Staircase Codes. for High-Speed Optical Communications

Size: px
Start display at page:

Download "Staircase Codes. for High-Speed Optical Communications"

Transcription

1 Staircase Codes for High-Speed Optical Communications Frank R. Kschischang Dept. of Electrical & Computer Engineering University of Toronto (Joint work with Lei Zhang, Benjamin Smith, Arash Farhood, Andrew Hunt, John Lodge, and Dmitry Trukhachev) Jacobs University, Bremen, Germany August 21st,

2 Acknowledgements Joint work with: Benjamin P. Smith, Lei Zhang University of Toronto Andrew Hunt and John Lodge Communications Research Centre, Ottawa Arash Farhood Cortina Systems Inc., Sunnyvale/Ottawa Dmitry Trukhachev Dalhousie University, Halifax Thank you to the organizers, especially Werner Henkel, for organizing, and for inviting me to speak! 2

3 Source: Nicolas Rapp, Fortune Magazine, July 23,

4 eunetworks Optical Fiber Network Map Source: 4

5 Fiber-Optic Communication Systems: Challenges Reliability P e <

6 Fiber-Optic Communication Systems: Challenges Reliability P e < Speed 100 Gb/s per-channel data rates 5

7 Fiber-Optic Communication Systems: Challenges Reliability P e < Speed 100 Gb/s per-channel data rates Non-Linearity The fiber-optic channel is non-linear in the input power (very interesting topic, but not part of this talk) 5

8 Outline of Talk This talk is about... Outline FEC for the binary symmetric channel (BSC) After optical (and/or) electrical compensation, suitable as forward-error-correction (FEC) for 100Gb/s PD-QPSK systems without soft information 1 Existing solutions (G.975, G.975.1) 2 Implementation considerations 3 Staircase codes 4 Ensemble analysis 5 Conclusions 6

9 Measures Net Coding Gain Given a particular BER, we can obtain the corresponding Q via Q = 2erfc 1 (2 BER). The coding gain (CG) of an error-correcting code is defined as CG (in db) = 20 log 10 (Q out /Q in ), and the Net Coding Gain (NCG) is NCG (in db) = CG + 10 log 10 (R), where R is the rate of the code. Overhead Overhead = # redundant symbols # information symbols = n k k = 1 R R 7

10 Existing Solutions 8

11 ITU-T G.975 (1996) Reed-Solomon (255,239) Code Coding Symbols are bytes Depth-16 interleaving corrects (some) bursts up to 1024 bits Coding Gain = 6.1 db Net Coding Gain = 5.8 db Overhead = 16/239 = 6.69% P[e] Shannon Limit (C=239/255) 2-PSK Limit (C=239/255) BSC Limit (C=239/255) 6.1 db log 10 (Q) (db) RS(255,239) uncoded 2-PSK Constraint: Rate and framing structure fixed for future generations 9

12 ITU-T G (2004) Concatenated Codes Product-like codes with algebraic component codes k a n a C C k b Information Symbols Row Parity Π n b Column Parity Parity on Parity 10

13 ITU-T G (2004) Code NCG Notes I Outer RS, Inner CSOC I Outer BCH (t = 3), Inner BCH (t = 10) I Outer RS, Inner BCH (t = 8) I Outer RS, Inner Product (t = 1) I LDPC I Outer BCH (t = 4), Inner BCH (t = 11) I RS(2720,2550) I Product BCH (t = 3), Erasure Dec? 11

14 Objectives Increased Net Coding Gain NCG Shannon Limit of BSC (9.97 db at ) Error Floor Error floor Lower error floor Insurance in presence of correlated errors Block Length n or less Low Implementation Complexity Dataflow considerations at 100Gb/s 12

15 Implementation Considerations 13

16 Hardware Considerations: Product vs. LDPC Product Code C Π C Algebraic component codes Syndrome-based decoding LDPC Code Π SPC component codes Belief propagation decoding 14

17 Syndrome-based Decoding of Product Codes Decoding an (n, k) component codeword n received symbols n k symbol syndrome R = 239/255, n 1000, n k 32 For high-rate codes, syndromes provide compression 3 decodings/component 96 bits/decoding components/symbol bits/symbol Syndrome Algebraic Decoder Error Locators Update Syndromes Total Dataflow At 100Gb/s, 76.8 Gb/s internal dataflow 15

18 LDPC Belief Propagation Decoding 15 iterations 2 messages/iteration edge 5 bits/message 3 edges/symbol 450 bits/symbol Π Total Dataflow At 100Gb/s, 45Tb/s internal dataflow! 16

19 Dataflow Comparison 76.8 Gb/s 45 Tb/s 2 3 orders of magnitude (huge implementation challenge for soft message-passing LDPC decoders). 17

20 Our Solution 18

21 Coding with Algebraic Component Codes C 1 C 2 C 3 C l Π Graph Optimization Degrees of Freedom Mixture of component codes (e.g., Hamming, BCH) Multi-edge-type structures 19

22 Staircase Codes: Construction Consider a sequence of m-by-m matrices B i m B 1 B 0 B 1 B 2 m and a linear, systematic, (n = 2m, k = 2m r) component code C 2m r Information r Parity Encoding Rule i 0, all rows of [ B T i 1 B i] are codewords in C 20

23 Staircase Codes: Construction B 1 B T 0 B 1 B T 2 B 3 21

24 Staircase Codes: Construction B 1 B T 0 B 1 B T 2 B 3 21

25 Staircase Codes: Construction B 1 B T 0 B 1 B T 2 B 3 21

26 Staircase Codes: Construction B 1 B T 0 B 1 B T 2 B 3 21

27 Staircase Codes: Construction B 1 B T 0 B 1 B T 2 B 3 21

28 Staircase Codes: Construction B 1 B T 0 B 1 B T 2 B 3 21

29 Staircase Codes: Construction B 1 B T 0 B 1 B T 2 B 3 21

30 Staircase Codes: Properties Hybridization of recursive convolution coding and block coding Recurrent Codes of Wyner-Ash (1963) Info i B i 1 Algebraic Encoder Delay B i Rate : R = 1 r/m Variable-latency (sliding-window) decoder B i 1 B i B i+1 B i+2 B i+3 B i+4 22

31 Staircase Codes are a type of Braided Block Code I P P Felström, Truhachev, Lentmaier, Zigangirov, Braided Block Codes, IEEE Trans. on Info. Theory,

