Chin-Tser Huang. University of South Carolina

CSCE 551: Chin-Tser Huang. University of South Carolina CSCE 551: Theory of Computation Chin-Tser Huang huangct@cse.sc.edu University of South Carolina Computation History A computation history of a TM M is a sequence of its configurations C 1, C 2,, C l such

More information

CS5371 Theory of Computation. Lecture 15: Computability VI (Post s Problem, Reducibility)

CS5371 Theory of Computation. Lecture 15: Computability VI (Post s Problem, Reducibility) CS5371 Theory of Computation Lecture 15: Computability VI (Post s Problem, Reducibility) Objectives In this lecture, we introduce Post s correspondence problem (playing with a special type of domino) We

More information

Lecture Notes: The Halting Problem; Reductions

Lecture Notes: The Halting Problem; Reductions Lecture Notes: The Halting Problem; Reductions COMS W3261 Columbia University 20 Mar 2012 1 Review Key point. Turing machines can be encoded as strings, and other Turing machines can read those strings

More information

Decidability and Undecidability

Decidability and Undecidability Decidability and Undecidability Major Ideas from Last Time Every TM can be converted into a string representation of itself. The encoding of M is denoted M. The universal Turing machine U TM accepts an

More information

Reducability. Sipser, pages

Reducability. Sipser, pages Reducability Sipser, pages 187-214 Reduction Reduction encodes (transforms) one problem as a second problem. A solution to the second, can be transformed into a solution to the first. We expect both transformations

More information

CS5371 Theory of Computation. Lecture 14: Computability V (Prove by Reduction)

CS5371 Theory of Computation. Lecture 14: Computability V (Prove by Reduction) CS5371 Theory of Computation Lecture 14: Computability V (Prove by Reduction) Objectives This lecture shows more undecidable languages Our proof is not based on diagonalization Instead, we reduce the problem

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Ch 4.2 Trace high-level descriptions of algorithms for computational problems. Use

More information

There are two main techniques for showing that problems are undecidable: diagonalization and reduction

There are two main techniques for showing that problems are undecidable: diagonalization and reduction Reducibility 1 There are two main techniques for showing that problems are undecidable: diagonalization and reduction 2 We say that a problem A is reduced to a problem B if the decidability of A follows

More information

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018 CS 301 Lecture 18 Decidable languages Stephen Checkoway April 2, 2018 1 / 26 Decidable language Recall, a language A is decidable if there is some TM M that 1 recognizes A (i.e., L(M) = A), and 2 halts

More information

CS154, Lecture 10: Rice s Theorem, Oracle Machines

CS154, Lecture 10: Rice s Theorem, Oracle Machines CS154, Lecture 10: Rice s Theorem, Oracle Machines Moral: Analyzing Programs is Really, Really Hard But can we more easily tell when some program analysis problem is undecidable? Problem 1 Undecidable

More information

1 Showing Recognizability

1 Showing Recognizability CSCC63 Worksheet Recognizability and Decidability 1 1 Showing Recognizability 1.1 An Example - take 1 Let Σ be an alphabet. L = { M M is a T M and L(M) }, i.e., that M accepts some string from Σ. Prove

More information

CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY

CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY RYAN DOUGHERTY If we want to talk about a program running on a real computer, consider the following: when a program reads an instruction,

More information

CSE 105 Theory of Computation

CSE 105 Theory of Computation CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Undecidability Today s Agenda Review and More Problems A Non-TR Language Reminders and announcements: HW 7 (Last!!)

More information

4.2 The Halting Problem

4.2 The Halting Problem 172 4.2 The Halting Problem The technique of diagonalization was discovered in 1873 by Georg Cantor who was concerned with the problem of measuring the sizes of infinite sets For finite sets we can simply

More information

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, Class 8 Nancy Lynch

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, Class 8 Nancy Lynch 6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 8 Nancy Lynch Today More undecidable problems: About Turing machines: Emptiness, etc. About

More information

Lecture 23: Rice Theorem and Turing machine behavior properties 21 April 2009

Lecture 23: Rice Theorem and Turing machine behavior properties 21 April 2009 CS 373: Theory of Computation Sariel Har-Peled and Madhusudan Parthasarathy Lecture 23: Rice Theorem and Turing machine behavior properties 21 April 2009 This lecture covers Rice s theorem, as well as

More information

ACS2: Decidability Decidability

ACS2: Decidability Decidability Decidability Bernhard Nebel and Christian Becker-Asano 1 Overview An investigation into the solvable/decidable Decidable languages The halting problem (undecidable) 2 Decidable problems? Acceptance problem

More information

Undecidable Problems and Reducibility

Undecidable Problems and Reducibility University of Georgia Fall 2014 Reducibility We show a problem decidable/undecidable by reducing it to another problem. One type of reduction: mapping reduction. Definition Let A, B be languages over Σ.

