Advances in Error Control Strategies for 5G

Size: px
Start display at page:

Download "Advances in Error Control Strategies for 5G"

Transcription

1 Advances in Error Control Strategies for 5G Jörg Kliewer The Elisha Yegal Bar-Ness Center For Wireless Communications And Signal Processing Research

2 5G Requirements [Nokia Networks: Looking ahead to 5G. White paper, April 2014] 2

3 Energy Bottleneck Current computational cost of transmission: approx. 6 nj/bit [Andrews et al. 2014] Current battery capacity 6.9 Wh (iphone 6) Target 10 Gbit/s 3

4 Energy Bottleneck Current computational cost of transmission: approx. 6 nj/bit [Andrews et al. 2014] Current battery capacity 6.9 Wh (iphone 6) Target 10 Gbit/s Resulting battery life: 5 minutes and 27 seconds! 3

5 Coding for *G Quantum leap from 2G to 3G with the adoption of modern iteratively decodable codes (turbo codes, LDPC codes) 3G to 4G basically the same techniques, new: adoption of hybrid ARQ 4

6 Coding for *G Quantum leap from 2G to 3G with the adoption of modern iteratively decodable codes (turbo codes, LDPC codes) 3G to 4G basically the same techniques, new: adoption of hybrid ARQ In order to satisfy the 5G requirements, we need a paradigm change in coding. 4

7 Coding Wish List for 5G 3G/4G coding is essentially capacity-approaching for point-topoint BI-AWGN 5

8 Coding Wish List for 5G 3G/4G coding is essentially capacity-approaching for point-topoint BI-AWGN Gains in transmission power efficiency to be expected from Coding for spectrally efficiency communication Multi-terminal coding and decoding (i.e., for relaying, cooperation, MIMO) 5

9 Coding Wish List for 5G 3G/4G coding is essentially capacity-approaching for point-topoint BI-AWGN Gains in transmission power efficiency to be expected from Coding for spectrally efficiency communication Multi-terminal coding and decoding (i.e., for relaying, cooperation, MIMO) Gains in computational power efficiency equally important 5

10 One Code Fits All? 6

11 Not Really 7

12 Not Really No single scheme which fixes all these issues, but few promising candidates: Spatially coupled (convolutional) LDPC codes Non-binary LDPC codes Polar codes 7

13 Bit error probability LDPC Block Codes Uncoded BPSK Regular LDPC-BC Shannon limit Waterfall Irregular LDPC-BC Error floor (db) 8

14 Bit error probability LDPC Block Codes Uncoded BPSK Regular LDPC-BC Waterfall Shannon limit Irregular LDPC-BC Error floor (db) Tanner graph (3,6) regular LDPC code: H = (a) Graph sparsely connected (b) 8

15 Spatially Coupled LDPC Codes Invented as convolutional LDPC codes [Jiménez-Feltström & Zigangirov 1999], theory [Kudekar, Richardson, Urbanke 2010] Asymptotically universally capacity achieving for a wide range of channels and code rates 9

16 Spatially Coupled LDPC Codes Invented as convolutional LDPC codes [Jiménez-Feltström & Zigangirov 1999], theory [Kudekar, Richardson, Urbanke 2010] Asymptotically universally capacity achieving for a wide range of channels and code rates Same performance under belief propagation decoding as for the corresponding block LDPC ensembles under maximum likelihood decoding (threshold saturation) 9

17 Spatially Coupled LDPC Codes Invented as convolutional LDPC codes [Jiménez-Feltström & Zigangirov 1999], theory [Kudekar, Richardson, Urbanke 2010] Asymptotically universally capacity achieving for a wide range of channels and code rates Same performance under belief propagation decoding as for the corresponding block LDPC ensembles under maximum likelihood decoding (threshold saturation) Decoding complexity and latency reduction by windowed decoding 9

18 Spatially Coupled LDPC Codes Coupling construction via unwrapping: H = (cut-and-paste) H = cc (a) (diagonal matrix extension) Convolutional code structure 10

19 Spatially Coupled LDPC Codes Coupling construction via unwrapping: Resulting Tanner graph: H = (cut-and-paste) H = cc (a) (diagonal matrix extension) Convolutional code structure 10

20 Spatially Coupled LDPC Codes H = (cut-and-paste) Coupling construction via unwrapping: H = (cut-and-paste) Resulting Tanner graph: H = cc (a) (diagonal matrix extension) H = cc (diagonal matrix extension) Terminated Tanner graph: (b) (a) 0 1 L 2 L 1 (c) Convolutional code structure 10

21 Spatially Coupled LDPC Codes: Performance 10 1 Bit error rate convolutional gain (3,6)-regular LDPC-BC n = (3,6)-regular LDPC-CC ν s = E b /N 0 (db) 11

22 Spatially Coupled LDPC Codes: Performance Shannon limit (3,6) (4,8) Term. (3,6)-reg. Term. (4,8)-reg. Term. (5,10)-reg. Term. ARJA Block (J, K)-reg. Block ARJA 0.55 (5,10) (3,6) (5,10) (4,8) Gilbert-Varshamov bound Rate L= L= L=2 Increasing termination length L L=3 L=5 L= L=8 L=7 0.2 L=4 L=2 L=5 L=6 L= L=3 Increasing termination L=7 L=4 L=4 0.1 L=5 length L L= E b /N 0 (db) d min /n [Costello, Dolecek, Fuja, Kliewer, Mitchell, Smarandache, 2014] 12

23 Spatially Coupled LDPC Codes: Efficient Decoding Pipeline decoding: Decoded symbols v Proc. I Proc. I v 1 t 0 t 1 I(m s )Mc (a) Proc. 2 Proc. 1 s r 1 t r t 0 Received symbols 13

24 Spatially Coupled LDPC Codes: Efficient Decoding Pipeline decoding: Decoded symbols v Proc. I Proc. I v 1 t 0 t 1 I(m s )Mc (a) Proc. 2 Proc. 1 s r 1 t r t 0 Received symbols Low-latency low-complexity windowed decoding: Mc... Mc... WMc Decoded symbols WMc t = 0 t = 1 (b)