32 Staircase Codes are a type of Braided Block Code I P P I P P Felström, Truhachev, Lentmaier, Zigangirov, Braided Block Codes, IEEE Trans. on Info. Theory,

33 Staircase Codes are a type of Braided Block Code I P P I P P I P P Felström, Truhachev, Lentmaier, Zigangirov, Braided Block Codes, IEEE Trans. on Info. Theory,

34 Staircase Codes: Properties B T i Bi+1 B T i+2 Bi+3 The multiplicity of (minimal) stalls of size (t + 1) (t + 1) is K = ( ) m t + 1 t+1 j=1 ( )( ) m m, j t + 1 j and the corresponding contribution to the error floor, for transmission over a binary symmetric channel with crossover probability p, is BER floor = K (t + 1)2 m 2 p (t+1)2. 24

35 General Stall Patterns B T i B i+1 B T i+2 B i+3 (5,5)-stall K L Contribution Contribution of (K, L)-stalls, p =

36 Graphical Representation most reliable least reliable Π Π Π C C Π 26

37 Movie Time (Sliding Window Decoding) B i 1 B i B i+1 B i+2 B i+3 B i+4 play movie 27

38 FPGA-based Simulation Results Code Parameters m = 510, r = 32, triple-error-correcting BCH component code 20 log 10 (Q) (db) BER out BSC Limit (C=239/255) Staircase I.9 G codes I.3 I.4 I.5 RS(255,239) BER in

39 Further Staircase Code Designs Systematically searched over space of staircase codes with shortened primitive BCH component decoders over length 2 m with: 1 R {l/(l + 1) : l = 3, 4,..., 16} 2 t {2, 3,..., 6} 3 m {8, 9, 10, 11, 12} Two-stage search process 1 idealized decoding without mis-corrections (to estimate performance) 2 full-blown simulations with actual decoders, with performance extrapolation to a BER of

40 Staircase code designs with t = 4 component codes OH (%) m w p NCG (db) Gap (db) e e e e e e e e e e e Table: NCG calculated from extrapolated p. Gap is NCG gap to BSC capacity. 30

41 Staircase code designs with t = 5 component codes OH (%) m w p NCG (db) Gap (db) e e e e e e Table: NCG calculated from extrapolated p. Gap is NCG gap to BSC capacity. 31

42 Net Coding Gain vs. Overhead Net Coding Gain (db) BSC capacity t = 4 staircase codes t = 5 staircase codes Codes from [4] Code from [5] Overhead (%) 32

43 Extrapolated Simulation Results BER p

44 Ensemble Analysis 34

45 Prior Work Cores in random graphs [Molloy, 2005][Janson, 2007] A k-core of G is a subgraph in which each vertex has degree at least k. Peeling algorithm to identify graph cores Threshold on core emergence for G(n, p) A (t + 1)-core corresponds to an uncorrectable error pattern Poisson analysis of product codes [Justesen, 2011] Very long component codes No mis-correction assumption Iterative row-column peeling decoding Recursive update of Poisson parameters 35

46 Prior Work (cont d) Our analysis affirms (with a different approach) these earlier results: Hard-decision decoding of spatial-coupled GLDPC codes [Pfister, 2012, Pfister, 2013] Bounded-distance decoding Density evolution of average bit-error probability Potential threshold 36

47 References M. Molloy Cores in random hypergraphs and Boolean formulas. Random Structures & Algorithms, vol. 27, no. 1, pp , Aug S. Janson, M.J. Luczak A simple solution to the k-core problem. Random Structures & Algorithms, vol. 30, no. 1-2, pp , Jan J. Justesen Performance of product codes and related structures with iterated decoding. IEEE Trans. Commun., vol. 59, no.2, pp , Feb Y.-Y. Jian, H.D. Pfister, K.R. Narayanan Approaching capacity at high rates with iterative hard-decision decoding IEEE International Symposium on Information Theory Proceedings, pp , 1-6 July A. Yedla, Y.-Y. Jian, P.S. Nguyen, H.D. Pfister A simple proof of Maxwell saturation for coupled scalar recursions. ArXiv e-prints, Sep

48 Staircase Ensemble The (C(n, k, t), v, M, w, L) ensemble C(n, k, t): component code v: variable degree M: component codes per (spatial) position w: coupling width L: coupling length G.709-compatible staircase code C(n, k, t) = (1022, 990, 3) shortened, extended BCH v = 2, M = 512, w = 2, L = Sliding window decoding Product permutations 38

49 Staircase Ensemble Protograph of staircase ensemble with L = 6, w = 3 C C C C C C C C Π c Π c Π c Π c Π c Π c Π c Π c Π c Π c Π c Π c Π c Π c Π c Π c Π c Π c Π v Π v Π v Π v Π v Π v Protograph characteristics Component codewords and variable nodes partitioned deterministically Main source of randomness is Π c 39

50 Staircase Ensemble Sample from a staircase ensemble with n = 18, v = 2, M = 1, w = 3, L = 3 C C C C C Π c k

51 Peeling Decoder Key simplifications 1 Independent edge removal as M 2 No mis-corrections (optimistic for small t) Peeling Decoding Algorithm (PD) 1 Sample each variable node from BSC(p). 2 Remove all correctly received variable nodes. 3 Remove all check nodes of degree t. 4 Remove all variable nodes adjacent to check nodes removed in 3. 5 Repeat 3 and 4 until no more check nodes can be removed. 41

52 Poisson Analysis Check degree Check edges (component codeword bits) are divided into w edge-types: (c 0,..., c n/w 1 c n/w,..., c 2n/w 1... c (w 1)n/w,..., c n 1 ) }{{}}{{}}{{} type 0 type 1 type w-1 A check of degree (i 0, i 1,..., i w 1 ) contains i τ edges of type τ. 42

53 Poisson Analysis Check degree distribution Let λ = np. For large n, the check degree distribution at position k after PD step 2 is approximately Pr{(i 0,..., i w 1 )} ( Po i τ ; λ ) w where Po(i; x) e x x i /i!. τ [w] τ [w] Po(i τ ; x τ (k, l = 0)). 43

54 Poisson Analysis Let x(k, l) = ξ x ξ(k, l) and define π(a, x) Po(i; x). i:i>a Check node removal The number of edges of type τ after the l-th iteration of PD step 3 is i τ M Po(i ξ ; x ξ (k, l)) = Mx τ (k, l)π(t, x(k, l)). (i 0,...,i w 1 ): i 0 + +i w 1 t+1 ξ [w] 44