More information

Chap. 4,5 Review. Algorithms created in proofs from prior chapters

Chap. 4,5 Review. Algorithms created in proofs from prior chapters Chap. 4,5 Review Algorithms created in proofs from prior chapters (p. 55) Theorem 1.39: NFA to DFA (p. 67) Lemma 1.55: Regex to NFA (p. 69) Lemma 1.60: DFA to regex (through GNFA) (p. 112) Lemma 2.21:

More information

6.045J/18.400J: Automata, Computability and Complexity. Quiz 2. March 30, Please write your name in the upper corner of each page.

6.045J/18.400J: Automata, Computability and Complexity. Quiz 2. March 30, Please write your name in the upper corner of each page. 6.045J/18.400J: Automata, Computability and Complexity March 30, 2005 Quiz 2 Prof. Nancy Lynch Please write your name in the upper corner of each page. Problem Score 1 2 3 4 5 6 Total Q2-1 Problem 1: True

More information

The Turing Machine. Computability. The Church-Turing Thesis (1936) Theory Hall of Fame. Theory Hall of Fame. Undecidability

The Turing Machine. Computability. The Church-Turing Thesis (1936) Theory Hall of Fame. Theory Hall of Fame. Undecidability The Turing Machine Computability Motivating idea Build a theoretical a human computer Likened to a human with a paper and pencil that can solve problems in an algorithmic way The theoretical provides a

More information

Theory of Computation (IX) Yijia Chen Fudan University

Theory of Computation (IX) Yijia Chen Fudan University Theory of Computation (IX) Yijia Chen Fudan University Review The Definition of Algorithm Polynomials and their roots A polynomial is a sum of terms, where each term is a product of certain variables and

More information

SD & Turing Enumerable. Lecture 33: Reductions and Undecidability. Lexicographically Enumerable. SD & Turing Enumerable

SD & Turing Enumerable. Lecture 33: Reductions and Undecidability. Lexicographically Enumerable. SD & Turing Enumerable SD & Turing Lecture 33: Reductions and Undecidability CSCI 81 Spring, 2012 Kim Bruce Theorem: A language is SD iff it is Turing enumerable. Proof: Spose L is Turing enumerable. Show L is SD. Let w be input.

More information

Reductions in Computability Theory

Reductions in Computability Theory Reductions in Computability Theory Prakash Panangaden 9 th November 2015 The concept of reduction is central to computability and complexity theory. The phrase P reduces to Q is often used in a confusing

More information

Decidability. Overview. Preliminaries to Halting Problem. Decidable Problems of Regular Languages. Decidable Problems of Context-Free Languages

Decidability. Overview. Preliminaries to Halting Problem. Decidable Problems of Regular Languages. Decidable Problems of Context-Free Languages CS533 Class 04a: 1 c P. Heeman, 2017 Introduction: Decidability Overview Decidable Problems of Regular Languages Decidable Problems of Context-Free Languages Preliminaries to Halting Problem CS533 Class

More information

Computability and Complexity

Computability and Complexity Computability and Complexity Decidability, Undecidability and Reducibility; Codes, Algorithms and Languages CAS 705 Ryszard Janicki Department of Computing and Software McMaster University Hamilton, Ontario,

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION FORMAL LANGUAGES, AUTOMATA AND COMPUTATION DECIDABILITY ( LECTURE 15) SLIDES FOR 15-453 SPRING 2011 1 / 34 TURING MACHINES-SYNOPSIS The most general model of computation Computations of a TM are described

More information

CSE 105 Theory of Computation

CSE 105 Theory of Computation CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Undecidability Today s Agenda Review: The TM Acceptance problem, A TM The Halting Problem for TM s Other problems

More information

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine)