25 Non-Binary LDPC Codes Code alphabet in GF(q), q > 2 Code alphabet can be equivalent to modulation alphabet 14

26 Non-Binary LDPC Codes Code alphabet in GF(q), q > 2 Code alphabet can be equivalent to modulation alphabet Better performance at low block lengths than binary codes Decoding complexity O(q 2 ) for belief propagation decoding, but O(q log q) with FFT-based decoding [Declercq & Fossorier 2007] 14

27 Non-Binary LDPC Codes Code alphabet in GF(q), q > 2 Code alphabet can be equivalent to modulation alphabet Better performance at low block lengths than binary codes Decoding complexity O(q 2 ) for belief propagation decoding, but O(q log q) with FFT-based decoding [Declercq & Fossorier 2007] (b) 14

28 Non-Binary LDPC Codes: Performance Random codes, N 2350, R 0.83 QC codes, N 1200, R 0.8 FER Original A method Binary GF(4) GF(8) GF(16) SNR(dB) FER Original A method GF(8) GF(4) GF(16) SNR(dB) [Amiri, Kliewer, Dolecek 2014] 15

29 Polar Codes First constructive technique to provably achieve channel capacity with bounded complexity O(n log n) [Arikan 2009] 16

30 Polar Codes First constructive technique to provably achieve channel capacity with bounded complexity O(n log n) [Arikan 2009] Closely related to Reed-Muller codes, constructed recursively via Kronecker products 16

31 Polar Codes First constructive technique to provably achieve channel capacity with bounded complexity O(n log n) [Arikan 2009] Closely related to Reed-Muller codes, constructed recursively via Kronecker products Advantages for multi-terminal setups (e.g., broadcast channel [Mondelli et al. 2014]) 16

32 Take Aways 5G requirements: One code fits all? 17

33 Take Aways 5G requirements: One code fits all? Binary SC- LDPC codes Non-binary LDPC codes Low complexity en-/decod. Finite blocklength perf. Spectrally efficient Suitable for multiterminal Polar codes 17

34 Take Aways 5G requirements: One code fits all? Binary SC- LDPC codes Non-binary LDPC codes Low complexity en-/decod. Finite blocklength perf. Spectrally efficient Suitable for multiterminal Polar codes Open: Improving finite block length performance of polar codes Non-binary SC-LDPC codes 17

35 Follow Up... B. Amiri, A. Reisizadeh, J. Kliewer, L. Dolecek: Optimized array-based spatiallycoupled LDPC codes: An absorbing set approach, Submitted to ISIT D. J. Costello, L. Dolecek, T. E. Fuja, J. Kliewer, D. G. M. Mitchell, R. Smarandache: Spatially coupled codes on graphs: Theory and practice, IEEE Communications Magazine, July E. En Gad, Y. Li, J. Kliewer, M. Langberg, A. Jiang, J. Bruck, Asymmetric error correction and flash-memory rewriting using polar codes, arxiv: , Oct B. Amiri, J. Kliewer, L. Dolecek: Analysis and enumeration of absorbing sets for non-binary graph-based codes. IEEE Trans. Comm., February J. Kliewer, D. J. Costello, Jr.: On achieving an asymptotically error-free fixedpoint of iterative decoding for perfect a priori information. IEEE Trans. Comm., June V. Rahti, M. Andersson, R. Thobaben, J. Kliewer, M. Skoglund: Performance analysis and design of two edge type LDPC codes for the BEC wiretap channel, IEEE Trans. Inf. Theory, February C. Koller, A. Graell i Amat, J. Kliewer, F. Vatta, K. S. Zigangirov, D. J. Costello, Jr.: Analysis and design of tuned turbo codes. IEEE Trans. Inf. Theory, July

Making Error Correcting Codes Work for Flash Memory

Making Error Correcting Codes Work for Flash Memory Making Error Correcting Codes Work for Flash Memory Part I: Primer on ECC, basics of BCH and LDPC codes Lara Dolecek Laboratory for Robust Information Systems (LORIS) Center on Development of Emerging

More information

Modern Coding Theory. Daniel J. Costello, Jr School of Information Theory Northwestern University August 10, 2009

Modern Coding Theory. Daniel J. Costello, Jr School of Information Theory Northwestern University August 10, 2009 Modern Coding Theory Daniel J. Costello, Jr. Coding Research Group Department of Electrical Engineering University of Notre Dame Notre Dame, IN 46556 2009 School of Information Theory Northwestern University

More information

Constructions of Nonbinary Quasi-Cyclic LDPC Codes: A Finite Field Approach

Constructions of Nonbinary Quasi-Cyclic LDPC Codes: A Finite Field Approach Constructions of Nonbinary Quasi-Cyclic LDPC Codes: A Finite Field Approach Shu Lin, Shumei Song, Lan Lan, Lingqi Zeng and Ying Y Tai Department of Electrical & Computer Engineering University of California,

More information

Quasi-Cyclic Asymptotically Regular LDPC Codes

Quasi-Cyclic Asymptotically Regular LDPC Codes 2010 IEEE Information Theory Workshop - ITW 2010 Dublin Quasi-Cyclic Asymptotically Regular LDPC Codes David G. M. Mitchell, Roxana Smarandache, Michael Lentmaier, and Daniel J. Costello, Jr. Dept. of

More information

ECEN 655: Advanced Channel Coding

ECEN 655: Advanced Channel Coding ECEN 655: Advanced Channel Coding Course Introduction Henry D. Pfister Department of Electrical and Computer Engineering Texas A&M University ECEN 655: Advanced Channel Coding 1 / 19 Outline 1 History

More information

Lower Bounds on the Graphical Complexity of Finite-Length LDPC Codes

Lower Bounds on the Graphical Complexity of Finite-Length LDPC Codes Lower Bounds on the Graphical Complexity of Finite-Length LDPC Codes Igal Sason Department of Electrical Engineering Technion - Israel Institute of Technology Haifa 32000, Israel 2009 IEEE International