55 Poisson Analysis Let Pr{E τ,v (k, l)} be the probability that any particular edge of type τ at position k remains after the l-th iteration of PD step 4. Poisson thinning At the beginning of iteration l + 1, the check degree distribution of {(i 0,..., i w 1 ) : i i w 1 t + 1} is modified by the Poisson thinning process Pr{(i 0,..., i w 1 )} = Po (i τ ; x τ (k, l) Pr{E τ,v (k, l)}). τ [w] 45

56 Spatially Coupled Scalar Recursion For the (C(n, k, t), v,, w, L) ensemble, let x(l) = (x(0, l),..., x(l + w 2, l)) T, X = [0, x max ], Y = [0, y max ], and Λ = [0, n]. Define f : Y Λ X, g : X Y f (x, λ) = λx v 1 g(x) = π(t, x). Let f, g denote the element-wise application of f, g on a vector x and A be the canonical spatial-coupling matrix. Proposition 1 Under the initial condition x( 1) = (,..., ) T, the ensemble average Poisson parameter prior to iteration l 0 of PD is x(l) = A T f(ag(x(l 1)), λ). 46

57 Potential Threshold Potential function The single-system potential function for the coupled scalar recursion in Proposition 1 is [Pfister, 2013] x g(x) U s (x, λ) = xg(x) g(z) dz 0 0 ( t 1 = xπ(t, x) x π(i + 1, x) i=0 f (z, λ) dz ) λ 1 [π(t, x)]v 1 v 47

58 Potential Functions 16 x U s (x,λ) x top to bottom: p = (below threshold); p = (threshold); p = (above threshold) (n = 1022, t = 3) 48

59 Computed Thresholds w. Binary Primitive BCH codes (no mis-corrections) p R 49

60 Conclusions and Future Directions At rate 239/255, staircase codes provide best-in-class 9.41 db NCG with an efficient hardware realization Future work Analysis of component code decoding with mis-corrections GMD decoding between coupled component codes 50

Staircase Codes. Error-correction for High-Speed Fiber-Optic Channels

Staircase Codes. Error-correction for High-Speed Fiber-Optic Channels Staircase Codes Error-correction for High-Speed Fiber-Optic Channels Frank R. Kschischang Dept. of Electrical & Computer Engineering University of Toronto Talk at Delft University of Technology, Delft,

More information

Analysis and Design of Staircase Codes for High Bit-Rate Fibre-Optic Communication. Lei Zhang

Analysis and Design of Staircase Codes for High Bit-Rate Fibre-Optic Communication. Lei Zhang Analysis and Design of Staircase Codes for High Bit-Rate Fibre-Optic Communication by Lei Zhang A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department

More information

Symmetric Product Codes

Symmetric Product Codes Symmetric Product Codes Henry D. Pfister 1, Santosh Emmadi 2, and Krishna Narayanan 2 1 Department of Electrical and Computer Engineering Duke University 2 Department of Electrical and Computer Engineering

More information

Spatially-coupled Split-component Codes with Iterative Algebraic Decoding

Spatially-coupled Split-component Codes with Iterative Algebraic Decoding Spatially-coupled Split-component Codes with Iterative Algebraic Decoding Lei M. Zhang, Student Member, IEEE Dmitri Truhachev, Member, IEEE and Frank R. Kschischang, Fellow, IEEE 1 arxiv:1512.01132v1 [cs.it]

More information

ECEN 655: Advanced Channel Coding

ECEN 655: Advanced Channel Coding ECEN 655: Advanced Channel Coding Course Introduction Henry D. Pfister Department of Electrical and Computer Engineering Texas A&M University ECEN 655: Advanced Channel Coding 1 / 19 Outline 1 History

More information

Dr. Cathy Liu Dr. Michael Steinberger. A Brief Tour of FEC for Serial Link Systems

Dr. Cathy Liu Dr. Michael Steinberger. A Brief Tour of FEC for Serial Link Systems Prof. Shu Lin Dr. Cathy Liu Dr. Michael Steinberger U.C.Davis Avago SiSoft A Brief Tour of FEC for Serial Link Systems Outline Introduction Finite Fields and Vector Spaces Linear Block Codes Cyclic Codes

More information

Introduction to Low-Density Parity Check Codes. Brian Kurkoski

Introduction to Low-Density Parity Check Codes. Brian Kurkoski Introduction to Low-Density Parity Check Codes Brian Kurkoski kurkoski@ice.uec.ac.jp Outline: Low Density Parity Check Codes Review block codes History Low Density Parity Check Codes Gallager s LDPC code

More information

Spatially Coupled LDPC Codes

Spatially Coupled LDPC Codes Spatially Coupled LDPC Codes Kenta Kasai Tokyo Institute of Technology 30 Aug, 2013 We already have very good codes. Efficiently-decodable asymptotically capacity-approaching codes Irregular LDPC Codes

More information

An Introduction to Low Density Parity Check (LDPC) Codes

An Introduction to Low Density Parity Check (LDPC) Codes An Introduction to Low Density Parity Check (LDPC) Codes Jian Sun jian@csee.wvu.edu Wireless Communication Research Laboratory Lane Dept. of Comp. Sci. and Elec. Engr. West Virginia University June 3,

More information

Coding Techniques for Data Storage Systems

Coding Techniques for Data Storage Systems Coding Techniques for Data Storage Systems Thomas Mittelholzer IBM Zurich Research Laboratory /8 Göttingen Agenda. Channel Coding and Practical Coding Constraints. Linear Codes 3. Weight Enumerators and

More information

Modern Coding Theory. Daniel J. Costello, Jr School of Information Theory Northwestern University August 10, 2009

Modern Coding Theory. Daniel J. Costello, Jr School of Information Theory Northwestern University August 10, 2009 Modern Coding Theory Daniel J. Costello, Jr. Coding Research Group Department of Electrical Engineering University of Notre Dame Notre Dame, IN 46556 2009 School of Information Theory Northwestern University

More information

Time-invariant LDPC convolutional codes

Time-invariant LDPC convolutional codes Time-invariant LDPC convolutional codes Dimitris Achlioptas, Hamed Hassani, Wei Liu, and Rüdiger Urbanke Department of Computer Science, UC Santa Cruz, USA Email: achlioptas@csucscedu Department of Computer

More information

Belief propagation decoding of quantum channels by passing quantum messages

Belief propagation decoding of quantum channels by passing quantum messages Belief propagation decoding of quantum channels by passing quantum messages arxiv:67.4833 QIP 27 Joseph M. Renes lempelziv@flickr To do research in quantum information theory, pick a favorite text on classical

