Kitaev s quantum strong coin-flipping bound

Size: px
Start display at page:

Download "Kitaev s quantum strong coin-flipping bound"

Transcription

1 Kitaev s quantum strong coin-flipping bound In this lecture we will use the semidefinite programming characterization of multiple turn interactions from the previous lecture to prove Kitaev s bound on quantum strong coin-flipping. 8.1 Quantum strong coin-flipping Our first order of business is to clarify what is meant by a quantum strong coinflipping protocol. We imagine an interaction between two individuals, Alice and Bob, along similar lines to the sorts of interactions we discussed in the previous lecture. This time, however, Bob will also produce a measurement outcome, as is suggested by Figure 8.1. More specifically, the set of measurement outcomes for both Alice and Bob is { 0, 1, abort }. (8.1 We will consider what happens when optimizations over the actions of Alice and Bob are performed (individually, but for the moment it is to be assumed that honest actions for both Alice and Bob have been provided by a hypothetical protocol designer. It will sometimes be convenient to refer to these individuals as honest Alice and honest Bob to distinguish them from potentially adversarial individuals. The hypothetical protocol designer s goal is to allow honest Alice and Bob to flip a fair coin, protecting each of them against the possibility that the other player is being dishonest. Similar to what we did in the previous lecture, we will make the assumption that Alice and Bob s actions are specified by isometries: A 1,..., A n for Alice and B 1,..., B n for Bob. Recall that this means, more precisely, that A k U(Z k 1 X k, Z k Y k and B k U(Y k 1 W k 1, X k W k (8.2 1

2 CS 867/QIC 890 Semidefinite Programming in Quantum Information Alice Z 1 Z 2 A 1 A 2 A 3 Z 3 X 1 Y 1 X 2 Y 2 X 3 B 1 B 2 B 3 W 1 W 2 W 3 Bob Figure 8.1: An interaction between Alice and Bob in which both individuals produce a measurement outcome. for each k {1,..., n}, where X 1,..., X n, Y 0,..., Y n, Z 0,..., Z n, and W 0,..., W n are complex Euclidean spaces (and where we assume W 0 = C, Z 0 = C, Y 0 = C, and Y n = C. We will also let Alice s and Bob s measurements be described by the operators { P0, P 1 } Pos(Zn and { Q 0, Q 1 } Pos(Wn, (8.3 where we assume P 0 + P 1 1 and Q 0 + Q 1 1 and implicitly take P abort = 1 (P 0 + P 1 and Q abort = 1 (Q 0 + Q 1. (8.4 Now, we say that such a specification of Alice and Bob constitutes a quantum strong coin-flipping protocol with bias at most ε if the following properties hold: 1. The interaction between honest Alice and honest Bob produces measurement outcomes a and b, respectively, that are distributed so that Pr ( (a, b = (0, 0 = Pr ( (a, b = (1, 1 = 1 2. (8.5 Note that this implies that neither individual outputs abort, and that Alice s output and Bob s output always agree. 2. For every choice of a {0, 1} and every choice of a (possibly dishonest Bob B = (B 1,..., B n, the interaction between honest Alice and B causes Alice to output a with probability at most 1/2 + ε. 3. For every choice of b {0, 1} and every choice of a (possibly dishonest Alice A = (A 1,..., A n, the interaction between A and honest Bob causes Bob to output b with probability at most 1/2 + ε. 2

3 The reason that a coin-flipping protocol meeting these requirements is referred to as strong is that neither outcome can be forced by either individual with probability greater than 1/2 + ε. A weak quantum coin-flipping protocol, on the other hand, implicitly assumes that each player has a preferred outcome (0 for Alice, 1 for Bob, let us say, and only demands that dishonest participants cannot force their preferred outcome with probability greater than 1/2 + ε. 8.2 Kitaev s quantum strong coin-flipping bound The remainder of the lecture will be devoted to a statement and proof of Kitaev s strong quantum coin-flipping bound, which states that it is not possible to devise a strong quantum coin-flipping protocol with bias smaller than 1/ 2 1/2. Theorem 8.1. Suppose that A = (A 1,..., A n, {P 0, P 1 } and B = (B 1,..., B n, {Q 0, Q 1 } (8.6 describe a quantum strong coin-flipping protocol with bias at most ε. It holds that ε (8.7 Proof. Fix any choice of a {0, 1}, and consider the maximum probability with which a dishonest Bob B = (B 1,..., B n can cause honest Alice to output a. As discussed in the previous lecture, this maximum probability can be expressed as a semidefinite program whose dual form is as follows: minimize: Dual problem (for Alice outputting a λ subject to: λ1 X1 A 1 (Z 1 1 Y1 A 1, Z 1 1 X2 A 2(Z 2 1 Y2 A 2,. Z n 2 1 Xn 1 A n 1 (Z n 1 1 Yn 1 A n 1 Z n 1 1 Xn A np a A n, λ R, Z 1 Herm(Z 1,..., Z n 1 Herm(Z n 1. If we were to go through a similar analysis for the maximum probability with which a dishonest Alice A = (A 1,..., A n can cause honest Bob to produce a particular measurement outcome b {0, 1}, we would find that this value is also represented by a semidefinite program. Its dual form is as follows: 3