More information

Girth Analysis of Polynomial-Based Time-Invariant LDPC Convolutional Codes

Girth Analysis of Polynomial-Based Time-Invariant LDPC Convolutional Codes IWSSIP 212, 11-13 April 212, Vienna, Austria ISBN 978-3-2-2328-4 Girth Analysis of Polynomial-Based Time-Invariant LDPC Convolutional Codes Hua Zhou and Norbert Goertz Institute of Telecommunications Vienna

More information

Structured Low-Density Parity-Check Codes: Algebraic Constructions

Structured Low-Density Parity-Check Codes: Algebraic Constructions Structured Low-Density Parity-Check Codes: Algebraic Constructions Shu Lin Department of Electrical and Computer Engineering University of California, Davis Davis, California 95616 Email:shulin@ece.ucdavis.edu

More information

Convergence analysis for a class of LDPC convolutional codes on the erasure channel

Convergence analysis for a class of LDPC convolutional codes on the erasure channel Convergence analysis for a class of LDPC convolutional codes on the erasure channel Sridharan, Arvind; Lentmaier, Michael; Costello Jr., Daniel J.; Zigangirov, Kamil Published in: [Host publication title

More information

Spatially Coupled LDPC Codes Constructed from Protographs

Spatially Coupled LDPC Codes Constructed from Protographs IEEE TRANSACTIONS ON INFORMATION THEORY (SUBMITTED PAPER) 1 Spatially Coupled LDPC Codes Constructed from Protographs David G. M. Mitchell, Member, IEEE, Michael Lentmaier, Senior Member, IEEE, and Daniel

More information

Construction of low complexity Array based Quasi Cyclic Low density parity check (QC-LDPC) codes with low error floor

Construction of low complexity Array based Quasi Cyclic Low density parity check (QC-LDPC) codes with low error floor Construction of low complexity Array based Quasi Cyclic Low density parity check (QC-LDPC) codes with low error floor Pravin Salunkhe, Prof D.P Rathod Department of Electrical Engineering, Veermata Jijabai

More information

Practical Polar Code Construction Using Generalised Generator Matrices

Practical Polar Code Construction Using Generalised Generator Matrices Practical Polar Code Construction Using Generalised Generator Matrices Berksan Serbetci and Ali E. Pusane Department of Electrical and Electronics Engineering Bogazici University Istanbul, Turkey E-mail:

More information

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 10, OCTOBER

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 10, OCTOBER IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 10, OCTOBER 2016 4029 Optimized Design of Finite-Length Separable Circulant-Based Spatially-Coupled Codes: An Absorbing Set-Based Analysis Behzad Amiri,

More information

Low-density parity-check codes

Low-density parity-check codes Low-density parity-check codes From principles to practice Dr. Steve Weller steven.weller@newcastle.edu.au School of Electrical Engineering and Computer Science The University of Newcastle, Callaghan,

More information

Wrap-Around Sliding-Window Near-ML Decoding of Binary LDPC Codes Over the BEC

Wrap-Around Sliding-Window Near-ML Decoding of Binary LDPC Codes Over the BEC Wrap-Around Sliding-Window Near-ML Decoding of Binary LDPC Codes Over the BEC Irina E Bocharova 1,2, Boris D Kudryashov 1, Eirik Rosnes 3, Vitaly Skachek 2, and Øyvind Ytrehus 3 1 Department of Information

More information

Time-invariant LDPC convolutional codes

Time-invariant LDPC convolutional codes Time-invariant LDPC convolutional codes Dimitris Achlioptas, Hamed Hassani, Wei Liu, and Rüdiger Urbanke Department of Computer Science, UC Santa Cruz, USA Email: achlioptas@csucscedu Department of Computer

More information

Lecture 9 Polar Coding

Lecture 9 Polar Coding Lecture 9 Polar Coding I-Hsiang ang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 29, 2015 1 / 25 I-Hsiang ang IT Lecture 9 In Pursuit of Shannon s Limit Since

More information

Non-binary Hybrid LDPC Codes: structure, decoding and optimization

Non-binary Hybrid LDPC Codes: structure, decoding and optimization Non-binary Hybrid LDPC Codes: structure, decoding and optimization Lucile Sassatelli and David Declercq ETIS - ENSEA/UCP/CNRS UMR-8051 95014 Cergy-Pontoise, France {sassatelli, declercq}@ensea.fr Abstract

More information

Channel Codes for Short Blocks: A Survey

Channel Codes for Short Blocks: A Survey 11th International ITG Conference on Systems, Communications and Coding February 6, 2017 Channel Codes for Short Blocks: A Survey Gianluigi Liva, gianluigi.liva@dlr.de Fabian Steiner, fabian.steiner@tum.de

More information

An Introduction to Low Density Parity Check (LDPC) Codes

An Introduction to Low Density Parity Check (LDPC) Codes An Introduction to Low Density Parity Check (LDPC) Codes Jian Sun jian@csee.wvu.edu Wireless Communication Research Laboratory Lane Dept. of Comp. Sci. and Elec. Engr. West Virginia University June 3,

More information

Minimum Distance and Convergence Analysis of Hamming-Accumulate-Acccumulate Codes

Minimum Distance and Convergence Analysis of Hamming-Accumulate-Acccumulate Codes 1 Minimum Distance and Convergence Analysis of Hamming-Accumulate-Acccumulate Codes Alexandre Graell i Amat and Raphaël Le Bidan arxiv:0905.4545v1 [cs.it] 28 May 2009 Abstract In this letter we consider

More information

Graph-based Codes for Quantize-Map-and-Forward Relaying

Graph-based Codes for Quantize-Map-and-Forward Relaying 20 IEEE Information Theory Workshop Graph-based Codes for Quantize-Map-and-Forward Relaying Ayan Sengupta, Siddhartha Brahma, Ayfer Özgür, Christina Fragouli and Suhas Diggavi EPFL, Switzerland, UCLA,