More information

Structured Low-Density Parity-Check Codes: Algebraic Constructions

Structured Low-Density Parity-Check Codes: Algebraic Constructions Structured Low-Density Parity-Check Codes: Algebraic Constructions Shu Lin Department of Electrical and Computer Engineering University of California, Davis Davis, California 95616 Email:shulin@ece.ucdavis.edu

More information

Quasi-Cyclic Asymptotically Regular LDPC Codes

Quasi-Cyclic Asymptotically Regular LDPC Codes 2010 IEEE Information Theory Workshop - ITW 2010 Dublin Quasi-Cyclic Asymptotically Regular LDPC Codes David G. M. Mitchell, Roxana Smarandache, Michael Lentmaier, and Daniel J. Costello, Jr. Dept. of

More information

Graph-based codes for flash memory

Graph-based codes for flash memory 1/28 Graph-based codes for flash memory Discrete Mathematics Seminar September 3, 2013 Katie Haymaker Joint work with Professor Christine Kelley University of Nebraska-Lincoln 2/28 Outline 1 Background

More information

Successive Cancellation Decoding of Single Parity-Check Product Codes

Successive Cancellation Decoding of Single Parity-Check Product Codes Successive Cancellation Decoding of Single Parity-Check Product Codes Mustafa Cemil Coşkun, Gianluigi Liva, Alexandre Graell i Amat and Michael Lentmaier Institute of Communications and Navigation, German

More information

Lecture 12. Block Diagram

Lecture 12. Block Diagram Lecture 12 Goals Be able to encode using a linear block code Be able to decode a linear block code received over a binary symmetric channel or an additive white Gaussian channel XII-1 Block Diagram Data

More information

ECC for NAND Flash. Osso Vahabzadeh. TexasLDPC Inc. Flash Memory Summit 2017 Santa Clara, CA 1

ECC for NAND Flash. Osso Vahabzadeh. TexasLDPC Inc. Flash Memory Summit 2017 Santa Clara, CA 1 ECC for NAND Flash Osso Vahabzadeh TexasLDPC Inc. 1 Overview Why Is Error Correction Needed in Flash Memories? Error Correction Codes Fundamentals Low-Density Parity-Check (LDPC) Codes LDPC Encoding and

More information

Low-complexity error correction in LDPC codes with constituent RS codes 1

Low-complexity error correction in LDPC codes with constituent RS codes 1 Eleventh International Workshop on Algebraic and Combinatorial Coding Theory June 16-22, 2008, Pamporovo, Bulgaria pp. 348-353 Low-complexity error correction in LDPC codes with constituent RS codes 1

More information

Polar Codes: Graph Representation and Duality

Polar Codes: Graph Representation and Duality Polar Codes: Graph Representation and Duality arxiv:1312.0372v1 [cs.it] 2 Dec 2013 M. Fossorier ETIS ENSEA/UCP/CNRS UMR-8051 6, avenue du Ponceau, 95014, Cergy Pontoise, France Email: mfossorier@ieee.org

More information

Low-density parity-check (LDPC) codes

Low-density parity-check (LDPC) codes Low-density parity-check (LDPC) codes Performance similar to turbo codes Do not require long interleaver to achieve good performance Better block error performance Error floor occurs at lower BER Decoding

More information

Practical Polar Code Construction Using Generalised Generator Matrices

Practical Polar Code Construction Using Generalised Generator Matrices Practical Polar Code Construction Using Generalised Generator Matrices Berksan Serbetci and Ali E. Pusane Department of Electrical and Electronics Engineering Bogazici University Istanbul, Turkey E-mail:

More information

Low Density Parity Check (LDPC) Codes and the Need for Stronger ECC. August 2011 Ravi Motwani, Zion Kwok, Scott Nelson

Low Density Parity Check (LDPC) Codes and the Need for Stronger ECC. August 2011 Ravi Motwani, Zion Kwok, Scott Nelson Low Density Parity Check (LDPC) Codes and the Need for Stronger ECC August 2011 Ravi Motwani, Zion Kwok, Scott Nelson Agenda NAND ECC History Soft Information What is soft information How do we obtain

More information

Convergence analysis for a class of LDPC convolutional codes on the erasure channel

Convergence analysis for a class of LDPC convolutional codes on the erasure channel Convergence analysis for a class of LDPC convolutional codes on the erasure channel Sridharan, Arvind; Lentmaier, Michael; Costello Jr., Daniel J.; Zigangirov, Kamil Published in: [Host publication title

More information

Physical Layer and Coding

Physical Layer and Coding Physical Layer and Coding Muriel Médard Professor EECS Overview A variety of physical media: copper, free space, optical fiber Unified way of addressing signals at the input and the output of these media:

More information

LDPC Codes. Slides originally from I. Land p.1

LDPC Codes. Slides originally from I. Land p.1 Slides originally from I. Land p.1 LDPC Codes Definition of LDPC Codes Factor Graphs to use in decoding Decoding for binary erasure channels EXIT charts Soft-Output Decoding Turbo principle applied to

More information

Making Error Correcting Codes Work for Flash Memory

Making Error Correcting Codes Work for Flash Memory Making Error Correcting Codes Work for Flash Memory Part I: Primer on ECC, basics of BCH and LDPC codes Lara Dolecek Laboratory for Robust Information Systems (LORIS) Center on Development of Emerging

More information

Reed-Solomon codes. Chapter Linear codes over finite fields

Reed-Solomon codes. Chapter Linear codes over finite fields Chapter 8 Reed-Solomon codes In the previous chapter we discussed the properties of finite fields, and showed that there exists an essentially unique finite field F q with q = p m elements for any prime

More information

Random Redundant Soft-In Soft-Out Decoding of Linear Block Codes

Random Redundant Soft-In Soft-Out Decoding of Linear Block Codes Random Redundant Soft-In Soft-Out Decoding of Linear Block Codes Thomas R. Halford and Keith M. Chugg Communication Sciences Institute University of Southern California Los Angeles, CA 90089-2565 Abstract

More information

LDPC Code Ensembles that Universally Achieve Capacity under BP Decoding: A Simple Derivation

LDPC Code Ensembles that Universally Achieve Capacity under BP Decoding: A Simple Derivation LDPC Code Ensembles that Universally Achieve Capacity under BP Decoding: A Simple Derivation Anatoly Khina EE Systems Dept., TAU Tel Aviv, Israel Email: anatolyk@eng.tau.ac.il Yair Yona Dept. of EE, UCLA