4 CS 867/QIC 890 Semidefinite Programming in Quantum Information Dual problem (for Bob outputting b minimize: TrX1 (B 1 B1, W 1 subject to: 1 Y1 W 1 B 2(1 X2 W 2 B 2,. 1 Yn 2 W n 2 B n 1 (1 X n 1 W n 1 B n 1 1 Yn 1 W n 1 B n(1 Xn Q b B n, W 1 Herm(W 1,..., W n 1 Herm(W n 1. Note that both problems are strictly feasible, and as the primal forms are feasible, one has strong duality for both semidefinite programs by Slater s theorem. Consider the pure states of the system as A and B (honest Alice and Bob interact: let u k = ( A k 1 Wk 1Zk 1 B k ( A1 1 W1 B1 (8.8 for k = 1,..., n. (Observe that because B 1 is an isometry from Y 0 W 0 = C to X 1 W 1, we may regard it as a unit vector in X 1 W 1. The vector u n Z n W n represents the pure state of the registers (Z n, W n immediately before honest Alice and Bob perform their measurements, while u k represents the state of (Z k, Y k, W k after honest Alice and Bob have each applied k operations, for k = 1,..., n 1. Note that the first requirement of a strong coin-flipping protocol may be expressed as u n(p 0 Q 0 u n = 1 2 = u n(p 1 Q 1 u n. (8.9 Now suppose that (λ, Z 1,..., Z n 1 and (W 1,..., W n 1 are feasible solutions to the two dual problems above, for measurement outcomes a and b satisfying a = b. (Either of the two possibilities a = b = 0 and a = b = 1 yield the same result. Observe that all of the operators Z 1,..., Z n 1 and W 1,..., W n 1 must be positive semidefinite, by virtue of the fact that P a and Q b are positive semidefinite. For every choice of k {1,..., n 2} it therefore holds that and and therefore Z k 1 Yk W k Z k Bk+1( 1Xk+1 W k+1 Bk+1 = ( 1 Zk Bk+1 (8.10 Zk 1 Xk+1 W k+1 1Zk B k+1 Z k 1 Xk+1 W k+1 A k+1( Zk+1 1 Yk+1 Ak+1 W k+1 = ( A k+1 1 W k+1 Zk+1 1 Yk+1 W k+1 Ak+1 1 Wk+1, (8.11 u k( Zk 1 Yk W k u k u k+1( Zk+1 1 Yk+1 W k+1 uk+1. (8.12 4

5 Along similar lines, and which together imply Z n 1 1 Yn 1 W n 1 Z n 1 Bn( 1Xn Q b Bn = ( 1 Zn 1 Bn (8.13 Zn 1 1 Xn Q b 1Zn 1 B n Z n 1 1 Xn Q b A np a A n Q b = ( A n 1 Wn Pa Q b An 1 Wn, (8.14 u ( n 1 Zn 1 1 Yn 1 W n 1 un 1 u n(p a Q b u n = 1 2 (8.15 (by the assumption a = b. One therefore concludes that u 1 (Z 1 1 Y1 W 1 u (8.16 Finally, we have that the product of the two objective values satisfies λ Tr X1 (B 1 B1, W ( ( 1 = Tr B 1 λ1x1 W 1 B1 Tr ( B1 ( ( A 1 Z1 1 Y1 A1 W 1 B1 = u 1 (Z 1 1 Y1 W 1 u (8.17 One of the two objective values must therefore be at least 1/ 2. By strong duality of the semidefinite programs, we conclude (for both of the outcomes c {0, 1} that either Alice can force Bob to output c with probability at least 1/ 2 or Bob can force Alice to output c with probability at least 1/ 2. The bias of the protocol is therefore at least 1/ 2 1/2, as required. 5

