Sparsely Connected Autoencoder

Size: px
Start display at page:

Download "Sparsely Connected Autoencoder"

Transcription

1 Sprsely Connected Autoencoder Kvy Gupt III Delh New Delh, Ind Angshul Mjumdr III Delh New Delh, Ind Abstrct hs wor proposes to lern utoencoders wth sprse connectons. Pror studes on utoencoders enforced sprsty on the neuronl ctvty; these re dfferent from our proposed pproch we lern sprse connectons. Sprsty n connectons helps n lernng (nd eepng) the mportnt reltons whle trmmng the rrelevnt ones. e hve tested the performnce of our proposed method on two tss clssfcton nd denosng. or clssfcton we hve compred gnst stced utneencoders, contrctve utoencoders, deep belef networ, sprse deep neurl networ nd optml brn dmge neurl networ; the denosng performnce ws compred gnst denosng utoencoder nd sprse (ctvty) utoencoder. In both the tss our proposed method yelds superor results. Index erms utoencoder, clssfcton, sprsty, denosng I. INRODUCION here s plethor of wor n sprse neurl networs. Brodly t cn be segregted nto ) sprse ctvty nd ) sprse connectvty. Sprsty cn rse n two contexts. he sprse ctvty property mens tht only smll frcton of neurons s ctve t ny tme. he sprse connectvty property mens tht ech neuron s connected to only lmted number of other neurons. Snce ts onset, neurl networs hve been clmed to mmc the humn brn. or certn ctvty / ts only porton of the brn (neurons) re ctve. he whole brn s never used. In fct, t s wdely crculted myth tht we use only 10% of our brn; the myth s untrue. But t s well nown tht only certn porton of the brn s ctve for certn ts;.e. gven the whole brn only sprse set of neurons re ctully ctve (for the gven ts). herefore, f ndeed the neurl networ s n pproxmte representtve of the brn, we would expect to hve sprse connectons. hs spect hs been cptured by LeCun s wor on optml brn dmge [1]. He devsed technque to trm connectons of neurl networ (hence the nme brn dmge) wthout degrdng ts performnce. In recent tmes the de hs been revsted. In [, 3] sprsty s enforced both on the ctvty nd on the connectvty. In [4] sprsty on ctvty ws promoted for rectfer neurl networ; t ws used n [5] to mprove the performnce on phone recognton. Sprsty n connectons ws exploted n [6] for the problem of speech recognton. In [7] nd [8] sprsty n connectons s enforced on convolutonl neurl networ nd recurrent neurl networ respectvely. In most of these studes the common observton s tht ntroducton of sprsty leds to slght dp n performnce but reduces the complexty of the networ sgnfcntly. In ths wor we re specfclly nterested n utoencoders. Although there hs been lot of wor on sprse connectvty nd sprse ctvty on neurl networs, ll pror studes n sprse utoencoders enforced sprsty on the ctvty; there s no pror study tht promoted sprsty n connectons. hs s the frst wor to do so. In [9] sprsty ws ntroduced n terms of frng neurons. If the neurons re of hgh vlue (ner bout 1), t s llowed to be fred, the rest re not. In [10], only the top K hgh vlued neurons re fred; n [11] only the neurons beyond predefned threshold were fred. In [1], comprson of dfferent sprsty promotng terms (on ctvtes) were compred; these were the KL dvergence [9] nd vrtons of l 1-norm [11]. It ws shown n [13] tht by combnng the output of severl such sprse utoencoders (trned s n [9]), one s ble to mprove performnce of severl mge recognton tss. e compre our proposed sprsely connected utoencoder wth severl vrnts of utoencoders (for clssfcton nd denosng) nd deep belef networ (for clssfcton). e fnd tht our proposed technque yelds better results compred to exstng technques. Although most of the reders of ths pper wll be brest wth lterture on neurl networs n generl nd utoencoders n prtculr, we provde bref revew of utoencoders for the se of completeness n the next secton. In secton 4, our proposed method s descrbed n detl. he expermentl evluton s reported n secton 5. he conclusons of ths wor s dscussed n secton 6. Input Lyer II. BACKGROUND Hdden Lyer g. 1. Sngle Lyer Autoencoder Output Lyer

2 An uto encoder (s seen n g. 1) conssts of two prts the encoder mps the nput to ltent spce, nd the decoder mps the ltent representton to the dt. or gven nput vector (ncludng the bs term) x, the ltent spce s expressed s: h x (1) Here the rows of re the ln weghts from ll the nput nodes to the correspondng ltent node. he mppng cn be lner, but n most cses t s non-lner (sgmod, tnh etc.): () he decoder porton reverse mps the ltent fetures to the dt spce. x ' ( x) (3) Snce the dt spce s ssumed to be the spce of rel numbers, there s no sgmodl functon here. Durng trnng, the problem s to lern the encodng nd decodng weghts nd. hs s cheved by mnmzng the Euclden cost: h ( x), ' rg mn X ' ( X ) (4) Here X [ x1... x N ] conssts ll the trnng smpled stced s columns. he problem (4) s clerly non-convex. However, t s solved esly by grdent descent technques snce the sgmod functon s smooth nd contnuously dfferentble. Input Lyer Hdden Lyer 1 g.. Stced Autoencoder Hdden Lyer L here re severl extensons to the bsc utoencoder rchtecture. Stced / Deep utoencoders [9] hve multple hdden lyers (see g. ). he correspondng cost functon s expressed s follows:..., '... ' 1 L1 1 rg mn X g f ( X ) (5) L where g 1' '... L ' f ( X ) f... ( X ). L1 L 1 nd Solvng the complete problem (5) s computtonlly chllengng. he weghts re usully lerned n greedy fshon one lyer t tme [14]. Stced denosng utoencoders (SDAE) [15] re vrnt of the bsc utoencoder where the nput conssts of nosy smples nd the output conssts of clen smples. Here the encoder nd decoder re lernt to denose nosy nput smples. he lerned fetures pper to be more robust when lernt by SDAE. Output Lyer In recent wor mrgnlzed denosng utoencoder ws proposed [16], whch does not hve ny ntermedte nodes but lerns the mppng from the nput to the output. hs formulton s convex (unle regulr utoencoders); the trc here s to mrgnlze over ll possble nosy smples so tht the dtset need not be ugmented le SDAE. Such n utoencoder ws used for domn dptton. Another vrton for the bsc utoencoder s to regulrze t,.e. ( ) s rg mn X g f ( X ) R(, X ) (6) he regulrzton cn be smple honov regulrzton however tht s not used n prctce. It cn be sprsty promotng term [9]-[11] or weght decy term (robenus norm of the Jcobn) s used n the contrctve utoencoder [17]. he regulrzton term s usully chosen so tht they re dfferentble nd hence mnmzed usng grdent descent technques. III. PROPOSED SPARSECONNEC AUOENCODER Autoencoders usully hve non-lner ctvton functon. However, n [18] t ws shown tht n utoencoder usully opertes n the lner regon. herefore n ths wor, we wll use lner ctvton functon. hs llows us to derve more effcent lgorthm whch s fster thn ts non-lner counterprts. e lso show (expermentlly) tht the lner utoencoder yelds better results thn ts non-lner counterprt. he bsc formulton of n utoencoder wth lner ctvton functon s gven by: rg mn ', X ' X (7) he bsc utoencoder s prone to overfttng; especlly when the number of trnng smples s lmted. Denosng utoencoders use stochstc regulrzton technque. However, gven the Euclden cost functon of the utoencoder more drect wy to regulrze t would be ncorporte penlty terms to the bsc formulton. or exmple, contrctve utoencoder wth lner ctvton functon would led to the followng formulton: ', rg mn X ' X ' (8) he robenus norm on the weghts regulrzes the networ to hve smll vlues. he regulrzton prevents overfttng of the networ. e propose to regulrze the utoencoder such tht t hs sprse connectons both t the encoder nd the decoder. he de of trmmng rrelevnt connectons n neurl networs s not new; t ws frst proposed bc n 1990 n the form of optml brn dmge [1]. In recent tmes, lernng sprse structures n neurl networs hs gned momentum [-8]. However, to the best of our nowledge, there s no wor tht lerns utonencoders wth sprse connectons. Pror studes n sprse utoencoder [9-1] concentrte on sprse ctvtes; not on sprse connectons. In ths respect ours s the frst wor to propose sprsely connected utoencoders.