More information

Polar Coding for the Large Hadron Collider: Challenges in Code Concatenation

Polar Coding for the Large Hadron Collider: Challenges in Code Concatenation Polar Coding for the Large Hadron Collider: Challenges in Code Concatenation Alexios Balatsoukas-Stimming, Tomasz Podzorny, Jan Uythoven {alexios.balatsoukas, tomasz.podzorny, jan.uythoven}@cern.ch European

More information

Code design: Computer search

Code design: Computer search Code design: Computer search Low rate codes Represent the code by its generator matrix Find one representative for each equivalence class of codes Permutation equivalences? Do NOT try several generator

More information

Lower Bounds on the Graphical Complexity of Finite-Length LDPC Codes

Lower Bounds on the Graphical Complexity of Finite-Length LDPC Codes Lower Bounds on the Graphical Complexity of Finite-Length LDPC Codes Igal Sason Department of Electrical Engineering Technion - Israel Institute of Technology Haifa 32000, Israel 2009 IEEE International

More information

Error Correction Methods

Error Correction Methods Technologies and Services on igital Broadcasting (7) Error Correction Methods "Technologies and Services of igital Broadcasting" (in Japanese, ISBN4-339-06-) is published by CORONA publishing co., Ltd.

More information

Iterative Encoding of Low-Density Parity-Check Codes

Iterative Encoding of Low-Density Parity-Check Codes Iterative Encoding of Low-Density Parity-Check Codes David Haley, Alex Grant and John Buetefuer Institute for Telecommunications Research University of South Australia Mawson Lakes Blvd Mawson Lakes SA

More information

Codes on graphs and iterative decoding

Codes on graphs and iterative decoding Codes on graphs and iterative decoding Bane Vasić Error Correction Coding Laboratory University of Arizona Funded by: National Science Foundation (NSF) Seagate Technology Defense Advanced Research Projects

More information

Codes on graphs and iterative decoding

Codes on graphs and iterative decoding Codes on graphs and iterative decoding Bane Vasić Error Correction Coding Laboratory University of Arizona Prelude Information transmission 0 0 0 0 0 0 Channel Information transmission signal 0 0 threshold

More information

Constructions of Nonbinary Quasi-Cyclic LDPC Codes: A Finite Field Approach

Constructions of Nonbinary Quasi-Cyclic LDPC Codes: A Finite Field Approach Constructions of Nonbinary Quasi-Cyclic LDPC Codes: A Finite Field Approach Shu Lin, Shumei Song, Lan Lan, Lingqi Zeng and Ying Y Tai Department of Electrical & Computer Engineering University of California,

More information

Design and Analysis of Graph-based Codes Using Algebraic Lifts and Decoding Networks

Design and Analysis of Graph-based Codes Using Algebraic Lifts and Decoding Networks University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations, Theses, and Student Research Papers in Mathematics Mathematics, Department of 3-2018 Design and Analysis

More information

Cyclic Redundancy Check Codes

Cyclic Redundancy Check Codes Cyclic Redundancy Check Codes Lectures No. 17 and 18 Dr. Aoife Moloney School of Electronics and Communications Dublin Institute of Technology Overview These lectures will look at the following: Cyclic

More information

On the minimum distance of LDPC codes based on repetition codes and permutation matrices 1

On the minimum distance of LDPC codes based on repetition codes and permutation matrices 1 Fifteenth International Workshop on Algebraic and Combinatorial Coding Theory June 18-24, 216, Albena, Bulgaria pp. 168 173 On the minimum distance of LDPC codes based on repetition codes and permutation

More information

ECE8771 Information Theory & Coding for Digital Communications Villanova University ECE Department Prof. Kevin M. Buckley Lecture Set 2 Block Codes

ECE8771 Information Theory & Coding for Digital Communications Villanova University ECE Department Prof. Kevin M. Buckley Lecture Set 2 Block Codes Kevin Buckley - 2010 109 ECE8771 Information Theory & Coding for Digital Communications Villanova University ECE Department Prof. Kevin M. Buckley Lecture Set 2 Block Codes m GF(2 ) adder m GF(2 ) multiplier

More information

Rate-Compatible Low Density Parity Check Codes for Capacity-Approaching ARQ Schemes in Packet Data Communications

Rate-Compatible Low Density Parity Check Codes for Capacity-Approaching ARQ Schemes in Packet Data Communications Rate-Compatible Low Density Parity Check Codes for Capacity-Approaching ARQ Schemes in Packet Data Communications Jing Li (Tiffany) Electrical Engineering Dept, Texas A&M University College Station, TX

More information

5. Density evolution. Density evolution 5-1

5. Density evolution. Density evolution 5-1 5. Density evolution Density evolution 5-1 Probabilistic analysis of message passing algorithms variable nodes factor nodes x1 a x i x2 a(x i ; x j ; x k ) x3 b x4 consider factor graph model G = (V ;

More information

Introduction to Wireless & Mobile Systems. Chapter 4. Channel Coding and Error Control Cengage Learning Engineering. All Rights Reserved.

Introduction to Wireless & Mobile Systems. Chapter 4. Channel Coding and Error Control Cengage Learning Engineering. All Rights Reserved. Introduction to Wireless & Mobile Systems Chapter 4 Channel Coding and Error Control 1 Outline Introduction Block Codes Cyclic Codes CRC (Cyclic Redundancy Check) Convolutional Codes Interleaving Information

More information

Spatially-Coupled MacKay-Neal Codes Universally Achieve the Symmetric Information Rate of Arbitrary Generalized Erasure Channels with Memory

Spatially-Coupled MacKay-Neal Codes Universally Achieve the Symmetric Information Rate of Arbitrary Generalized Erasure Channels with Memory Spatially-Coupled MacKay-Neal Codes Universally Achieve the Symmetric Information Rate of Arbitrary Generalized Erasure Channels with Memory arxiv:1516736v1 [csit] 27 Jan 215 Abstract This paper investigates

More information

Single-Gaussian Messages and Noise Thresholds for Low-Density Lattice Codes

Single-Gaussian Messages and Noise Thresholds for Low-Density Lattice Codes Single-Gaussian Messages and Noise Thresholds for Low-Density Lattice Codes Brian M. Kurkoski, Kazuhiko Yamaguchi and Kingo Kobayashi kurkoski@ice.uec.ac.jp Dept. of Information and Communications Engineering