Duality and alternative forms for semidefinite programs

Duality and alternative forms for semidefinite programs Lecture 2 Duality and alternative forms for semidefinite programs 2.1 Duality It is, of course, not an accident that we had that the primal and dual optimal values were equal in the previous example this

More information

Lecture 8: Semidefinite programs for fidelity and optimal measurements

Lecture 8: Semidefinite programs for fidelity and optimal measurements CS 766/QIC 80 Theory of Quantum Information (Fall 0) Lecture 8: Semidefinite programs for fidelity and optimal measurements This lecture is devoted to two examples of semidefinite programs: one is for

More information

Nonlocal games and XOR games

Nonlocal games and XOR games Nonlocal games and XOR games In previous lectures, we discussed a few fairly direct connections between quantum information theoretic notions and semidefinite programs. For instance, the semidefinite program

More information

Lecture 7: Semidefinite programming

Lecture 7: Semidefinite programming CS 766/QIC 820 Theory of Quantum Information (Fall 2011) Lecture 7: Semidefinite programming This lecture is on semidefinite programming, which is a powerful technique from both an analytic and computational

More information

Multiparty Quantum Coin Flipping

Multiparty Quantum Coin Flipping Multiparty Quantum Coin Flipping Andris Ambainis IAS and U of Latvia Harry Buhrman CWI and U of Amsterdam Yevgeniy Dodis New York University Hein Röhrig U of Calgary Abstract We investigate coin-flipping

More information

Bit-Commitment and Coin Flipping in a Device-Independent Setting

Bit-Commitment and Coin Flipping in a Device-Independent Setting Bit-Commitment and Coin Flipping in a Device-Independent Setting J. Silman Université Libre de Bruxelles Joint work with: A. Chailloux & I. Kerenidis (LIAFA), N. Aharon (TAU), S. Pironio & S. Massar (ULB).

More information

Quantum and classical coin-flipping protocols based on bit-commitment and their point games

Quantum and classical coin-flipping protocols based on bit-commitment and their point games Quantum and classical coin-flipping protocols based on bit-commitment and their point games Ashwin Nayak Jamie Sikora Levent Tunçel April, 05 Abstract We focus on a family of quantum coin-flipping protocols

More information

Lecture 4: Purifications and fidelity

Lecture 4: Purifications and fidelity CS 766/QIC 820 Theory of Quantum Information (Fall 2011) Lecture 4: Purifications and fidelity Throughout this lecture we will be discussing pairs of registers of the form (X, Y), and the relationships

More information

Time-reversal of rank-one quantum strategy functions

Time-reversal of rank-one quantum strategy functions Time-reversal of rank-one quantum strategy functions Yuan Su 1 John Watrous 2,3 1 Department of Computer Science, Institute for Advanced Computer Studies, and Joint Center for Quantum Information and Computer

More information

A search for quantum coin-flipping protocols using optimization techniques

A search for quantum coin-flipping protocols using optimization techniques A search for quantum coin-flipping protocols using optimization techniques Ashwin Nayak Jamie Sikora Levent Tunçel February 8, 04 Abstract Coin-flipping is a cryptographic task in which two physically

More information

CS120, Quantum Cryptography, Fall 2016

CS120, Quantum Cryptography, Fall 2016 CS10, Quantum Cryptography, Fall 016 Homework # due: 10:9AM, October 18th, 016 Ground rules: Your homework should be submitted to the marked bins that will be by Annenberg 41. Please format your solutions

More information

Fidelity and trace norm

Fidelity and trace norm Fidelity and trace norm In this lecture we will see two simple examples of semidefinite programs for quantities that are interesting in the theory of quantum information: the first is the trace norm of

More information

Introduction to Mathematical Programming

Introduction to Mathematical Programming Introduction to Mathematical Programming Ming Zhong Lecture 22 October 22, 2018 Ming Zhong (JHU) AMS Fall 2018 1 / 16 Table of Contents 1 The Simplex Method, Part II Ming Zhong (JHU) AMS Fall 2018 2 /

More information

Lecture 16: Nielsen s theorem on pure state entanglement transformation

Lecture 16: Nielsen s theorem on pure state entanglement transformation CS 766/QIC 820 Theory of Quantum Information (Fall 2011) Lecture 16: Nielsen s theorem on pure state entanglement transformation In this lecture we will consider pure-state entanglement transformation.