3 Just s humn brn does not requre ll ts neurons for specfc ts, we postulte tht n utoencoder does not need to utlze ll ts connectons ether. he ssue of mntnng mportnt connectons wthout over-fttng s ten cre of, f we hve sprse weghts. he portons whch re not useful for representton re pruned nd only the mportnt connectons n the networ re mntned. Such sprse connecton s esly cheved from the followng proposed formulton, ', rg mn X ' X ' (9) 1/0 1/0 e hve bused the notton bt, the subscrpt 1/0 denotes ether n l 1-norm or n l 0-norm nd s defned on the vectorl representton of the weghts. he l 1-norm s convex, nd hs been wdely used n recent tmes by Compressed Sensng [19], [0]. But the l 0-norm does not delly yeld sprse weghts, the l 0-norm does. Unfortuntely l 0-norm mnmzton s n NP hrd problem [1]. However there re pproxmte technques to solve such l 0-mnmzton problems. Autoencoders wth non-lner ctvton functon re solved usng grdent descent technques. Such technques cnnot be drectly pplcble for our proposed formulton. hs s becuse the l 1/l 0-norm penltes re not dfferentble everywhere. In ths wor we follow Mjorzton Mnmzton pproch to solve the sd problem. A. Mjorzton Mnmzton () (b) (c) g. 3. Mjorzton-Mnmzton [] g. 3 shows the geometrcl nterpretton behnd the Mjorzton-Mnmzton (MM) pproch. he fgure depcts the soluton pth for smple sclr problem but essentlly cptures the MM de. Let, J(x) be the functon to be mnmzed. Strt wth n ntl pont (t =0) x (g. 3). A smooth functon G (x) s constructed through x whch hs hgher vlue thn J(x) for ll vlues of x prt from x, t whch the vlues re the sme. hs s the Mjorzton step. he functon G (x) s constructed such tht t s smooth nd esy to mnmze. At ech step, mnmze G (x) to obtn the next terte x +1 (g. 3b). A new G +1(x) s constructed through x +1 whch s now mnmzed to obtn the next terte x + (g. 3c). As cn be seen, the soluton t every terton gets closer to the ctul soluton. or convenence we express the problem (9) n slghtly dfferent mnner n terms of trnsposes rg mn X X H R( H ) (10) H Here H= nd R(H) denotes the penlty. Only the lest squres prt need to be mjorzed; the penlty terms re not ffected. J ( H ) X X H R( H ) (11) or ths mnmzton problem, G (x), the mjorzer of J(x) s chosen to be, G ( H ) X X H ( H H ) ( I XX )( H H ) (1) where s the mxmum egenvlue of the mtrx XX nd I s the dentty. One cn chec tht t H=H the expresson G (H) reduces to J(H). At ll other ponts t s lrger thn J(H); the vlue of ssures tht the second term s postve defnte. G ( H ) X X H ( ) H H I XX H H R( H ) XX XX H HXX H H H I XX H H R( H ) R( H ) ( BH HH ) C R( H ) XX H I XX H XX H I XX H HH 1 where B H X ( X X H ), C XX H ( I XX ) H Usng the dentty wrte, G ( H ) B H B B C R( H ) A D A A A D D D, one cn B H R( H ) K where K conssts of terms ndependent of x. herefore, mnmzng G (x) s the sme s mnmzng the followng, ' 1 G ( H ) B H R( H ) (13)

4 1 where B H X ( X X H ). hs updte s nown s the Lndweber terton. B. l 1-norm penlty rst we derve the lgorthm for solvng the l 1-norm mnmzton problem. rg mn B ' ' 1 1 (14) ', hs s blner problem nd we propose to solve t lterntely,.e. we fx nd solve nd then solve ssumng s fxed. hese two steps re done n every terton. 1 rg mn B ' 1 (15) ' 1 rg mn B ' 1 ' (15b) 1 ' In both cses, the problem remns the sme tht of lest squres mnmzton wth l 1-norm penlty. Let us te the frst problem nd wor out the soluton for t; the soluton for the other problem wll remn the sme. o solve (15) we nvoe the mjorzton pproch once gn. herefore (15) cn be expressed s, rg mn P (16) 1 1 where P ' B ', α s the mxmum egenvlue of ' ' he bove functon (16) s ctully de-coupled,.e. P P 1 (17) herefore, (17) cn be mnmzed term by term,.e. P 1 P sgnum( ) g. 4. Soft hreshold Rule (wth τ=) (18) Settng the prtl dervtves to zero nd solvng for gves the grph shown n g. 4 wth threshold. ht s, the mnmzer of (16) s obtned by pplyng the soft-threshold rule to P wth threshold. he soft-threshold rule s the non-lner functon defned s, x x soft( x, ) 0 x (19) x x Or more compctly, sgnum( P) mx(0, P ) (0) hs concludes the steps for solvng (15); the steps for (15b) re exctly the sme. In compct fshon, the lgorthm for solvng the l 1-norm penlty problem s gven s: Intlzton: H rg mn X X H H H USV 0' US nd 0 V In every terton 1 Compute B H X ( X X H) Updte 1 rg mn B ' 1 1 P ' B ' 1 sgnum( P) mx(0, P ) Smlrly updte ' 1 rg mn B ' 1 ' 1 ' Our ntlzton s determnstc, hence the results re results re repetble there s no vrton between trls s long s other prmeters remn sme. C. l 0-norm penlty he l 1-norm penlty s bsclly shrnge functon defned by the soft thresholdng. It cnnot get n exctly sprse soluton, t only shrns the vlues of unwnted weghts. o get sprse soluton n every terton, one needs to solve the l 0- norm mnmzton problem. hs s n NP hrd problem but hs pproxmte solutons. he more common prctce s to solve (40) usng greedy pproch bsed on Orthogonl Mtchng Pursut [3], [4]. However, these re not effcent for solvng lrge scle problems. o solve -sprse problem, tertons re requred. A better pproch to solve (1) s bsed on Itertve Hrd hresholdng [5]. rg mn B ' ' 0 0 (1) ', e solve t v lterntng mnmzton. 1 rg mn B ' 0 () ' 1 rg mn B ' 1 ' (b) 0 '