More information

CS6304 / Analog and Digital Communication UNIT IV - SOURCE AND ERROR CONTROL CODING PART A 1. What is the use of error control coding? The main use of error control coding is to reduce the overall probability

More information

Channel Coding I. Exercises SS 2017

Channel Coding I. Exercises SS 2017 Channel Coding I Exercises SS 2017 Lecturer: Dirk Wübben Tutor: Shayan Hassanpour NW1, Room N 2420, Tel.: 0421/218-62387 E-mail: {wuebben, hassanpour}@ant.uni-bremen.de Universität Bremen, FB1 Institut

More information

Lecture 4 : Introduction to Low-density Parity-check Codes

Lecture 4 : Introduction to Low-density Parity-check Codes Lecture 4 : Introduction to Low-density Parity-check Codes LDPC codes are a class of linear block codes with implementable decoders, which provide near-capacity performance. History: 1. LDPC codes were

More information

16.36 Communication Systems Engineering

16.36 Communication Systems Engineering MIT OpenCourseWare http://ocw.mit.edu 16.36 Communication Systems Engineering Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 16.36: Communication

More information

Lecture 4: Linear Codes. Copyright G. Caire 88

Lecture 4: Linear Codes. Copyright G. Caire 88 Lecture 4: Linear Codes Copyright G. Caire 88 Linear codes over F q We let X = F q for some prime power q. Most important case: q =2(binary codes). Without loss of generality, we may represent the information

More information

STUDY OF PERMUTATION MATRICES BASED LDPC CODE CONSTRUCTION

STUDY OF PERMUTATION MATRICES BASED LDPC CODE CONSTRUCTION EE229B PROJECT REPORT STUDY OF PERMUTATION MATRICES BASED LDPC CODE CONSTRUCTION Zhengya Zhang SID: 16827455 zyzhang@eecs.berkeley.edu 1 MOTIVATION Permutation matrices refer to the square matrices with

More information

Low-density parity-check codes

Low-density parity-check codes Low-density parity-check codes From principles to practice Dr. Steve Weller steven.weller@newcastle.edu.au School of Electrical Engineering and Computer Science The University of Newcastle, Callaghan,

More information

Integrated Code Design for a Joint Source and Channel LDPC Coding Scheme

Integrated Code Design for a Joint Source and Channel LDPC Coding Scheme Integrated Code Design for a Joint Source and Channel LDPC Coding Scheme Hsien-Ping Lin Shu Lin and Khaled Abdel-Ghaffar Department of Electrical and Computer Engineering University of California Davis

More information

EE229B - Final Project. Capacity-Approaching Low-Density Parity-Check Codes

EE229B - Final Project. Capacity-Approaching Low-Density Parity-Check Codes EE229B - Final Project Capacity-Approaching Low-Density Parity-Check Codes Pierre Garrigues EECS department, UC Berkeley garrigue@eecs.berkeley.edu May 13, 2005 Abstract The class of low-density parity-check

More information

Spatially Coupled LDPC Codes Constructed from Protographs

Spatially Coupled LDPC Codes Constructed from Protographs IEEE TRANSACTIONS ON INFORMATION THEORY (SUBMITTED PAPER) 1 Spatially Coupled LDPC Codes Constructed from Protographs David G. M. Mitchell, Member, IEEE, Michael Lentmaier, Senior Member, IEEE, and Daniel

More information

Optimum Soft Decision Decoding of Linear Block Codes

Optimum Soft Decision Decoding of Linear Block Codes Optimum Soft Decision Decoding of Linear Block Codes {m i } Channel encoder C=(C n-1,,c 0 ) BPSK S(t) (n,k,d) linear modulator block code Optimal receiver AWGN Assume that [n,k,d] linear block code C is

More information

Channel Coding I. Exercises SS 2017

Channel Coding I. Exercises SS 2017 Channel Coding I Exercises SS 2017 Lecturer: Dirk Wübben Tutor: Shayan Hassanpour NW1, Room N 2420, Tel.: 0421/218-62387 E-mail: {wuebben, hassanpour}@ant.uni-bremen.de Universität Bremen, FB1 Institut

More information

Turbo Codes for xdsl modems

Turbo Codes for xdsl modems Turbo Codes for xdsl modems Juan Alberto Torres, Ph. D. VOCAL Technologies, Ltd. (http://www.vocal.com) John James Audubon Parkway Buffalo, NY 14228, USA Phone: +1 716 688 4675 Fax: +1 716 639 0713 Email:

More information

GLDPC-Staircase AL-FEC codes: A Fundamental study and New results

GLDPC-Staircase AL-FEC codes: A Fundamental study and New results GLDPC-Staircase AL-FEC codes: A Fundamental study and New results Ferdaouss Mattoussi, Vincent Roca, Bessam Sayadi To cite this version: Ferdaouss Mattoussi, Vincent Roca, Bessam Sayadi. GLDPC-Staircase

More information

On the exact bit error probability for Viterbi decoding of convolutional codes

On the exact bit error probability for Viterbi decoding of convolutional codes On the exact bit error probability for Viterbi decoding of convolutional codes Irina E. Bocharova, Florian Hug, Rolf Johannesson, and Boris D. Kudryashov Dept. of Information Systems Dept. of Electrical

More information

Message Passing Algorithm with MAP Decoding on Zigzag Cycles for Non-binary LDPC Codes

Message Passing Algorithm with MAP Decoding on Zigzag Cycles for Non-binary LDPC Codes Message Passing Algorithm with MAP Decoding on Zigzag Cycles for Non-binary LDPC Codes Takayuki Nozaki 1, Kenta Kasai 2, Kohichi Sakaniwa 2 1 Kanagawa University 2 Tokyo Institute of Technology July 12th,

More information

Quasi-cyclic Low Density Parity Check codes with high girth

Quasi-cyclic Low Density Parity Check codes with high girth Quasi-cyclic Low Density Parity Check codes with high girth, a work with Marta Rossi, Richard Bresnan, Massimilliano Sala Summer Doctoral School 2009 Groebner bases, Geometric codes and Order Domains Dept

More information

ON THE ANALYSIS OF SPATIALLY-COUPLED GLDPC CODES AND THE WEIGHTED MIN-SUM ALGORITHM. A Dissertation YUNG-YIH JIAN

ON THE ANALYSIS OF SPATIALLY-COUPLED GLDPC CODES AND THE WEIGHTED MIN-SUM ALGORITHM. A Dissertation YUNG-YIH JIAN ON THE ANALYSIS OF SPATIALLY-COUPLED GLDPC CODES AND THE WEIGHTED MIN-SUM ALGORITHM A Dissertation by YUNG-YIH JIAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment