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine) CS537 Theory of Computation Lecture : Computability Theory I (Turing Machine) Objectives Introduce the Turing Machine (TM) Proposed by Alan Turing in 936 finite-state control + infinitely long tape A stronger

More information

Decision Problems with TM s. Lecture 31: Halting Problem. Universe of discourse. Semi-decidable. Look at following sets: CSCI 81 Spring, 2012

Decision Problems with TM s. Lecture 31: Halting Problem. Universe of discourse. Semi-decidable. Look at following sets: CSCI 81 Spring, 2012 Decision Problems with TM s Look at following sets: Lecture 31: Halting Problem CSCI 81 Spring, 2012 Kim Bruce A TM = { M,w M is a TM and w L(M)} H TM = { M,w M is a TM which halts on input w} TOTAL TM

More information

Automata Theory CS S-FR2 Final Review

Automata Theory CS S-FR2 Final Review Automata Theory CS411-2015S-FR2 Final Review David Galles Department of Computer Science University of San Francisco FR2-0: Halting Problem e(m) e(w) Halting Machine takes as input an encoding of a Turing

More information

Mapping Reductions. Mapping Reductions. Introduction to Computability. Theory. Mapping Reductions. Lecture13: Mapping. Reductions

Mapping Reductions. Mapping Reductions. Introduction to Computability. Theory. Mapping Reductions. Lecture13: Mapping. Reductions Introduction to Computability Theory Lecture13: apping Reductions Prof. Amos Israeli 1 apping Reductions apping reductionsconstitute the generalization we are looking for. They are always in a specified

More information

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine)

CS5371 Theory of Computation. Lecture 10: Computability Theory I (Turing Machine) CS537 Theory of Computation Lecture : Computability Theory I (Turing Machine) Objectives Introduce the Turing Machine (TM)? Proposed by Alan Turing in 936 finite-state control + infinitely long tape A

More information

Homework Assignment 6 Answers

Homework Assignment 6 Answers Homework Assignment 6 Answers CSCI 2670 Introduction to Theory of Computing, Fall 2016 December 2, 2016 This homework assignment is about Turing machines, decidable languages, Turing recognizable languages,

More information

Further discussion of Turing machines

Further discussion of Turing machines Further discussion of Turing machines In this lecture we will discuss various aspects of decidable and Turing-recognizable languages that were not mentioned in previous lectures. In particular, we will

More information

Introduction to Languages and Computation

Introduction to Languages and Computation Introduction to Languages and Computation George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 400 George Voutsadakis (LSSU) Languages and Computation July 2014

More information

V Honors Theory of Computation

V Honors Theory of Computation V22.0453-001 Honors Theory of Computation Problem Set 3 Solutions Problem 1 Solution: The class of languages recognized by these machines is the exactly the class of regular languages, thus this TM variant

More information

CSCI3390-Lecture 6: An Undecidable Problem

CSCI3390-Lecture 6: An Undecidable Problem CSCI3390-Lecture 6: An Undecidable Problem September 21, 2018 1 Summary The language L T M recognized by the universal Turing machine is not decidable. Thus there is no algorithm that determines, yes or

More information

CS20a: Turing Machines (Oct 29, 2002)

CS20a: Turing Machines (Oct 29, 2002) CS20a: Turing Machines (Oct 29, 2002) So far: DFA = regular languages PDA = context-free languages Today: Computability 1 Church s thesis The computable functions are the same as the partial recursive

More information

Midterm II : Formal Languages, Automata, and Computability

Midterm II : Formal Languages, Automata, and Computability Midterm II 15-453: Formal Languages, Automata, and Computability Lenore Blum, Asa Frank, Aashish Jindia, and Andrew Smith April 8, 2014 Instructions: 1. Once the exam begins, write your name on each sheet.