More information

High Performance Non-Binary Spatially-Coupled Codes for Flash Memories

High Performance Non-Binary Spatially-Coupled Codes for Flash Memories High Performance Non-Binary Spatially-Coupled Codes for Flash Memories Ahmed Hareedy, Homa Esfahanizadeh, and Lara Dolecek Electrical Eng. Department, University of California, Los Angeles, Los Angeles,

More information

Globally Coupled LDPC Codes

Globally Coupled LDPC Codes Globally Coupled LDPC Codes Juane Li 1, Shu Lin 1, Khaled Abdel-Ghaffar 1, William E Ryan 2, and Daniel J Costello, Jr 3 1 University of California, Davis, CA 95616 2 Zeta Associates, Fairfax, VA 22030

More information

Polar Coding for the Large Hadron Collider: Challenges in Code Concatenation

Polar Coding for the Large Hadron Collider: Challenges in Code Concatenation Polar Coding for the Large Hadron Collider: Challenges in Code Concatenation Alexios Balatsoukas-Stimming, Tomasz Podzorny, Jan Uythoven {alexios.balatsoukas, tomasz.podzorny, jan.uythoven}@cern.ch European

More information

Belief propagation decoding of quantum channels by passing quantum messages

Belief propagation decoding of quantum channels by passing quantum messages Belief propagation decoding of quantum channels by passing quantum messages arxiv:67.4833 QIP 27 Joseph M. Renes lempelziv@flickr To do research in quantum information theory, pick a favorite text on classical

More information

Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels

Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels Jilei Hou, Paul H. Siegel and Laurence B. Milstein Department of Electrical and Computer Engineering

More information

Extended MinSum Algorithm for Decoding LDPC Codes over GF (q)

Extended MinSum Algorithm for Decoding LDPC Codes over GF (q) Extended MinSum Algorithm for Decoding LDPC Codes over GF (q) David Declercq ETIS ENSEA/UCP/CNRS UMR-8051, 95014 Cergy-Pontoise, (France), declercq@ensea.fr Marc Fossorier Dept. Electrical Engineering,

More information

Integrated Code Design for a Joint Source and Channel LDPC Coding Scheme

Integrated Code Design for a Joint Source and Channel LDPC Coding Scheme Integrated Code Design for a Joint Source and Channel LDPC Coding Scheme Hsien-Ping Lin Shu Lin and Khaled Abdel-Ghaffar Department of Electrical and Computer Engineering University of California Davis

More information

On Bit Error Rate Performance of Polar Codes in Finite Regime

On Bit Error Rate Performance of Polar Codes in Finite Regime On Bit Error Rate Performance of Polar Codes in Finite Regime A. Eslami and H. Pishro-Nik Abstract Polar codes have been recently proposed as the first low complexity class of codes that can provably achieve

More information

Polar Codes: Graph Representation and Duality

Polar Codes: Graph Representation and Duality Polar Codes: Graph Representation and Duality arxiv:1312.0372v1 [cs.it] 2 Dec 2013 M. Fossorier ETIS ENSEA/UCP/CNRS UMR-8051 6, avenue du Ponceau, 95014, Cergy Pontoise, France Email: mfossorier@ieee.org

More information

Graph-based codes for flash memory

Graph-based codes for flash memory 1/28 Graph-based codes for flash memory Discrete Mathematics Seminar September 3, 2013 Katie Haymaker Joint work with Professor Christine Kelley University of Nebraska-Lincoln 2/28 Outline 1 Background

More information

Minimum Distance Bounds for Multiple-Serially Concatenated Code Ensembles

Minimum Distance Bounds for Multiple-Serially Concatenated Code Ensembles Minimum Distance Bounds for Multiple-Serially Concatenated Code Ensembles Christian Koller,Jörg Kliewer, Kamil S. Zigangirov,DanielJ.Costello,Jr. ISIT 28, Toronto, Canada, July 6 -, 28 Department of Electrical

More information

Design of Non-Binary Quasi-Cyclic LDPC Codes by Absorbing Set Removal

Design of Non-Binary Quasi-Cyclic LDPC Codes by Absorbing Set Removal Design of Non-Binary Quasi-Cyclic LDPC Codes by Absorbing Set Removal Behzad Amiri Electrical Eng. Department University of California, Los Angeles Los Angeles, USA Email: amiri@ucla.edu Jorge Arturo Flores

More information

Hybrid Concatenated Codes with Asymptotically Good Distance Growth

Hybrid Concatenated Codes with Asymptotically Good Distance Growth Hybrid Concatenated Codes with Asymptotically Good Distance Growth Christian Koller, Alexandre Graell i Amat,Jörg Kliewer, Francesca Vatta, and Daniel J. Costello, Jr. Department of Electrical Engineering,

More information

Successive Cancellation Decoding of Single Parity-Check Product Codes

Successive Cancellation Decoding of Single Parity-Check Product Codes Successive Cancellation Decoding of Single Parity-Check Product Codes Mustafa Cemil Coşkun, Gianluigi Liva, Alexandre Graell i Amat and Michael Lentmaier Institute of Communications and Navigation, German

More information

Research Collection. The fractality of polar codes. Conference Paper. ETH Library. Author(s): Geiger, Bernhard C. Publication Date: 2016

Research Collection. The fractality of polar codes. Conference Paper. ETH Library. Author(s): Geiger, Bernhard C. Publication Date: 2016 Research Collection Conference Paper The fractality of polar codes Authors: Geiger, ernhard C. Publication Date: 016 Permanent Link: https://doi.org/10.399/ethz-a-01064591 Rights / License: In Copyright

More information

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 57, NO 2, FEBRUARY 2011 835 Deriving Good LDPC Convolutional Codes from LDPC Block Codes Ali E Pusane, Member, IEEE, Roxana Smarandache, Member, IEEE, Pascal

More information

RCA Analysis of the Polar Codes and the use of Feedback to aid Polarization at Short Blocklengths