More information

arxiv:cs/ v2 [cs.it] 1 Oct 2006

arxiv:cs/ v2 [cs.it] 1 Oct 2006 A General Computation Rule for Lossy Summaries/Messages with Examples from Equalization Junli Hu, Hans-Andrea Loeliger, Justin Dauwels, and Frank Kschischang arxiv:cs/060707v [cs.it] 1 Oct 006 Abstract

More information

Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels

Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels Jilei Hou, Paul H. Siegel and Laurence B. Milstein Department of Electrical and Computer Engineering

More information

Advanced Hardware Architecture for Soft Decoding Reed-Solomon Codes

Advanced Hardware Architecture for Soft Decoding Reed-Solomon Codes Advanced Hardware Architecture for Soft Decoding Reed-Solomon Codes Stefan Scholl, Norbert Wehn Microelectronic Systems Design Research Group TU Kaiserslautern, Germany Overview Soft decoding decoding

More information

Advances in Error Control Strategies for 5G

Advances in Error Control Strategies for 5G Advances in Error Control Strategies for 5G Jörg Kliewer The Elisha Yegal Bar-Ness Center For Wireless Communications And Signal Processing Research 5G Requirements [Nokia Networks: Looking ahead to 5G.

More information

Channel Codes for Short Blocks: A Survey

Channel Codes for Short Blocks: A Survey 11th International ITG Conference on Systems, Communications and Coding February 6, 2017 Channel Codes for Short Blocks: A Survey Gianluigi Liva, gianluigi.liva@dlr.de Fabian Steiner, fabian.steiner@tum.de

More information

Exact Probability of Erasure and a Decoding Algorithm for Convolutional Codes on the Binary Erasure Channel

Exact Probability of Erasure and a Decoding Algorithm for Convolutional Codes on the Binary Erasure Channel Exact Probability of Erasure and a Decoding Algorithm for Convolutional Codes on the Binary Erasure Channel Brian M. Kurkoski, Paul H. Siegel, and Jack K. Wolf Department of Electrical and Computer Engineering

More information

Girth Analysis of Polynomial-Based Time-Invariant LDPC Convolutional Codes

Girth Analysis of Polynomial-Based Time-Invariant LDPC Convolutional Codes IWSSIP 212, 11-13 April 212, Vienna, Austria ISBN 978-3-2-2328-4 Girth Analysis of Polynomial-Based Time-Invariant LDPC Convolutional Codes Hua Zhou and Norbert Goertz Institute of Telecommunications Vienna

More information

Low-Density Parity-Check Codes

Low-Density Parity-Check Codes Department of Computer Sciences Applied Algorithms Lab. July 24, 2011 Outline 1 Introduction 2 Algorithms for LDPC 3 Properties 4 Iterative Learning in Crowds 5 Algorithm 6 Results 7 Conclusion PART I

More information

State-of-the-Art Channel Coding

State-of-the-Art Channel Coding Institut für State-of-the-Art Channel Coding Prof. Dr.-Ing. Volker Kühn Institute of Communications Engineering University of Rostock, Germany Email: volker.kuehn@uni-rostock.de http://www.int.uni-rostock.de/

More information

Compressed Sensing and Linear Codes over Real Numbers

Compressed Sensing and Linear Codes over Real Numbers Compressed Sensing and Linear Codes over Real Numbers Henry D. Pfister (joint with Fan Zhang) Texas A&M University College Station Information Theory and Applications Workshop UC San Diego January 31st,

More information

Asynchronous Decoding of LDPC Codes over BEC

Asynchronous Decoding of LDPC Codes over BEC Decoding of LDPC Codes over BEC Saeid Haghighatshoar, Amin Karbasi, Amir Hesam Salavati Department of Telecommunication Systems, Technische Universität Berlin, Germany, School of Engineering and Applied

More information

Performance of Spatially-Coupled LDPC Codes and Threshold Saturation over BICM Channels

Performance of Spatially-Coupled LDPC Codes and Threshold Saturation over BICM Channels Performance of Spatially-Coupled LDPC Codes and Threshold Saturation over BICM Channels Arvind Yedla, Member, IEEE, Mostafa El-Khamy, Senior Member, IEEE, Jungwon Lee, Senior Member, IEEE, and Inyup Kang,

More information

Chapter 7 Reed Solomon Codes and Binary Transmission

Chapter 7 Reed Solomon Codes and Binary Transmission Chapter 7 Reed Solomon Codes and Binary Transmission 7.1 Introduction Reed Solomon codes named after Reed and Solomon [9] following their publication in 1960 have been used together with hard decision

More information

New EPoC Burst Markers with Data Field

New EPoC Burst Markers with Data Field New EPoC Burst Markers with Data Field Leo Montreuil Rich Prodan Tom Kolze January 2015 www.broadcom.com Burst Markers Update Modifications in Burst Marker Motivation Updated BM Sequences and Modulated

More information

Research Collection. The fractality of polar codes. Conference Paper. ETH Library. Author(s): Geiger, Bernhard C. Publication Date: 2016

Research Collection. The fractality of polar codes. Conference Paper. ETH Library. Author(s): Geiger, Bernhard C. Publication Date: 2016 Research Collection Conference Paper The fractality of polar codes Authors: Geiger, ernhard C. Publication Date: 016 Permanent Link: https://doi.org/10.399/ethz-a-01064591 Rights / License: In Copyright

More information

On Generalized EXIT Charts of LDPC Code Ensembles over Binary-Input Output-Symmetric Memoryless Channels

On Generalized EXIT Charts of LDPC Code Ensembles over Binary-Input Output-Symmetric Memoryless Channels 2012 IEEE International Symposium on Information Theory Proceedings On Generalied EXIT Charts of LDPC Code Ensembles over Binary-Input Output-Symmetric Memoryless Channels H Mamani 1, H Saeedi 1, A Eslami

More information

An Enhanced (31,11,5) Binary BCH Encoder and Decoder for Data Transmission

An Enhanced (31,11,5) Binary BCH Encoder and Decoder for Data Transmission An Enhanced (31,11,5) Binary BCH Encoder and Decoder for Data Transmission P.Mozhiarasi, C.Gayathri, V.Deepan Master of Engineering, VLSI design, Sri Eshwar College of Engineering, Coimbatore- 641 202,