5 As before, both the problems remn the sme. e only derve the lgorthm to solve (). o solve t, we nvoe the mjorzton pproch once gn. herefore () cn be expressed s, rg mn P (3) 0 1 where P ' B ' hs s decoupled problem nd cn be expressed s, 0 P ( P ) 1 (4) 0... ( Pn n ) n e cn process (4) element-wse. o derve the mnmum, two cses need to be consdered: cse 1 nd cse. he element-wse cost s 0 n the frst cse. or the second cse, the mnmum s reched when. Comprng the cost on both cses, 0 f 0 0 P 0 ( ) f P hs suggests the followng updtes rule, P when P / 0 when P / hs s populrly nown s hrd thresholdng nd s represented s: 1 Hrdh P, (5) hs leds to n lgorthm somewht smlr to the prevous one. It s succnctly represented below. Intlzton: H rg mn X X H H H USV 0' US nd 0 V In every terton 1 Compute B H X ( X X H) Updte 1 rg mn B ' 0 1 P ' B ' 1 HrdhP, Smlrly updte ' 1 rg mn B ' 1 ' 0 ' IV. EXPERIMENAL EVALUAION he MNIS dgt clssfcton ts s composed of 8x8 mges of the 10 hndwrtten dgts. here re 60,000 trnng mges wth 10,000 test mges n ths benchmr. he mges re scled to [0,1] nd we do not perform ny other preprocessng. Experments re lso crred out on the more chllengng vrtons of the MNIS dtset. hese hve been used n [11] mong others nd were ntroduced s benchmr deep lernng dtsets. All these dtsets hve 1,000 trnng (we do not need vldton) nd 50,000 test smples. he sze of the mge s before s 8x8 nd the number of clsses re 10. Dtset bsc bsc-rot bg-rnd bg-mg Descrpton Smller subset of MNIS. Smller subset of MNIS wth rndom rottons. Smller subset of MNIS wth unformly dstrbuted rndom nose bcground. Smller subset of MNIS wth rndom mge bcground. bg-mg-rot Smller subset of MNIS dgts wth rndom bcground mge nd rotton. e hve lso evluted on the problem of clssfyng documents nto ther correspondng topc. e hve used verson of the 0- dtset [6] for whch the trnng nd test sets contn documents collected t dfferent tmes, settng tht s more reflectve of prctcl pplcton. he trnng set conssts of 11,69 smples nd the test set contns 7,505 exmples. e hve used 5000 most frequent words for the bnry nput fetures. e follow the sme protocol s outlned n [7]. Our thrd dtset s the GZAN musc genre dtset [8, 9]. he dtset contns three-second udo clps, eqully dstrbuted mong 10 muscl genres: blues, clsscl, country, dsco, hp-hop, pop, jzz, metl, regge nd roc. Ech exmple n the set s represented by 59 Mel-Phon Coeffcent (MPC) fetures. hese re smplfed formulton of the Mel-frequency Cepstrl Coeffcents (MCCs) tht re shown to yeld better clssfcton performnce. Snce there s no predefned stndrd splt nd fewer exmples, we hve used 10-fold cross vldton (procedure mentoned n [15]), where ech fold conssted of 9000 (we do not requre vldton exmples unle [8]) trnng exmples nd 1000 test exmples. A. Lner vs Non-lner Most studes n neurl networs employ non-lner ctvton functon. e proposed lner ctvton owng to the ese of soluton. e wll show tht, tlest for the benchmr dtsets used n these experments, the smple lner (Identty) ctvton functon yelds better clssfcton ccurcy thn ther non-lner (sgmod) counterprt. he lner utoencoder weghts re ntlzed by solvng the lest squres problem, mn Q X QX nd settng s the top (number of nodes) rght sngulr vectors of Q. or the nonlner utoconder we use the Hnton s mplementton [30].

6 he utoencoder rchtectures remns sme otherwse; both (lner nd non-lner) re three lyer rchtectures wth hdden nodes. he representton from the deepest lyer s used for clssfcton. e employ two non-prmetrc clssfers KNN (K=1) nd Sprse Representton bsed Clssfcton (SRC) [31]. e wnt to test the representton / feture extrcton cpblty of the lner nd non-lner utoencoders; ths s best done usng smple non-prmetrc clssfers. Prmetrc clssfers le NN nd SVM my be fne tuned to yeld better results, but n such cse t s dffcult to guge f the mprovement n results s owng to the feture extrcton or owng to the fne tunng. ABLE I. LINEAR VS NON-LINEAR ACIVAION Dtset KNN SRC Lner Non-lner Lner Non-lner MNIS bsc bsc-rot bg-mg bg-rnd bg-mg-rot GZAN he results show tht the lner one lwys yelds better results. he mprovement s smll when the number of trnng smples re lrger but for the more chllengng dtsets, the lner utoencoder yelds mprove by lrge mrgn. B. Clssfcton Performnce e compre our results wth the stced utoencoder (SAE), Contrctve Autoencoder (CAE) nd Deep Belef Networ (DBN) [8]. he SAE nd CAE uses lner ctvton. As before, the representton from the deepest lyer s used s fetures. or our sprsely connected utoencoder λ=0.01 s used. In ech of the tbles, the best results re shown n bold. ABLE II. KNN (K=1) RESULS ABLE III. SRC RESULS ABLE IV. SVM RESULS ABLE V. COMPARAIVE RESULS Dtset SAE CAE DBN l0-norm l1-norm MNIS bsc bsc-rot bg-rnd bg-mg bg-mg-rot GZAN Dtset SAE CAE DBN l0-norm l1-norm MNIS bsc bsc-rot bg-rnd bg-mg bg-mg-rot GZAN Dtset SAE CAE DBN l0-norm l1-norm MNIS bsc bsc-rot bg-rnd bg-mg bg-mg-rot GZAN he results show tht our proposed method yelds better results thn SAE nd DBN on n ll the dtsets (except for the lrger MNIS wth KNN). Under fr comprson (eepng the clssfers to be sme nd non-prmetrc) one cn sy tht our method yelds better representton thn other deep lernng technques le SAE, CAE nd DBN. Next (ble IV) we compre the results wth stced denosng utoencoder (SDAE), deep belef networ (DBN), sprse deep neurl networ (SDNN) [33] nd optml brn dmge (OBD) [1]. e repet the results from l 0-norm sprsely connected utoencoder wth SRC (snce these re the best results we obtned). SDAE nd DBN uses fne tunng wth neurl networ clssfer n the fnl stge. SDNN s contemporry sprse deep clssfer nd OBD s clsscl wor wth shllow rchtecture. he results show tht our method yelds results whch re t pr wth SDAE nd DBN nd re better thn sprse neurl networs. Dtset SDAE DBN SDNN OBD MNIS bsc bsc-rot bg-rnd bg-mg bg-mg-rot GZAN e hve compred the trnng tmes of dfferent utoencoders nd DBN. he results re shown n ble V. Both re proposed methods re sgnfcntly fster thn the others. he computtonl cost per terton s hgher for us, but the lgorthms converge fster. he results re only shown on the lrge MNIS dtset nd the MNIS bsc.