More information

Computational Models Lecture 8 1

Computational Models Lecture 8 1 Computational Models Lecture 8 1 Handout Mode Nachum Dershowitz & Yishay Mansour. Tel Aviv University. May 17 22, 2017 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

Introduction to Turing Machines. Reading: Chapters 8 & 9

Introduction to Turing Machines. Reading: Chapters 8 & 9 Introduction to Turing Machines Reading: Chapters 8 & 9 1 Turing Machines (TM) Generalize the class of CFLs: Recursively Enumerable Languages Recursive Languages Context-Free Languages Regular Languages

More information

Lecture 17: Cook-Levin Theorem, NP-Complete Problems

Lecture 17: Cook-Levin Theorem, NP-Complete Problems 6.045 Lecture 17: Cook-Levin Theorem, NP-Complete Problems 1 Is SAT solvable in O(n) time on a multitape TM? Logic circuits of 6n gates for SAT? If yes, then not only is P=NP, but there would be a dream

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2017 http://cseweb.ucsd.edu/classes/sp17/cse105-ab/ Today's learning goals Summarize key concepts, ideas, themes from CSE 105. Approach your final exam studying with

More information

CSCE 551 Final Exam, Spring 2004 Answer Key

CSCE 551 Final Exam, Spring 2004 Answer Key CSCE 551 Final Exam, Spring 2004 Answer Key 1. (10 points) Using any method you like (including intuition), give the unique minimal DFA equivalent to the following NFA: 0 1 2 0 5 1 3 4 If your answer is

More information

On Rice s theorem. Hans Hüttel. October 2001

On Rice s theorem. Hans Hüttel. October 2001 On Rice s theorem Hans Hüttel October 2001 We have seen that there exist languages that are Turing-acceptable but not Turing-decidable. An important example of such a language was the language of the Halting

More information

CS154, Lecture 17: conp, Oracles again, Space Complexity

CS154, Lecture 17: conp, Oracles again, Space Complexity CS154, Lecture 17: conp, Oracles again, Space Complexity Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode: Guess string

More information

CSE 105 THEORY OF COMPUTATION. Spring 2018 review class

CSE 105 THEORY OF COMPUTATION. Spring 2018 review class CSE 105 THEORY OF COMPUTATION Spring 2018 review class Today's learning goals Summarize key concepts, ideas, themes from CSE 105. Approach your final exam studying with confidence. Identify areas to focus

More information

Turing Machines, diagonalization, the halting problem, reducibility

Turing Machines, diagonalization, the halting problem, reducibility Notes on Computer Theory Last updated: September, 015 Turing Machines, diagonalization, the halting problem, reducibility 1 Turing Machines A Turing machine is a state machine, similar to the ones we have

More information

Limits of Computability

Limits of Computability Limits of Computability Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria http://www.risc.jku.at Wolfgang Schreiner

More information

Turing Machine Recap

Turing Machine Recap Turing Machine Recap DFA with (infinite) tape. One move: read, write, move, change state. High-level Points Church-Turing thesis: TMs are the most general computing devices. So far no counter example Every

More information

Turing Machines Part III

Turing Machines Part III Turing Machines Part III Announcements Problem Set 6 due now. Problem Set 7 out, due Monday, March 4. Play around with Turing machines, their powers, and their limits. Some problems require Wednesday's

More information

Exam Computability and Complexity

Exam Computability and Complexity Total number of points:... Number of extra sheets of paper:... Exam Computability and Complexity by Jiri Srba, January 2009 Student s full name CPR number Study number Before you start, fill in the three

More information

CS20a: Turing Machines (Oct 29, 2002)

CS20a: Turing Machines (Oct 29, 2002) CS20a: Turing Machines (Oct 29, 2002) So far: DFA = regular languages PDA = context-free languages Today: Computability 1 Handicapped machines DFA limitations Tape head moves only one direction 2-way DFA

More information

Turing s thesis: (1930) Any computation carried out by mechanical means can be performed by a Turing Machine

Turing s thesis: (1930) Any computation carried out by mechanical means can be performed by a Turing Machine Turing s thesis: (1930) Any computation carried out by mechanical means can be performed by a Turing Machine There is no known model of computation more powerful than Turing Machines Definition of Algorithm:

More information

acs-07: Decidability Decidability Andreas Karwath und Malte Helmert Informatik Theorie II (A) WS2009/10

acs-07: Decidability Decidability Andreas Karwath und Malte Helmert Informatik Theorie II (A) WS2009/10 Decidability Andreas Karwath und Malte Helmert 1 Overview An investigation into the solvable/decidable Decidable languages The halting problem (undecidable) 2 Decidable problems? Acceptance problem : decide

More information

What languages are Turing-decidable? What languages are not Turing-decidable? Is there a language that isn t even Turingrecognizable?