More information

Quantum dice rolling

Quantum dice rolling Quantum dice rolling N. Aharon and J. Silman School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel A coin is just a two sided dice. Recently, Mochon proved that quantum weak coin

More information

Round-Efficient Multi-party Computation with a Dishonest Majority

Round-Efficient Multi-party Computation with a Dishonest Majority Round-Efficient Multi-party Computation with a Dishonest Majority Jonathan Katz, U. Maryland Rafail Ostrovsky, Telcordia Adam Smith, MIT Longer version on http://theory.lcs.mit.edu/~asmith 1 Multi-party

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

Lecture 6: Further remarks on measurements and channels

Lecture 6: Further remarks on measurements and channels CS 766/QIC 820 Theory of Quantum Information Fall 2011) Lecture 6: Further remarks on measurements and channels In this lecture we will discuss a few loosely connected topics relating to measurements and

More information

Bit-commitment-based quantum coin flipping

Bit-commitment-based quantum coin flipping PHYSICAL REVIEW A 67, 0304 003 Bit-commitment-based quantum coin flipping Ashwin Nayak* Computer Science Department, and Institute for Quantum Information, California Institute of Technology, Mail Code

More information

Practical Quantum Coin Flipping

Practical Quantum Coin Flipping Practical Quantum Coin Flipping Anna Pappa, 1, André Chaillloux, 2, Eleni Diamanti, 1, and Iordanis Kerenidis 2, 1 LTCI, CNRS - Télécom ParisTech, Paris, France 2 LIAFA, CNRS - Université Paris 7, Paris,

More information

Quantum information and quantum mechanics: fundamental issues. John Preskill, Caltech 23 February

Quantum information and quantum mechanics: fundamental issues. John Preskill, Caltech 23 February Quantum information and uantum mechanics: fundamental issues John Preskill, Caltech 23 February 2004 http://www.ii.caltech.edu/ Some important issues in uantum cryptography: Can we close the gap between

More information

Quantum and Classical Coin-Flipping Protocols based on Bit-Commitment and their Point Games

Quantum and Classical Coin-Flipping Protocols based on Bit-Commitment and their Point Games Quantum and Classical Coin-Fliing Protocols based on Bit-Commitment and their Point Games Ashwin Nayak, Jamie Sikora, Levent Tunçel Follow-u work to a aer that will aear on the arxiv on Monday Berkeley

More information

Optimal quantum strong coin flipping

Optimal quantum strong coin flipping Optimal quantum strong coin flipping André Chailloux LRI Université Paris-Sud andre.chailloux@lri.fr Iordanis Kerenidis CNRS - LRI Université Paris-Sud jkeren@lri.fr April, 009 Abstract Coin flipping is

More information

FAIR AND EFFICIENT SECURE MULTIPARTY COMPUTATION WITH REPUTATION SYSTEMS

FAIR AND EFFICIENT SECURE MULTIPARTY COMPUTATION WITH REPUTATION SYSTEMS FAIR AND EFFICIENT SECURE MULTIPARTY COMPUTATION WITH REPUTATION SYSTEMS Gilad Asharov Yehuda Lindell Hila Zarosim Asiacrypt 2013 Secure Multi-Party Computation A set of parties who don t trust each other

More information

Quantum Noise. Michael A. Nielsen. University of Queensland

Quantum Noise. Michael A. Nielsen. University of Queensland Quantum Noise Michael A. Nielsen University of Queensland Goals: 1. To introduce a tool the density matrix that is used to describe noise in quantum systems, and to give some examples. Density matrices

More information

Lecture 14: Quantum information revisited

Lecture 14: Quantum information revisited CPSC 59/69: Quantum Computation John Watrous, University of Calgary Lecture 4: Quantum information revisited March 4, 006 So far, this course has focused almost entirely on quantum algorithms The next

More information

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 10

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 10 CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky Lecture 10 Lecture date: 14 and 16 of March, 2005 Scribe: Ruzan Shahinian, Tim Hu 1 Oblivious Transfer 1.1 Rabin Oblivious Transfer