7 ABLE VI. RAINING IME IN MINUES Dtset MNIS bsc DBN 78 1 Stced Autoencoder (non-lner) Stced Autoencoder (lner) Contrctve Autoencoder (lner) 98 4 l 1-norm 4 1 l 0-norm 50 6 he confgurton of the mchne runnng these experments s: RAM- 4 GB OS- Red Ht Enterprse Lnux Server relese 7.0 (Mpo) CPU - Intel(R) Xeon(R) CPU E5-430 re two cpus of 6 cores ech Smulton on Mtlb R014. C. Denosng Results Autoencoders hve been used prevously for mge denosng. In [11] t ws shown tht utoencoder wth sprse fetures leds to good denosng results. hey showed results for Gussn nd mpulse denosng. It s not optml to remove mpulse nose wth utoencoders; ths s becuse mpulse nose s sprse. Snce we re formultng n utoencoder wth l - norm dt fdelty, we cn optmlly remove Gussn nose only; ths s the problem we ddress n ths wor. or comprson, we use the stndrd metrcs for mge qulty ssessment - PSNR (Pe Sgnl to Nose Rto) nd SSIM (Structurl Smlrty Index) [34]. e compre our pproch (SprseConnect) wth the sprse utoencoder [11] nd stced denosng utoencoder (SDAE). e use sngle lyer utoencoders for mge denosng. he number of nodes n the hdden lyer s ept to be 51. he vlue of λ s e crred out experments on the gryscle CIAR-10 dtset. he CIAR-10 dtset (g. 10) s composed of 10 clsses of nturl mges wth 50,000 trnng exmples n totl, 5,000 per clss. Ech mge s of sze 3x3. or these experments the color mges hve been converted to greyscle. Zero men Gussn nose ws dded to these mges. he nosy mges served s the nput to the utoencoders nd the clen mges were the output. or testng, the nosy test mges were s nputs nd the mge obtned t the output ws compred wth the clen mge to test the denosng performnce. he results re shown n the followng tble. he PSNR nd the SSIM vlues shown here re the mens over 10,000 test mges. Nose Vrnce, PSNR nd SSIM for Nosy Imge Vrnce=0.01, PSNR= SSIM= Vrnce=0.04 PSNR= SSIM=0.356 Vrnce=0.09 PSNR= SSIM=0.011 SDAE ABLE VII. DENOISING RESULS PSNR=1.95 SSIM= PSNR=1.66 SSIM= PSNR=1.30 SSIM= Sprse Autoencoder PSNR=.94 SSIM= PSNR=.63 SSIM= PSNR=.5 SSIM= SprseConnect (l 1-norm) PSNR=3.90 SSIM=0.738 PSNR=3.53 SSIM=0.707 PSNR=3.01 SSIM=0.675 SprseConnect (l 0-norm) PSNR=6.03 SSIM=0.805 PSNR=5.68 SSIM=0.798 PSNR=5.7 SSIM= he mprovement s sgnfcnt. Usully n mge denosng lterture PSNR mprovement of 0.5 db to 1 db s consdered to be good. In ths cse the mprovement s ner bout 3dB compred to the sprse denosng utoencoder. Also the mprovement n SSIM s round 0.1 ths s huge mprovement. or vsul evluton some smple mges re shown n g. 5. g. 5. Left to Rght Orgnl test mge, nosy mge, SDAE, Sprse Autoencoder, l 1-norm nd l 0-norm. he denosng results my not be t pr wth the stte-ofthe-rt le BM3D or KSVD, but re better thn competng utoencoder bsed technques. he proposed SprseConnect utoencoder gets the best denosng results, blncng nose nd shrpness. V. CONCLUSION hs wor proposes the concept of sprse connectons n utoencoders. Although there re severl studes on sprsely connected neurl networs, there s no pror study on sprsely connected utoencoder. hs s the frst wor n tht respect. All pror studes n sprse utoencoders concentrte on the problem of sprse ctvty. he motvton s drwn from the success of DropOut nd DropConnect neurl networs where over-fttng ws prevented by rndomly swtchng off some ctvtons or connectons durng trnng. Insted of usng such stochstc regulrzton technque, our proposed method determnstclly lerns the sprse connectons. It eeps the relevnt connectons nd prunes the unmportnt ones. hs