What languages are Turing-decidable? What languages are not Turing-decidable? Is there a language that isn t even Turingrecognizable? } We ll now take a look at Turing Machines at a high level and consider what types of problems can be solved algorithmically and what types can t: What languages are Turing-decidable? What languages are

More information

Decidable Languages - relationship with other classes.

Decidable Languages - relationship with other classes. CSE2001, Fall 2006 1 Last time we saw some examples of decidable languages (or, solvable problems). Today we will start by looking at the relationship between the decidable languages, and the regular and

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Fall 2016 http://cseweb.ucsd.edu/classes/fa16/cse105-abc/ Today's learning goals Sipser Ch 3 Trace the computation of a Turing machine using its transition function and configurations.

More information

Computational Models Lecture 8 1

Computational Models Lecture 8 1 Computational Models Lecture 8 1 Handout Mode Ronitt Rubinfeld and Iftach Haitner. Tel Aviv University. May 11/13, 2015 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

Theory of Computation

Theory of Computation Theory of Computation Lecture #10 Sarmad Abbasi Virtual University Sarmad Abbasi (Virtual University) Theory of Computation 1 / 35 Lecture 10: Overview Undecidability of the Halting Problem Russell s Paradox

More information

CS5371 Theory of Computation. Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG)

CS5371 Theory of Computation. Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG) CS5371 Theory of Computation Lecture 12: Computability III (Decidable Languages relating to DFA, NFA, and CFG) Objectives Recall that decidable languages are languages that can be decided by TM (that means,

More information

Theory of Computation

Theory of Computation Thomas Zeugmann Hokkaido University Laboratory for Algorithmics http://www-alg.ist.hokudai.ac.jp/ thomas/toc/ Lecture 14: Applications of PCP Goal of this Lecture Our goal is to present some typical undecidability

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 15 Last time Decidable languages Designing deciders Today Designing deciders Undecidable languages Diagonalization Sofya Raskhodnikova 3/1/2016 Sofya Raskhodnikova;

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 8 January 24, 2018 Outline Turing Machines and variants multitape TMs nondeterministic TMs Church-Turing Thesis So far several models of computation finite automata

More information

Decidable and undecidable languages

Decidable and undecidable languages The Chinese University of Hong Kong Fall 2011 CSCI 3130: Formal languages and automata theory Decidable and undecidable languages Andrej Bogdanov http://www.cse.cuhk.edu.hk/~andrejb/csc3130 Problems about

More information

Section 14.1 Computability then else

Section 14.1 Computability then else Section 14.1 Computability Some problems cannot be solved by any machine/algorithm. To prove such statements we need to effectively describe all possible algorithms. Example (Turing machines). Associate

More information

Decidability (intro.)

Decidability (intro.) CHAPTER 4 Decidability Contents Decidable Languages decidable problems concerning regular languages decidable problems concerning context-free languages The Halting Problem The diagonalization method The

More information

CS 361 Meeting 26 11/10/17

CS 361 Meeting 26 11/10/17 CS 361 Meeting 26 11/10/17 1. Homework 8 due Announcements A Recognizable, but Undecidable Language 1. Last class, I presented a brief, somewhat inscrutable proof that the language A BT M = { M w M is

More information

CpSc 421 Homework 9 Solution

CpSc 421 Homework 9 Solution CpSc 421 Homework 9 Solution Attempt any three of the six problems below. The homework is graded on a scale of 100 points, even though you can attempt fewer or more points than that. Your recorded grade

More information

Theory of Computation p.1/?? Theory of Computation p.2/?? We develop examples of languages that are decidable

Theory of Computation p.1/?? Theory of Computation p.2/?? We develop examples of languages that are decidable Decidable Languages We use languages to represent various computational problems because we have a terminology for dealing with languages Definition: A language is decidable if there is an algorithm (i.e.

More information

Decidability (What, stuff is unsolvable?)

Decidability (What, stuff is unsolvable?) University of Georgia Fall 2014 Outline Decidability Decidable Problems for Regular Languages Decidable Problems for Context Free Languages The Halting Problem Countable and Uncountable Sets Diagonalization

More information

} Some languages are Turing-decidable A Turing Machine will halt on all inputs (either accepting or rejecting). No infinite loops.