RCA Analysis of the Polar Codes and the use of Feedback to aid Polarization at Short Blocklengths RCA Analysis of the Polar Codes and the use of Feedback to aid Polarization at Short Blocklengths Kasra Vakilinia, Dariush Divsalar*, and Richard D. Wesel Department of Electrical Engineering, University

More information

5. Density evolution. Density evolution 5-1

5. Density evolution. Density evolution 5-1 5. Density evolution Density evolution 5-1 Probabilistic analysis of message passing algorithms variable nodes factor nodes x1 a x i x2 a(x i ; x j ; x k ) x3 b x4 consider factor graph model G = (V ;

More information

Low Density Parity Check (LDPC) Codes and the Need for Stronger ECC. August 2011 Ravi Motwani, Zion Kwok, Scott Nelson

Low Density Parity Check (LDPC) Codes and the Need for Stronger ECC. August 2011 Ravi Motwani, Zion Kwok, Scott Nelson Low Density Parity Check (LDPC) Codes and the Need for Stronger ECC August 2011 Ravi Motwani, Zion Kwok, Scott Nelson Agenda NAND ECC History Soft Information What is soft information How do we obtain

More information

Low-Density Parity-Check codes An introduction

Low-Density Parity-Check codes An introduction Low-Density Parity-Check codes An introduction c Tilo Strutz, 2010-2014,2016 June 9, 2016 Abstract Low-density parity-check codes (LDPC codes) are efficient channel coding codes that allow transmission

More information

Asynchronous Decoding of LDPC Codes over BEC

Asynchronous Decoding of LDPC Codes over BEC Decoding of LDPC Codes over BEC Saeid Haghighatshoar, Amin Karbasi, Amir Hesam Salavati Department of Telecommunication Systems, Technische Universität Berlin, Germany, School of Engineering and Applied

More information

Error Floors of LDPC Coded BICM

Error Floors of LDPC Coded BICM Electrical and Computer Engineering Conference Papers, Posters and Presentations Electrical and Computer Engineering 2007 Error Floors of LDPC Coded BICM Aditya Ramamoorthy Iowa State University, adityar@iastate.edu

More information

Sparse Superposition Codes for the Gaussian Channel

Sparse Superposition Codes for the Gaussian Channel Sparse Superposition Codes for the Gaussian Channel Florent Krzakala (LPS, Ecole Normale Supérieure, France) J. Barbier (ENS) arxiv:1403.8024 presented at ISIT 14 Long version in preparation Communication

More information

Decoding Algorithms for Nonbinary LDPC Codes over GF(q)

Decoding Algorithms for Nonbinary LDPC Codes over GF(q) Decoding Algorithms for Nonbinary LDPC Codes over GF(q) David Declercq and Marc Fossorier September 19, 2006 Abstract In this paper, we address the problem of decoding nonbinary LDPC codes over finite

More information

Codes on graphs and iterative decoding

Codes on graphs and iterative decoding Codes on graphs and iterative decoding Bane Vasić Error Correction Coding Laboratory University of Arizona Funded by: National Science Foundation (NSF) Seagate Technology Defense Advanced Research Projects

More information

Codes on graphs and iterative decoding

Codes on graphs and iterative decoding Codes on graphs and iterative decoding Bane Vasić Error Correction Coding Laboratory University of Arizona Prelude Information transmission 0 0 0 0 0 0 Channel Information transmission signal 0 0 threshold

More information

Coding Techniques for Data Storage Systems

Coding Techniques for Data Storage Systems Coding Techniques for Data Storage Systems Thomas Mittelholzer IBM Zurich Research Laboratory /8 Göttingen Agenda. Channel Coding and Practical Coding Constraints. Linear Codes 3. Weight Enumerators and

More information

The Concept of Soft Channel Encoding and its Applications in Wireless Relay Networks

The Concept of Soft Channel Encoding and its Applications in Wireless Relay Networks The Concept of Soft Channel Encoding and its Applications in Wireless Relay Networks Gerald Matz Institute of Telecommunications Vienna University of Technology institute of telecommunications Acknowledgements

More information

Performance of Spatially-Coupled LDPC Codes and Threshold Saturation over BICM Channels

Performance of Spatially-Coupled LDPC Codes and Threshold Saturation over BICM Channels Performance of Spatially-Coupled LDPC Codes and Threshold Saturation over BICM Channels Arvind Yedla, Member, IEEE, Mostafa El-Khamy, Senior Member, IEEE, Jungwon Lee, Senior Member, IEEE, and Inyup Kang,

More information

Introduction to Low-Density Parity Check Codes. Brian Kurkoski

Introduction to Low-Density Parity Check Codes. Brian Kurkoski Introduction to Low-Density Parity Check Codes Brian Kurkoski kurkoski@ice.uec.ac.jp Outline: Low Density Parity Check Codes Review block codes History Low Density Parity Check Codes Gallager s LDPC code

More information

An Unnoticed Strong Connection Between Algebraic-Based and Protograph-Based LDPC Codes, Part II: Nonbinary Case and Code Construction

An Unnoticed Strong Connection Between Algebraic-Based and Protograph-Based LDPC Codes, Part II: Nonbinary Case and Code Construction An Unnoticed Strong Connection Between Algebraic-Based and Protograph-Based LDPC Codes, Part II: Nonbinary Case and Code Construction Juane Li 1, Keke Liu 1, Shu Lin 1, William E Ryan 2, and Khaled Abdel-Ghaffar

More information

Optimal Rate and Maximum Erasure Probability LDPC Codes in Binary Erasure Channel

Optimal Rate and Maximum Erasure Probability LDPC Codes in Binary Erasure Channel Optimal Rate and Maximum Erasure Probability LDPC Codes in Binary Erasure Channel H. Tavakoli Electrical Engineering Department K.N. Toosi University of Technology, Tehran, Iran tavakoli@ee.kntu.ac.ir

More information

Message-Passing Decoding for Low-Density Parity-Check Codes Harish Jethanandani and R. Aravind, IIT Madras