8 s cheved by ntroducng sprsty promotng regulrzton penltes on the utoencoder weghts. Experments were crred out for two benchmr utoencoder tss clssfcton nd denosng. or clssfcton, comprson s mde wth the SAE, CAE, DBN, SDAE, sprse deep neurl networ (SDNN) nd optml brn dmge (OBD). Under fr comprson (when non-prmetrc clssfers re used) our method outperforms others. Even wth fne-tuned neurl networ rchtectures, our proposed pproch yelds better results thn SDNN nd OBD nd performs t pr wth densely connected networs le SDAE nd DBN. or denosng, we compred gnst the denosng utoencoder nd the sprse utoencoder [3]. Even for ths ts our proposed pproch yelds consderbly better results. REERENCES [1] Y. LeCun, Optml Brn Dmge, Advnces n Neurl Informton Processng Systems, [] M. hom nd G. Plm, Sprse Actvty nd Sprse Connectvty n Supervsed Lernng, Journl of Mchne Lernng Reserch, Vol. 14, pp , 013. [3] V. Grpon, Sprse Neurl Networs th Lrge Lernng Dversty, IEEE rnsctons on Neurl Networs nd Lernng Systems, Vol. (7), pp , 011. [4] X. Glorot, A. Bordes nd Y. Bengo, Deep Sprse Rectfer Neurl Networs, AISAS 011. [5] L. oth, Phone Recognton wth Deep Sprse Rectfer Neurl Networs, ICASSP 013. [6] D. Yu,. Sede, G. L nd L. Deng, Explotng Sprseness n Deep Neurl Networs for Lrge Vocbulry Speech Recognton, ICASSP 01. [7] B. Lu, M. ng, H. oroosh, M. ppen nd M. Pensy, Sprse Convolutonl Neurl Networs, CVPR 015. [8] H. Awno, S. Nshde, H. Are, J. n,. hsh, H. G. Ouno nd. Ogt, Use of Sprse Structure to Improve Lernng Performnce of Recurrent Neurl Networs, Neurl Informton Processng, pp , Lecture Notes n Computer Scence. [9] Andrew Ng, "Sprse Autoencoder", CS94A Lecture notes, vol. 7, 011 [10] A. Mhn nd B. rey, "K-sprse Autoencoder", ICLR 014. [11] K. H. Cho, "Smple Sprsfcton Improves Sprse Denosng Autoencoders n Denosng Hghly Nosy Imges", ICML 013. [1] N. Jng,. Rong, B. Peng, Y. Ne nd Z. Xong An emprcl nlyss of dfferent sprse penltes for utoencoder n unsupervsed feture lernng, IJCNN 015. [13] Y. Lu, L. Zhng, B. ng nd J. Yng, eture ensemble lernng bsed on sprse utoencoders for mge clssfcton, IJCNN 014. [14] Y. Bengo, Lernng deep rchtectures for AI, oundtons nd rends n Mchne Lernng, (1), [15] P. Vncent, H. Lrochelle, I. Ljoe, Y. Bengo nd P. -A. Mnzgol, Stced denosng utoen coders: Lernng useful representtons n deep networ wth locl denosng crteron, Journl of Mchne Lernng Reserch, Vol. 11, , 010. [16] M. Chen, K. enberger,. Sh, Y. Bengo, Mrgnlzed Denosng Autoencoders for Nonlner Representton, ICML 014. [17] S Rf, P Vncent, X Muller, X Glorot, Y Bengo, Contrctve uto-encoders: Explct nvrnce durng feture extrcton, ICML 011. [18] H. M. Abbs, Anlyss nd prunng of nonlner utossocton networs, IEE Proceedngs on Vson, Imge nd Sgnl Processng, Vol. 151 (1), pp , 004. [19] D. Donoho, Compressed sensng. (IEEE rns. on Informton heory, 5(4), pp , Aprl 006) [0] E. Cndès nd. o, Ner optml sgnl recovery from rndom projectons: Unversl encodng strteges? (IEEE rns. on Informton heory, 5(1), pp , December 006) [1] B. K. Ntrjn, "Sprse pproxmte solutons to lner systems", SIAM Journl on Computng, 4(1995), 7-34 [] Sprse Sgnl Restorton: cnx.org/content/m3168/ltest/ [3] Y. C. Pt, R. Rezfr nd P. S. Krshnprsd, "Orthogonl mtchng pursut: recursve functon pproxmton wth pplctons to wvelet decomposton", Aslomr Conference on Sgnls, Systems nd Computers, pp.40-44, [4] J. A. ropp nd A. C. Glbert, "Sgnl Recovery rom Rndom Mesurements V Orthogonl Mtchng Pursut", IEEE rnsctons on Informton heory, Vol. 53 (1), pp , 007. [5] homs Blumensth nd Me E. Dves, "Itertve hresholdng for Sprse Approxmtons", Journl of ourer Anlyss Applctons, Vol. 14 (5), , 008. [6] [7] H. Lrochelle nd Y. Bengo, "Clssfcton usng Dscrmntve Restrcted Boltzmnn Mchnes", Interntonl Conference on Mchne Lernng, 008. [8] G. znets nd P. Coo, "Muscl genre clssfcton of udo sgnls", IEEE rnsctons on Audo nd Speech Processng 00. [9] [30] [31] J. rght, A. Y. Yng, A. Gnesh, S. S. Sstry nd Y. M, Robust fce recognton v sprse representton, IEEE rnsctons on Pttern Anlyss nd Mchne Intellgence, 31(), 10-7, 009. [3] [33] deep-neurl-networ [34] Z. ng, A. C. Bov, H. R. Sheh nd E. P. Smoncell, "Imge qulty ssessment: rom error vsblty to structurl smlrty," IEEE rnsctons on Imge Processng, vol. 13, no. 4, pp , Apr. 004.

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

18.7 Artificial Neural Networks

18.7 Artificial Neural Networks 310 18.7 Artfcl Neurl Networks Neuroscence hs hypotheszed tht mentl ctvty conssts prmrly of electrochemcl ctvty n networks of brn cells clled neurons Ths led McCulloch nd Ptts to devse ther mthemtcl model

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

Definition of Tracking

Definition of Tracking Trckng Defnton of Trckng Trckng: Generte some conclusons bout the moton of the scene, objects, or the cmer, gven sequence of mges. Knowng ths moton, predct where thngs re gong to project n the net mge,

More information

An Introduction to Support Vector Machines

An Introduction to Support Vector Machines An Introducton to Support Vector Mchnes Wht s good Decson Boundry? Consder two-clss, lnerly seprble clssfcton problem Clss How to fnd the lne (or hyperplne n n-dmensons, n>)? Any de? Clss Per Lug Mrtell

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9 CS434/541: Pttern Recognton Prof. Olg Veksler Lecture 9 Announcements Fnl project proposl due Nov. 1 1-2 prgrph descrpton Lte Penlt: s 1 pont off for ech d lte Assgnment 3 due November 10 Dt for fnl project

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

Least squares. Václav Hlaváč. Czech Technical University in Prague

Least squares. Václav Hlaváč. Czech Technical University in Prague Lest squres Václv Hlváč Czech echncl Unversty n Prgue hlvc@fel.cvut.cz http://cmp.felk.cvut.cz/~hlvc Courtesy: Fred Pghn nd J.P. Lews, SIGGRAPH 2007 Course; Outlne 2 Lner regresson Geometry of lest-squres

More information

Audio De-noising Analysis Using Diagonal and Non-Diagonal Estimation Techniques

Audio De-noising Analysis Using Diagonal and Non-Diagonal Estimation Techniques Audo De-nosng Anlyss Usng Dgonl nd Non-Dgonl Estmton Technques Sugt R. Pwr 1, Vshl U. Gdero 2, nd Rhul N. Jdhv 3 1 AISSMS, IOIT, Pune, Ind Eml: sugtpwr@gml.com 2 Govt Polytechnque, Pune, Ind Eml: vshl.gdero@gml.com