} Some languages are Turing-decidable A Turing Machine will halt on all inputs (either accepting or rejecting). No infinite loops. and their languages } Some languages are Turing-decidable A Turing Machine will halt on all inputs (either accepting or rejecting). No infinite loops. } Some languages are Turing-recognizable, but not

More information

Introduction to Turing Machines

Introduction to Turing Machines Introduction to Turing Machines Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. 12 November 2015 Outline 1 Turing Machines 2 Formal definitions 3 Computability

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY THURSDAY APRIL 3 REVIEW for Midterm TUESDAY April 8 Definition: A Turing Machine is a 7-tuple T = (Q, Σ, Γ, δ, q, q accept, q reject ), where: Q is a

More information

Decidability. Human-aware Robotics. 2017/10/31 Chapter 4.1 in Sipser Ø Announcement:

Decidability. Human-aware Robotics. 2017/10/31 Chapter 4.1 in Sipser Ø Announcement: Decidability 2017/10/31 Chapter 4.1 in Sipser Ø Announcement: q q q Slides for this lecture are here: http://www.public.asu.edu/~yzhan442/teaching/cse355/lectures/decidability.pdf Happy Hollaween! Delayed

More information

Post s Correspondence Problem (PCP) Is Undecidable. Presented By Bharath Bhushan Reddy Goulla

Post s Correspondence Problem (PCP) Is Undecidable. Presented By Bharath Bhushan Reddy Goulla Post s Correspondence Problem (PCP) Is Undecidable Presented By Bharath Bhushan Reddy Goulla Contents : Introduction What Is PCP? Instances Of PCP? Introduction Of Modified PCP (MPCP) Why MPCP? Reducing

More information

Equivalence of TMs and Multitape TMs. Theorem 3.13 and Corollary 3.15 By: Joseph Lauman

Equivalence of TMs and Multitape TMs. Theorem 3.13 and Corollary 3.15 By: Joseph Lauman Equivalence of TMs and Multitape TMs Theorem 3.13 and Corollary 3.15 By: Joseph Lauman Turing Machines First proposed by Alan Turing in 1936 Similar to finite automaton, but with an unlimited and unrestricted

More information

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET Regular Languages and FA A language is a set of strings over a finite alphabet Σ. All languages are finite or countably infinite. The set of all languages

More information

Definition: conp = { L L NP } What does a conp computation look like?

Definition: conp = { L L NP } What does a conp computation look like? Space Complexity 28 Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode: Guess string y of x k length and the machine accepts

More information

UNRESTRICTED GRAMMARS

UNRESTRICTED GRAMMARS 136 UNRESTRICTED GRAMMARS Context-free grammar allows to substitute only variables with strings In an unrestricted grammar (or a rewriting system) one may substitute any non-empty string (containing variables

More information

CSCE 551: Chin-Tser Huang. University of South Carolina

CSCE 551: Chin-Tser Huang. University of South Carolina CSCE 551: Theory of Computation Chin-Tser Huang huangct@cse.sc.edu University of South Carolina Church-Turing Thesis The definition of the algorithm came in the 1936 papers of Alonzo Church h and Alan

More information

The purpose here is to classify computational problems according to their complexity. For that purpose we need first to agree on a computational

The purpose here is to classify computational problems according to their complexity. For that purpose we need first to agree on a computational 1 The purpose here is to classify computational problems according to their complexity. For that purpose we need first to agree on a computational model. We'll remind you what a Turing machine is --- you

More information

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Nathan Brunelle Department of Computer Science University of Virginia www.cs.virginia.edu/~njb2b/theory

More information

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, Class 10 Nancy Lynch

6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, Class 10 Nancy Lynch 6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 10 Nancy Lynch Today Final topic in computability theory: Self-Reference and the Recursion

More information

Computational Models Lecture 8 1

Computational Models Lecture 8 1 Computational Models Lecture 8 1 Handout Mode Ronitt Rubinfeld and Iftach Haitner. Tel Aviv University. April 18/ May 2, 2016 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

CSCC63 Worksheet Turing Machines

CSCC63 Worksheet Turing Machines 1 An Example CSCC63 Worksheet Turing Machines Goal. Design a turing machine, M that accepts only strings of the form {w#w w {0, 1} }. Idea. Describe in words how the machine would work. Read first symbol

More information

Decidability: Reduction Proofs

Decidability: Reduction Proofs Decidability: Reduction Proofs Basic technique for proving a language is (semi)decidable is reduction Based on the following principle: Have problem A that needs to be solved If there exists a problem

More information