Message-Passing Decoding for Low-Density Parity-Check Codes Harish Jethanandani and R. Aravind, IIT Madras Message-Passing Decoding for Low-Density Parity-Check Codes Harish Jethanandani and R. Aravind, IIT Madras e-mail: hari_jethanandani@yahoo.com Abstract Low-density parity-check (LDPC) codes are discussed

More information

One Lesson of Information Theory

One Lesson of Information Theory Institut für One Lesson of Information Theory Prof. Dr.-Ing. Volker Kühn Institute of Communications Engineering University of Rostock, Germany Email: volker.kuehn@uni-rostock.de http://www.int.uni-rostock.de/

More information

Low-Complexity Decoding for Non-Binary LDPC Codes in High Order Fields

Low-Complexity Decoding for Non-Binary LDPC Codes in High Order Fields Low-Complexity Decoding for Non-Binary LDPC Codes in High Order Fields Adrian Voicila, David Declercq, Francois Verdier, Marc Fossorier, Pascal Urard To cite this version: Adrian Voicila, David Declercq,

More information

ML and Near-ML Decoding of LDPC Codes Over the BEC: Bounds and Decoding Algorithms

ML and Near-ML Decoding of LDPC Codes Over the BEC: Bounds and Decoding Algorithms 1 ML and Near-ML Decoding of LDPC Codes Over the BEC: Bounds and Decoding Algorithms Irina E. Bocharova, Senior Member, IEEE, Boris D. Kudryashov, Senior Member, IEEE, Vitaly Skachek, Member, IEEE, Eirik

More information

/12/$ IEEE 486

/12/$ IEEE 486 International Conference on Computing, Networking and Communications, Data Storage Technology and Applications Symposium Characterization and Error-Correcting Codes for TLC Flash Memories Eitan Yaakobi,

More information

From Product Codes to Structured Generalized LDPC Codes

From Product Codes to Structured Generalized LDPC Codes From Product Codes to Structured Generalized LDPC Codes Michael Lentmaier, Gianluigi Liva, Enrico Paolini, and Gerhard Fettweis Vodafone Chair Mobile Communications Systems, Dresden University of Technology

More information

Enhancing Binary Images of Non-Binary LDPC Codes

Enhancing Binary Images of Non-Binary LDPC Codes Enhancing Binary Images of Non-Binary LDPC Codes Aman Bhatia, Aravind R Iyengar, and Paul H Siegel University of California, San Diego, La Jolla, CA 92093 0401, USA Email: {a1bhatia, aravind, psiegel}@ucsdedu

More information

Sridharan, Arvind; Truhachev, Dmitri; Lentmaier, Michael; Costello Jr., Daniel J.; Zigangirov, Kamil

Sridharan, Arvind; Truhachev, Dmitri; Lentmaier, Michael; Costello Jr., Daniel J.; Zigangirov, Kamil Distance bounds for an ensemble of LDPC convolutional codes Sridharan, Arvind; Truhachev, Dmitri; Lentmaier, Michael; Costello Jr., Daniel J.; Zigangirov, Kamil Published in: IEEE Transactions on Information

More information

An Introduction to Algorithmic Coding Theory

An Introduction to Algorithmic Coding Theory An Introduction to Algorithmic Coding Theory M. Amin Shokrollahi Bell Laboratories Part : Codes - A puzzle What do the following problems have in common? 2 Problem : Information Transmission MESSAGE G

More information

CHANNEL DECOMPOSITION FOR MULTILEVEL CODES OVER MULTILEVEL AND PARTIAL ERASURE CHANNELS. Carolyn Mayer. Kathryn Haymaker. Christine A.

CHANNEL DECOMPOSITION FOR MULTILEVEL CODES OVER MULTILEVEL AND PARTIAL ERASURE CHANNELS. Carolyn Mayer. Kathryn Haymaker. Christine A. Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 00X doi:0.3934/xx.xx.xx.xx pp. X XX CHANNEL DECOMPOSITION FOR MULTILEVEL CODES OVER MULTILEVEL AND PARTIAL ERASURE CHANNELS Carolyn Mayer Department

More information

Status of Knowledge on Non-Binary LDPC Decoders

Status of Knowledge on Non-Binary LDPC Decoders Status of Knowledge on Non-Binary LDPC Decoders Part I: From Binary to Non-Binary Belief Propagation Decoding D. Declercq 1 1 ETIS - UMR8051 ENSEA/Cergy-University/CNRS France IEEE SSC SCV Tutorial, Santa

More information

Iterative Encoding of Low-Density Parity-Check Codes

Iterative Encoding of Low-Density Parity-Check Codes Iterative Encoding of Low-Density Parity-Check Codes David Haley, Alex Grant and John Buetefuer Institute for Telecommunications Research University of South Australia Mawson Lakes Blvd Mawson Lakes SA

More information

Convolutional Codes ddd, Houshou Chen. May 28, 2012

Convolutional Codes ddd, Houshou Chen. May 28, 2012 Representation I, II Representation III, IV trellis of Viterbi decoding Turbo codes Convolutional Codes ddd, Houshou Chen Department of Electrical Engineering National Chung Hsing University Taichung,

More information

Permuted Successive Cancellation Decoder for Polar Codes

Permuted Successive Cancellation Decoder for Polar Codes Permuted Successive Cancellation Decoder for Polar Codes Harish Vangala, Emanuele Viterbo, and Yi Hong, Dept. of ECSE, Monash University, Melbourne, VIC 3800, Australia. Email: {harish.vangala, emanuele.viterbo,

More information

Threshold Saturation on Channels with Memory via Spatial Coupling

Threshold Saturation on Channels with Memory via Spatial Coupling Threshold Saturation on Channels with Memory via Spatial Coupling Shrinivas Kudekar and Kenta Kasai New Mexico Consortium and Center for Non-linear Studies, Los Alamos National Laboratory, NM, USA Email:

More information

Low-density parity-check (LDPC) codes

Low-density parity-check (LDPC) codes Low-density parity-check (LDPC) codes Performance similar to turbo codes Do not require long interleaver to achieve good performance Better block error performance Error floor occurs at lower BER Decoding