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

Multiple view geometry

Multiple view geometry EECS 442 Computer vson Multple vew geometry Perspectve Structure from Moton - Perspectve structure from moton prolem - mgutes - lgerc methods - Fctorzton methods - Bundle djustment - Self-clrton Redng:

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

Computing a complete histogram of an image in Log(n) steps and minimum expected memory requirements using hypercubes

Computing a complete histogram of an image in Log(n) steps and minimum expected memory requirements using hypercubes Computng complete hstogrm of n mge n Log(n) steps nd mnmum expected memory requrements usng hypercubes TAREK M. SOBH School of Engneerng, Unversty of Brdgeport, Connectcut, USA. Abstrct Ths work frst revews

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

SVMs for regression Multilayer neural networks

SVMs for regression Multilayer neural networks Lecture SVMs for regresson Muter neur netors Mos Husrecht mos@cs.ptt.edu 539 Sennott Squre Support vector mchne SVM SVM mmze the mrgn round the seprtng hperpne. he decson functon s fu specfed suset of

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Two Activation Function Wavelet Network for the Identification of Functions with High Nonlinearity

Two Activation Function Wavelet Network for the Identification of Functions with High Nonlinearity Interntonl Journl of Engneerng & Computer Scence IJECS-IJENS Vol:1 No:04 81 Two Actvton Functon Wvelet Network for the Identfcton of Functons wth Hgh Nonlnerty Wsm Khld Abdulkder Abstrct-- The ntegrton

More information

Non-Linear Data for Neural Networks Training and Testing

Non-Linear Data for Neural Networks Training and Testing Proceedngs of the 4th WSEAS Int Conf on Informton Securty, Communctons nd Computers, Tenerfe, Spn, December 6-8, 005 (pp466-47) Non-Lner Dt for Neurl Networks Trnng nd Testng ABDEL LATIF ABU-DALHOUM MOHAMMED

More information

Machine Learning Support Vector Machines SVM

Machine Learning Support Vector Machines SVM Mchne Lernng Support Vector Mchnes SVM Lesson 6 Dt Clssfcton problem rnng set:, D,,, : nput dt smple {,, K}: clss or lbel of nput rget: Construct functon f : X Y f, D Predcton of clss for n unknon nput

More information

Decomposition of Boolean Function Sets for Boolean Neural Networks

Decomposition of Boolean Function Sets for Boolean Neural Networks Decomposton of Boolen Functon Sets for Boolen Neurl Netorks Romn Kohut,, Bernd Stenbch Freberg Unverst of Mnng nd Technolog Insttute of Computer Scence Freberg (Schs), Germn Outlne Introducton Boolen Neuron

More information

SVMs for regression Non-parametric/instance based classification method

SVMs for regression Non-parametric/instance based classification method S 75 Mchne ernng ecture Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre SVMs for regresson Non-prmetrc/nstnce sed cssfcton method S 75 Mchne ernng Soft-mrgn SVM Aos some fet on crossng the seprtng hperpne

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER Yn, S.-P.: Locl Frctonl Lplce Seres Expnson Method for Dffuson THERMAL SCIENCE, Yer 25, Vol. 9, Suppl., pp. S3-S35 S3 LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN

More information

Course Review Introduction to Computer Methods

Course Review Introduction to Computer Methods Course Revew Wht you hopefully hve lerned:. How to nvgte nsde MIT computer system: Athen, UNIX, emcs etc. (GCR). Generl des bout progrmmng (GCR): formultng the problem, codng n Englsh trnslton nto computer

More information

Model Fitting and Robust Regression Methods

Model Fitting and Robust Regression Methods Dertment o Comuter Engneerng Unverst o Clorn t Snt Cruz Model Fttng nd Robust Regresson Methods CMPE 64: Imge Anlss nd Comuter Vson H o Fttng lnes nd ellses to mge dt Dertment o Comuter Engneerng Unverst

More information

Statistics 423 Midterm Examination Winter 2009

Statistics 423 Midterm Examination Winter 2009 Sttstcs 43 Mdterm Exmnton Wnter 009 Nme: e-ml: 1. Plese prnt your nme nd e-ml ddress n the bove spces.. Do not turn ths pge untl nstructed to do so. 3. Ths s closed book exmnton. You my hve your hnd clcultor

More information

Semi-supervised Discriminant Analysis

Semi-supervised Discriminant Analysis Sem-supervsed Dscrmnnt Anlyss Deng C UIUC dengc2@cs.uuc.edu Xofe He Yhoo! hex@yhoo-nc.com Jwe Hn UIUC hnj@cs.uuc.edu Abstrct Lner Dscrmnnt Anlyss (LDA) hs been populr method for extrctng fetures whch preserve

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

Improving Anytime Point-Based Value Iteration Using Principled Point Selections

Improving Anytime Point-Based Value Iteration Using Principled Point Selections In In Proceedngs of the Twenteth Interntonl Jont Conference on Artfcl Intellgence (IJCAI-7) Improvng Anytme Pont-Bsed Vlue Iterton Usng Prncpled Pont Selectons Mchel R. Jmes, Mchel E. Smples, nd Dmtr A.

More information

A Tri-Valued Belief Network Model for Information Retrieval

A Tri-Valued Belief Network Model for Information Retrieval December 200 A Tr-Vlued Belef Networ Model for Informton Retrevl Fernndo Ds-Neves Computer Scence Dept. Vrgn Polytechnc Insttute nd Stte Unversty Blcsburg, VA 24060. IR models t Combnng Evdence Grphcl

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

In this Chapter. Chap. 3 Markov chains and hidden Markov models. Probabilistic Models. Example: CpG Islands

In this Chapter. Chap. 3 Markov chains and hidden Markov models. Probabilistic Models. Example: CpG Islands In ths Chpter Chp. 3 Mrov chns nd hdden Mrov models Bontellgence bortory School of Computer Sc. & Eng. Seoul Ntonl Unversty Seoul 5-74, Kore The probblstc model for sequence nlyss HMM (hdden Mrov model)

More information

Sparse and Overcomplete Representation: Finding Statistical Orders in Natural Images

Sparse and Overcomplete Representation: Finding Statistical Orders in Natural Images Sprse nd Overcomplete Representton: Fndng Sttstcl Orders n Nturl Imges Amr Rez Sffr Azr Insttute for Theoretcl Computer Scence, Grz Unversty of Technology mr@g.tugrz.t Outlne Vsul Cortex. Sprse nd Overcomplete

More information

A Regression-Based Approach for Scaling-Up Personalized Recommender Systems in E-Commerce

A Regression-Based Approach for Scaling-Up Personalized Recommender Systems in E-Commerce A Regresson-Bsed Approch for Sclng-Up Personlzed Recommender Systems n E-Commerce Slobodn Vucetc 1 nd Zorn Obrdovc 1, svucetc@eecs.wsu.edu, zorn@cs.temple.edu 1 Electrcl Engneerng nd Computer Scence, Wshngton