More information

Joint Iterative Decoding of LDPC Codes and Channels with Memory

Joint Iterative Decoding of LDPC Codes and Channels with Memory Joint Iterative Decoding of LDPC Codes and Channels with Memory Henry D. Pfister and Paul H. Siegel University of California, San Diego 3 rd Int l Symposium on Turbo Codes September 1, 2003 Outline Channels

More information

Introducing Low-Density Parity-Check Codes

Introducing Low-Density Parity-Check Codes Introducing Low-Density Parity-Check Codes Sarah J. Johnson School of Electrical Engineering and Computer Science The University of Newcastle Australia email: sarah.johnson@newcastle.edu.au Topic 1: Low-Density

More information

Threshold Saturation on Channels with Memory via Spatial Coupling

Threshold Saturation on Channels with Memory via Spatial Coupling Threshold Saturation on Channels with Memory via Spatial Coupling Shrinivas Kudekar and Kenta Kasai New Mexico Consortium and Center for Non-linear Studies, Los Alamos National Laboratory, NM, USA Email:

More information

R. A. Carrasco and M. Johnston, Non-Binary Error Control Coding Cork 2009

R. A. Carrasco and M. Johnston, Non-Binary Error Control Coding Cork 2009 Design of Non-Binary Error-Correction Codes and their Applications R. A. Carrasco and. Johnston, Non-Binary Error Control Coding for Wireless Communication and Data Storage, Wiley, SBN 978-- 7-89-9 Prof.

More information

Approaching Blokh-Zyablov Error Exponent with Linear-Time Encodable/Decodable Codes

Approaching Blokh-Zyablov Error Exponent with Linear-Time Encodable/Decodable Codes Approaching Blokh-Zyablov Error Exponent with Linear-Time Encodable/Decodable Codes 1 Zheng Wang, Student Member, IEEE, Jie Luo, Member, IEEE arxiv:0808.3756v1 [cs.it] 27 Aug 2008 Abstract We show that

More information

The PPM Poisson Channel: Finite-Length Bounds and Code Design

The PPM Poisson Channel: Finite-Length Bounds and Code Design August 21, 2014 The PPM Poisson Channel: Finite-Length Bounds and Code Design Flavio Zabini DEI - University of Bologna and Institute for Communications and Navigation German Aerospace Center (DLR) Balazs

More information

VHDL Implementation of Reed Solomon Improved Encoding Algorithm

VHDL Implementation of Reed Solomon Improved Encoding Algorithm VHDL Implementation of Reed Solomon Improved Encoding Algorithm P.Ravi Tej 1, Smt.K.Jhansi Rani 2 1 Project Associate, Department of ECE, UCEK, JNTUK, Kakinada A.P. 2 Assistant Professor, Department of

More information

RCA Analysis of the Polar Codes and the use of Feedback to aid Polarization at Short Blocklengths

RCA Analysis of the Polar Codes and the use of Feedback to aid Polarization at Short Blocklengths RCA Analysis of the Polar Codes and the use of Feedback to aid Polarization at Short Blocklengths Kasra Vakilinia, Dariush Divsalar*, and Richard D. Wesel Department of Electrical Engineering, University

More information

Information Theoretic Imaging

Information Theoretic Imaging Information Theoretic Imaging WU Faculty: J. A. O Sullivan WU Doctoral Student: Naveen Singla Boeing Engineer: James Meany First Year Focus: Imaging for Data Storage Image Reconstruction Data Retrieval

More information

FEC performance on multi-part links

FEC performance on multi-part links FEC performance on multi-part links ete Anslow, Ciena IEEE 80.3bs Task Force, San Diego, CA, July 04 Introduction When analysing the performance of 400GbE FEC encoded links, two of the aspects that need

More information

LDPC Codes. Intracom Telecom, Peania

LDPC Codes. Intracom Telecom, Peania LDPC Codes Alexios Balatsoukas-Stimming and Athanasios P. Liavas Technical University of Crete Dept. of Electronic and Computer Engineering Telecommunications Laboratory December 16, 2011 Intracom Telecom,

More information

Optical Storage Technology. Error Correction

Optical Storage Technology. Error Correction Optical Storage Technology Error Correction Introduction With analog audio, there is no opportunity for error correction. With digital audio, the nature of binary data lends itself to recovery in the event

More information

THE polar code of [1] achieves capacity of the symmetric

THE polar code of [1] achieves capacity of the symmetric Low-Complexity Concatenated Polar Codes with Excellent Scaling Behavior Sung Whan Yoon, Student Member, IEEE and Jaekyun Moon, Fellow, IEEE School of Electrical Engineering Korea Advanced Institute of

More information

An Introduction to Low-Density Parity-Check Codes

An Introduction to Low-Density Parity-Check Codes An Introduction to Low-Density Parity-Check Codes Paul H. Siegel Electrical and Computer Engineering University of California, San Diego 5/ 3/ 7 Copyright 27 by Paul H. Siegel Outline Shannon s Channel

More information

Chapter 6 Reed-Solomon Codes. 6.1 Finite Field Algebra 6.2 Reed-Solomon Codes 6.3 Syndrome Based Decoding 6.4 Curve-Fitting Based Decoding

Chapter 6 Reed-Solomon Codes. 6.1 Finite Field Algebra 6.2 Reed-Solomon Codes 6.3 Syndrome Based Decoding 6.4 Curve-Fitting Based Decoding Chapter 6 Reed-Solomon Codes 6. Finite Field Algebra 6. Reed-Solomon Codes 6.3 Syndrome Based Decoding 6.4 Curve-Fitting Based Decoding 6. Finite Field Algebra Nonbinary codes: message and codeword symbols

More information

Codes on Graphs. Telecommunications Laboratory. Alex Balatsoukas-Stimming. Technical University of Crete. November 27th, 2008

Codes on Graphs. Telecommunications Laboratory. Alex Balatsoukas-Stimming. Technical University of Crete. November 27th, 2008 Codes on Graphs Telecommunications Laboratory Alex Balatsoukas-Stimming Technical University of Crete November 27th, 2008 Telecommunications Laboratory (TUC) Codes on Graphs November 27th, 2008 1 / 31

More information

Efficiently decodable codes for the binary deletion channel

Efficiently decodable codes for the binary deletion channel Efficiently decodable codes for the binary deletion channel Venkatesan Guruswami (venkatg@cs.cmu.edu) Ray Li * (rayyli@stanford.edu) Carnegie Mellon University August 18, 2017 V. Guruswami and R. Li (CMU)

More information