More information

Fountain Uncorrectable Sets and Finite-Length Analysis

Fountain Uncorrectable Sets and Finite-Length Analysis Fountain Uncorrectable Sets and Finite-Length Analysis Wen Ji 1, Bo-Wei Chen 2, and Yiqiang Chen 1 1 Beijing Key Laboratory of Mobile Computing and Pervasive Device Institute of Computing Technology, Chinese

More information

Performance of Multi Binary Turbo-Codes on Nakagami Flat Fading Channels

Performance of Multi Binary Turbo-Codes on Nakagami Flat Fading Channels Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara Seria ELECTRONICĂ şi TELECOMUNICAŢII TRANSACTIONS on ELECTRONICS and COMMUNICATIONS Tom 5(65), Fascicola -2, 26 Performance of Multi Binary

More information

Optimal Power Control for LDPC Codes in Block-Fading Channels

Optimal Power Control for LDPC Codes in Block-Fading Channels IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 7, JULY 2011 1759 Optimal Power Control for LDPC Codes in Block-Fading Channels Gottfried Lechner, Khoa D. Nguyen, Albert Guillén i Fàbregas, and Lars

More information

EVALUATION OF PACKET ERROR RATE IN WIRELESS NETWORKS

EVALUATION OF PACKET ERROR RATE IN WIRELESS NETWORKS EVALUATION OF PACKET ERROR RATE IN WIRELESS NETWORKS Ramin Khalili, Kavé Salamatian LIP6-CNRS, Université Pierre et Marie Curie. Paris, France. Ramin.khalili, kave.salamatian@lip6.fr Abstract Bit Error

More information

Design of regular (2,dc)-LDPC codes over GF(q) using their binary images

Design of regular (2,dc)-LDPC codes over GF(q) using their binary images Design of regular (2,dc)-LDPC codes over GF(q) using their binary images Charly Poulliat, Marc Fossorier, David Declercq To cite this version: Charly Poulliat, Marc Fossorier, David Declercq. Design of

More information

On the minimum distance of LDPC codes based on repetition codes and permutation matrices 1

On the minimum distance of LDPC codes based on repetition codes and permutation matrices 1 Fifteenth International Workshop on Algebraic and Combinatorial Coding Theory June 18-24, 216, Albena, Bulgaria pp. 168 173 On the minimum distance of LDPC codes based on repetition codes and permutation

More information

LOW-density parity-check (LDPC) codes were invented

LOW-density parity-check (LDPC) codes were invented IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 54, NO 1, JANUARY 2008 51 Extremal Problems of Information Combining Yibo Jiang, Alexei Ashikhmin, Member, IEEE, Ralf Koetter, Senior Member, IEEE, and Andrew

More information

Maximum Likelihood Decoding of Codes on the Asymmetric Z-channel

Maximum Likelihood Decoding of Codes on the Asymmetric Z-channel Maximum Likelihood Decoding of Codes on the Asymmetric Z-channel Pål Ellingsen paale@ii.uib.no Susanna Spinsante s.spinsante@univpm.it Angela Barbero angbar@wmatem.eis.uva.es May 31, 2005 Øyvind Ytrehus

More information

Floor Scale Modulo Lifting for QC-LDPC codes

Floor Scale Modulo Lifting for QC-LDPC codes Floor Scale Modulo Lifting for QC-LDPC codes Niita Polyansii, Vasiliy Usatyu, and Ilya Vorobyev Huawei Technologies Co., Moscow, Russia Email: niitapolyansy@gmail.com, l@lcrypto.com, vorobyev.i.v@yandex.ru

More information

FEEDBACK does not increase the capacity of a discrete

FEEDBACK does not increase the capacity of a discrete 1 Sequential Differential Optimization of Incremental Redundancy Transmission Lengths: An Example with Tail-Biting Convolutional Codes Nathan Wong, Kasra Vailinia, Haobo Wang, Sudarsan V. S. Ranganathan,

More information

SIPCom8-1: Information Theory and Coding Linear Binary Codes Ingmar Land

SIPCom8-1: Information Theory and Coding Linear Binary Codes Ingmar Land SIPCom8-1: Information Theory and Coding Linear Binary Codes Ingmar Land Ingmar Land, SIPCom8-1: Information Theory and Coding (2005 Spring) p.1 Overview Basic Concepts of Channel Coding Block Codes I:

More information

Polar Code Construction for List Decoding

Polar Code Construction for List Decoding 1 Polar Code Construction for List Decoding Peihong Yuan, Tobias Prinz, Georg Böcherer arxiv:1707.09753v1 [cs.it] 31 Jul 2017 Abstract A heuristic construction of polar codes for successive cancellation

More information

Spatially-Coupled MacKay-Neal Codes Universally Achieve the Symmetric Information Rate of Arbitrary Generalized Erasure Channels with Memory

Spatially-Coupled MacKay-Neal Codes Universally Achieve the Symmetric Information Rate of Arbitrary Generalized Erasure Channels with Memory Spatially-Coupled MacKay-Neal Codes Universally Achieve the Symmetric Information Rate of Arbitrary Generalized Erasure Channels with Memory arxiv:1516736v1 [csit] 27 Jan 215 Abstract This paper investigates

More information

SC-Fano Decoding of Polar Codes

SC-Fano Decoding of Polar Codes SC-Fano Decoding of Polar Codes Min-Oh Jeong and Song-Nam Hong Ajou University, Suwon, Korea, email: {jmo0802, snhong}@ajou.ac.kr arxiv:1901.06791v1 [eess.sp] 21 Jan 2019 Abstract In this paper, we present

More information

A Mathematical Approach to Channel Codes with a Diagonal Matrix Structure

A Mathematical Approach to Channel Codes with a Diagonal Matrix Structure A Mathematical Approach to Channel Codes with a Diagonal Matrix Structure David G. M. Mitchell E H U N I V E R S I T Y T O H F R G E D I N B U A thesis submitted for the degree of Doctor of Philosophy.