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

Support vector machines for regression

Support vector machines for regression S 75 Mchne ernng ecture 5 Support vector mchnes for regresson Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre S 75 Mchne ernng he decson oundr: ˆ he decson: Support vector mchnes ˆ α SV ˆ sgn αˆ SV!!: Decson

More information

Dynamic Power Management in a Mobile Multimedia System with Guaranteed Quality-of-Service

Dynamic Power Management in a Mobile Multimedia System with Guaranteed Quality-of-Service Dynmc Power Mngement n Moble Multmed System wth Gurnteed Qulty-of-Servce Qnru Qu, Qng Wu, nd Mssoud Pedrm Dept. of Electrcl Engneerng-Systems Unversty of Southern Clforn Los Angeles CA 90089 Outlne! Introducton

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Using Predictions in Online Optimization: Looking Forward with an Eye on the Past

Using Predictions in Online Optimization: Looking Forward with an Eye on the Past Usng Predctons n Onlne Optmzton: Lookng Forwrd wth n Eye on the Pst Nngjun Chen Jont work wth Joshu Comden, Zhenhu Lu, Anshul Gndh, nd Adm Wermn 1 Predctons re crucl for decson mkng 2 Predctons re crucl

More information

REGULARIZED AUTOENCODERS

REGULARIZED AUTOENCODERS REGULARIZED AUTOENCODERS By Kavya Gupta Under the Supervson of Dr. Angshul Majumdar Indraprastha Insttute of Informaton Technology, Delh October 016 Regularzed Autoencoders Indraprastha Insttute of Informaton

More information

523 P a g e. is measured through p. should be slower for lesser values of p and faster for greater values of p. If we set p*

523 P a g e. is measured through p. should be slower for lesser values of p and faster for greater values of p. If we set p* R. Smpth Kumr, R. Kruthk, R. Rdhkrshnn / Interntonl Journl of Engneerng Reserch nd Applctons (IJERA) ISSN: 48-96 www.jer.com Vol., Issue 4, July-August 0, pp.5-58 Constructon Of Mxed Smplng Plns Indexed

More information

CALIBRATION OF SMALL AREA ESTIMATES IN BUSINESS SURVEYS

CALIBRATION OF SMALL AREA ESTIMATES IN BUSINESS SURVEYS CALIBRATION OF SMALL AREA ESTIMATES IN BUSINESS SURVES Rodolphe Prm, Ntle Shlomo Southmpton Sttstcl Scences Reserch Insttute Unverst of Southmpton Unted Kngdom SAE, August 20 The BLUE-ETS Project s fnnced

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk Chpter 5 Supplementl Text Mterl 5-. Expected Men Squres n the Two-fctor Fctorl Consder the two-fctor fxed effects model y = µ + τ + β + ( τβ) + ε k R S T =,,, =,,, k =,,, n gven s Equton (5-) n the textook.

More information

Bi-level models for OD matrix estimation

Bi-level models for OD matrix estimation TNK084 Trffc Theory seres Vol.4, number. My 2008 B-level models for OD mtrx estmton Hn Zhng, Quyng Meng Abstrct- Ths pper ntroduces two types of O/D mtrx estmton model: ME2 nd Grdent. ME2 s mxmum-entropy

More information

Soft Set Theoretic Approach for Dimensionality Reduction 1

Soft Set Theoretic Approach for Dimensionality Reduction 1 Interntonl Journl of Dtbse Theory nd pplcton Vol No June 00 Soft Set Theoretc pproch for Dmensonlty Reducton Tutut Herwn Rozd Ghzl Mustf Mt Ders Deprtment of Mthemtcs Educton nversts hmd Dhln Yogykrt Indones

More information

Transform Coding. C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University

Transform Coding. C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University Trnsform Codng C.M. Lu Perceptul Sgnl Processng Lb College of Computer Scence Ntonl Cho-Tung Unversty http://www.cse.nctu.edu.tw/~cmlu/courses/compresson/ Offce: EC538 (03)573877 cmlu@cs.nctu.edu.tw Motvtng

More information

Pyramid Algorithms for Barycentric Rational Interpolation

Pyramid Algorithms for Barycentric Rational Interpolation Pyrmd Algorthms for Brycentrc Rtonl Interpolton K Hormnn Scott Schefer Astrct We present new perspectve on the Floter Hormnn nterpolnt. Ths nterpolnt s rtonl of degree (n, d), reproduces polynomls of degree

More information

INTERPOLATION(1) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek

INTERPOLATION(1) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek ELM Numercl Anlss Dr Muhrrem Mercmek INTEPOLATION ELM Numercl Anlss Some of the contents re dopted from Lurene V. Fusett, Appled Numercl Anlss usng MATLAB. Prentce Hll Inc., 999 ELM Numercl Anlss Dr Muhrrem

More information

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing Advanced Scence and Technology Letters, pp.164-168 http://dx.do.org/10.14257/astl.2013 Pop-Clc Nose Detecton Usng Inter-Frame Correlaton for Improved Portable Audtory Sensng Dong Yun Lee, Kwang Myung Jeon,

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Linear and Nonlinear Optimization

Linear and Nonlinear Optimization Lner nd Nonlner Optmzton Ynyu Ye Deprtment of Mngement Scence nd Engneerng Stnford Unversty Stnford, CA 9430, U.S.A. http://www.stnford.edu/~yyye http://www.stnford.edu/clss/msnde/ Ynyu Ye, Stnford, MS&E

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Altitude Estimation for 3-D Tracking with Two 2-D Radars

Altitude Estimation for 3-D Tracking with Two 2-D Radars th Interntonl Conference on Informton Fuson Chcgo Illnos USA July -8 Alttude Estmton for -D Trckng wth Two -D Rdrs Yothn Rkvongth Jfeng Ru Sv Svnnthn nd Soontorn Orntr Deprtment of Electrcl Engneerng Unversty

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Math 426: Probability Final Exam Practice

Math 426: Probability Final Exam Practice Mth 46: Probbility Finl Exm Prctice. Computtionl problems 4. Let T k (n) denote the number of prtitions of the set {,..., n} into k nonempty subsets, where k n. Argue tht T k (n) kt k (n ) + T k (n ) by

More information

A Family of Multivariate Abel Series Distributions. of Order k

A Family of Multivariate Abel Series Distributions. of Order k Appled Mthemtcl Scences, Vol. 2, 2008, no. 45, 2239-2246 A Fmly of Multvrte Abel Seres Dstrbutons of Order k Rupk Gupt & Kshore K. Ds 2 Fculty of Scence & Technology, The Icf Unversty, Agrtl, Trpur, Ind

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 7.. Introduction to Integrtion. 7. Integrl Clculus As ws the cse with the chpter on differentil

More information

CIS587 - Artificial Intelligence. Uncertainty CIS587 - AI. KB for medical diagnosis. Example.

CIS587 - Artificial Intelligence. Uncertainty CIS587 - AI. KB for medical diagnosis. Example. CIS587 - rtfcl Intellgence Uncertnty K for medcl dgnoss. Exmple. We wnt to uld K system for the dgnoss of pneumon. rolem descrpton: Dsese: pneumon tent symptoms fndngs, l tests: Fever, Cough, leness, WC

More information

arxiv: v2 [cs.lg] 9 Nov 2017

arxiv: v2 [cs.lg] 9 Nov 2017 Renforcement Lernng under Model Msmtch Aurko Roy 1, Hun Xu 2, nd Sebstn Pokutt 2 rxv:1706.04711v2 cs.lg 9 Nov 2017 1 Google Eml: urkor@google.com 2 ISyE, Georg Insttute of Technology, Atlnt, GA, USA. Eml:

More information

Advanced Machine Learning. An Ising model on 2-D image

Advanced Machine Learning. An Ising model on 2-D image Advnced Mchne Lernng Vrtonl Inference Erc ng Lecture 12, August 12, 2009 Redng: Erc ng Erc ng @ CMU, 2006-2009 1 An Isng model on 2-D mge odes encode hdden nformton ptchdentty. They receve locl nformton

More information

Electrochemical Thermodynamics. Interfaces and Energy Conversion

Electrochemical Thermodynamics. Interfaces and Energy Conversion CHE465/865, 2006-3, Lecture 6, 18 th Sep., 2006 Electrochemcl Thermodynmcs Interfces nd Energy Converson Where does the energy contrbuton F zϕ dn come from? Frst lw of thermodynmcs (conservton of energy):

More information

Haddow s Experiment:

Haddow s Experiment: schemtc drwng of Hddow's expermentl set-up movng pston non-contctng moton sensor bems of sprng steel poston vres to djust frequences blocks of sold steel shker Hddow s Experment: terr frm Theoretcl nd

More information

Week 5: Neural Networks

Week 5: Neural Networks Week 5: Neural Networks Instructor: Sergey Levne Neural Networks Summary In the prevous lecture, we saw how we can construct neural networks by extendng logstc regresson. Neural networks consst of multple

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

Many-Body Calculations of the Isotope Shift

Many-Body Calculations of the Isotope Shift Mny-Body Clcultons of the Isotope Shft W. R. Johnson Mrch 11, 1 1 Introducton Atomc energy levels re commonly evluted ssumng tht the nucler mss s nfnte. In ths report, we consder correctons to tomc levels

More information

On-line Reinforcement Learning Using Incremental Kernel-Based Stochastic Factorization

On-line Reinforcement Learning Using Incremental Kernel-Based Stochastic Factorization On-lne Renforcement Lernng Usng Incrementl Kernel-Bsed Stochstc Fctorzton André M. S. Brreto School of Computer Scence McGll Unversty Montrel, Cnd msb@cs.mcgll.c Don Precup School of Computer Scence McGll

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Reproducing Kernel Hilbert Space for. Penalized Regression Multi-Predictors: Case in Longitudinal Data

Reproducing Kernel Hilbert Space for. Penalized Regression Multi-Predictors: Case in Longitudinal Data Interntonl Journl of Mthemtcl Anlyss Vol. 8, 04, no. 40, 95-96 HIKARI Ltd, www.m-hkr.com http://dx.do.org/0.988/jm.04.47 Reproducng Kernel Hlbert Spce for Penlzed Regresson Mult-Predctors: Cse n Longudnl

More information

State Estimation in TPN and PPN Guidance Laws by Using Unscented and Extended Kalman Filters

State Estimation in TPN and PPN Guidance Laws by Using Unscented and Extended Kalman Filters Stte Estmton n PN nd PPN Gudnce Lws by Usng Unscented nd Extended Klmn Flters S.H. oospour*, S. oospour**, mostf.sdollh*** Fculty of Electrcl nd Computer Engneerng, Unversty of brz, brz, Irn, *s.h.moospour@gml.com

More information

1 Online Learning and Regret Minimization

1 Online Learning and Regret Minimization 2.997 Decision-Mking in Lrge-Scle Systems My 10 MIT, Spring 2004 Hndout #29 Lecture Note 24 1 Online Lerning nd Regret Minimiztion In this lecture, we consider the problem of sequentil decision mking in

More information

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 32, N o 1, 2003, pp 11 20 THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR TEODORA CĂTINAŞ Abstrct We extend the Sheprd opertor by

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

CONTEXTUAL MULTI-ARMED BANDIT ALGORITHMS FOR PERSONALIZED LEARNING ACTION SELECTION. Indu Manickam, Andrew S. Lan, and Richard G.

CONTEXTUAL MULTI-ARMED BANDIT ALGORITHMS FOR PERSONALIZED LEARNING ACTION SELECTION. Indu Manickam, Andrew S. Lan, and Richard G. CONTEXTUAL MULTI-ARMED BANDIT ALGORITHMS FOR PERSONALIZED LEARNING ACTION SELECTION Indu Mnckm, Andrew S. Ln, nd Rchrd G. Brnuk Rce Unversty ABSTRACT Optmzng the selecton of lernng resources nd prctce

More information

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB Journl of Appled Mthemtcs nd Computtonl Mechncs 5, 4(4), 5-3 www.mcm.pcz.pl p-issn 99-9965 DOI:.75/jmcm.5.4. e-issn 353-588 LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION

More information

A Reinforcement Learning System with Chaotic Neural Networks-Based Adaptive Hierarchical Memory Structure for Autonomous Robots

A Reinforcement Learning System with Chaotic Neural Networks-Based Adaptive Hierarchical Memory Structure for Autonomous Robots Interntonl Conference on Control, Automton nd ystems 008 Oct. 4-7, 008 n COEX, eoul, Kore A Renforcement ernng ystem wth Chotc Neurl Networs-Bsed Adptve Herrchcl Memory tructure for Autonomous Robots Msno

More information

M/G/1/GD/ / System. ! Pollaczek-Khinchin (PK) Equation. ! Steady-state probabilities. ! Finding L, W q, W. ! π 0 = 1 ρ

M/G/1/GD/ / System. ! Pollaczek-Khinchin (PK) Equation. ! Steady-state probabilities. ! Finding L, W q, W. ! π 0 = 1 ρ M/G//GD/ / System! Pollcze-Khnchn (PK) Equton L q 2 2 λ σ s 2( + ρ ρ! Stedy-stte probbltes! π 0 ρ! Fndng L, q, ) 2 2 M/M/R/GD/K/K System! Drw the trnston dgrm! Derve the stedy-stte probbltes:! Fnd L,L

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information