More information

Achieving Flexibility in LDPC Code Design by Absorbing Set Elimination

Achieving Flexibility in LDPC Code Design by Absorbing Set Elimination Achieving Flexibility in LDPC Code Design by Absorbing Set Elimination Jiajun Zhang, Jiadong Wang, Shayan Garani Srinivasa, Lara Dolecek Department of Electrical Engineering, University of California,

More information

On Generalized EXIT Charts of LDPC Code Ensembles over Binary-Input Output-Symmetric Memoryless Channels

On Generalized EXIT Charts of LDPC Code Ensembles over Binary-Input Output-Symmetric Memoryless Channels 2012 IEEE International Symposium on Information Theory Proceedings On Generalied EXIT Charts of LDPC Code Ensembles over Binary-Input Output-Symmetric Memoryless Channels H Mamani 1, H Saeedi 1, A Eslami

More information

Low-Complexity Fixed-to-Fixed Joint Source-Channel Coding

Low-Complexity Fixed-to-Fixed Joint Source-Channel Coding Low-Complexity Fixed-to-Fixed Joint Source-Channel Coding Irina E. Bocharova 1, Albert Guillén i Fàbregas 234, Boris D. Kudryashov 1, Alfonso Martinez 2, Adrià Tauste Campo 2, and Gonzalo Vazquez-Vilar

More information

An Introduction to Low-Density Parity-Check Codes

An Introduction to Low-Density Parity-Check Codes An Introduction to Low-Density Parity-Check Codes Paul H. Siegel Electrical and Computer Engineering University of California, San Diego 5/ 3/ 7 Copyright 27 by Paul H. Siegel Outline Shannon s Channel

More information

A Non-Asymptotic Approach to the Analysis of Communication Networks: From Error Correcting Codes to Network Properties

A Non-Asymptotic Approach to the Analysis of Communication Networks: From Error Correcting Codes to Network Properties University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 5-2013 A Non-Asymptotic Approach to the Analysis of Communication Networks: From Error Correcting Codes to Network

More information

RECURSIVE CONSTRUCTION OF (J, L) QC LDPC CODES WITH GIRTH 6. Communicated by Dianhua Wu. 1. Introduction

RECURSIVE CONSTRUCTION OF (J, L) QC LDPC CODES WITH GIRTH 6. Communicated by Dianhua Wu. 1. Introduction Transactions on Combinatorics ISSN (print: 2251-8657, ISSN (on-line: 2251-8665 Vol 5 No 2 (2016, pp 11-22 c 2016 University of Isfahan wwwcombinatoricsir wwwuiacir RECURSIVE CONSTRUCTION OF (J, L QC LDPC

More information

Staircase Codes. for High-Speed Optical Communications

Staircase Codes. for High-Speed Optical Communications Staircase Codes for High-Speed Optical Communications Frank R. Kschischang Dept. of Electrical & Computer Engineering University of Toronto (Joint work with Lei Zhang, Benjamin Smith, Arash Farhood, Andrew

More information

CHAPTER 3 LOW DENSITY PARITY CHECK CODES

CHAPTER 3 LOW DENSITY PARITY CHECK CODES 62 CHAPTER 3 LOW DENSITY PARITY CHECK CODES 3. INTRODUCTION LDPC codes were first presented by Gallager in 962 [] and in 996, MacKay and Neal re-discovered LDPC codes.they proved that these codes approach

More information

EE229B - Final Project. Capacity-Approaching Low-Density Parity-Check Codes

EE229B - Final Project. Capacity-Approaching Low-Density Parity-Check Codes EE229B - Final Project Capacity-Approaching Low-Density Parity-Check Codes Pierre Garrigues EECS department, UC Berkeley garrigue@eecs.berkeley.edu May 13, 2005 Abstract The class of low-density parity-check

More information

One-Bit LDPC Message Passing Decoding Based on Maximization of Mutual Information

One-Bit LDPC Message Passing Decoding Based on Maximization of Mutual Information One-Bit LDPC Message Passing Decoding Based on Maximization of Mutual Information ZOU Sheng and Brian M. Kurkoski kurkoski@ice.uec.ac.jp University of Electro-Communications Tokyo, Japan University of

More information

LDPC Decoder LLR Stopping Criterion

LDPC Decoder LLR Stopping Criterion International Conference on Innovative Trends in Electronics Communication and Applications 1 International Conference on Innovative Trends in Electronics Communication and Applications 2015 [ICIECA 2015]

More information

Design of Diversity-Achieving LDPC Codes for H-ARQ with Cross-Packet Channel Coding

Design of Diversity-Achieving LDPC Codes for H-ARQ with Cross-Packet Channel Coding Design of Diversity-Achieving LDPC Codes for H-ARQ with Cross-Packet Coding Dieter Duyck Ghent University Gent, Belgium dduyck@telin.ugent.be Daniele Capirone Politecnico di Torino Torino, Italy daniele.capirone@polito.it

More information

Belief-Propagation Decoding of LDPC Codes

Belief-Propagation Decoding of LDPC Codes LDPC Codes: Motivation Belief-Propagation Decoding of LDPC Codes Amir Bennatan, Princeton University Revolution in coding theory Reliable transmission, rates approaching capacity. BIAWGN, Rate =.5, Threshold.45

More information

Quasi-cyclic Low Density Parity Check codes with high girth

Quasi-cyclic Low Density Parity Check codes with high girth Quasi-cyclic Low Density Parity Check codes with high girth, a work with Marta Rossi, Richard Bresnan, Massimilliano Sala Summer Doctoral School 2009 Groebner bases, Geometric codes and Order Domains Dept

More information

R. A. Carrasco and M. Johnston, Non-Binary Error Control Coding Cork 2009

R. A. Carrasco and M. Johnston, Non-Binary Error Control Coding Cork 2009 Design of Non-Binary Error-Correction Codes and their Applications R. A. Carrasco and. Johnston, Non-Binary Error Control Coding for Wireless Communication and Data Storage, Wiley, SBN 978-- 7-89-9 Prof.

More information