More information

CS Communication Complexity: Applications and New Directions

CS Communication Complexity: Applications and New Directions CS 2429 - Communication Complexity: Applications and New Directions Lecturer: Toniann Pitassi 1 Introduction In this course we will define the basic two-party model of communication, as introduced in the

More information

Actively secure two-party evaluation of any quantum operation

Actively secure two-party evaluation of any quantum operation Actively secure two-party evaluation of any quantum operation Frédéric Dupuis ETH Zürich Joint work with Louis Salvail (Université de Montréal) Jesper Buus Nielsen (Aarhus Universitet) August 23, 2012

More information

Tight Bounds for Classical and Quantum Coin Flipping

Tight Bounds for Classical and Quantum Coin Flipping Tight Bounds for Classical and Quantum Coin Flipping Esther Hänggi 1 and Jürg Wullschleger 2 1 Computer Science Department, ETH Zurich, Zürich, Switzerland 2 DIRO, Université demontréal, Quebec, Canada

More information

Tight Bounds for Classical and Quantum Coin Flipping

Tight Bounds for Classical and Quantum Coin Flipping Tight Bounds for Classical and Quantum Coin Flipping Esther Hänggi 1 and Jürg Wullschleger 2 1 Computer Science Department, ETH Zurich, Zürich, Switzerland 2 DIRO, Université de Montréal, Quebec, Canada

More information

Massachusetts Institute of Technology 6.854J/18.415J: Advanced Algorithms Friday, March 18, 2016 Ankur Moitra. Problem Set 6

Massachusetts Institute of Technology 6.854J/18.415J: Advanced Algorithms Friday, March 18, 2016 Ankur Moitra. Problem Set 6 Massachusetts Institute of Technology 6.854J/18.415J: Advanced Algorithms Friday, March 18, 2016 Ankur Moitra Problem Set 6 Due: Wednesday, April 6, 2016 7 pm Dropbox Outside Stata G5 Collaboration policy:

More information

Lecture 6: Quantum error correction and quantum capacity

Lecture 6: Quantum error correction and quantum capacity Lecture 6: Quantum error correction and quantum capacity Mark M. Wilde The quantum capacity theorem is one of the most important theorems in quantum hannon theory. It is a fundamentally quantum theorem

More information

arxiv: v1 [quant-ph] 26 Nov 2007

arxiv: v1 [quant-ph] 26 Nov 2007 Quantum weak coin flipping with arbitrarily small bias Carlos Mochon November 6, 007 arxiv:07.44v [quant-ph] 6 Nov 007 Abstract God does not play dice. He flips coins instead. And though for some reason

More information

Applications of Semidefinite Programming in Quantum Cryptography

Applications of Semidefinite Programming in Quantum Cryptography Applications of Semidefinite Programming in Quantum Cryptography by Jamie W. J. Sikora A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master

More information

A simpler proof of existence of quantum weak coin flipping with arbitrarily small bias

A simpler proof of existence of quantum weak coin flipping with arbitrarily small bias A simpler proof of existence of quantum weak coin flipping with arbitrarily small bias Dorit Aharonov, André Chailloux, Maor Ganz, Iordanis Kerenidis, and Loïck Magnin March 3, 204 arxiv:402.766v [quant-ph]

More information

Practical Quantum Coin Flipping

Practical Quantum Coin Flipping Practical Quantum Coin Flipping Anna Pappa, Andre Chailloux, Eleni Diamanti, Iordanis Kerenidis To cite this version: Anna Pappa, Andre Chailloux, Eleni Diamanti, Iordanis Kerenidis. Practical Quantum

More information

Quantum state discrimination with post-measurement information!

Quantum state discrimination with post-measurement information! Quantum state discrimination with post-measurement information! DEEPTHI GOPAL, CALTECH! STEPHANIE WEHNER, NATIONAL UNIVERSITY OF SINGAPORE! Quantum states! A state is a mathematical object describing the

More information

Lecture 24: Goldreich-Levin Hardcore Predicate. Goldreich-Levin Hardcore Predicate

Lecture 24: Goldreich-Levin Hardcore Predicate. Goldreich-Levin Hardcore Predicate Lecture 24: : Intuition A One-way Function: A function that is easy to compute but hard to invert (efficiently) Hardcore-Predicate: A secret bit that is hard to compute Theorem (Goldreich-Levin) If f :

More information

Lecture 2: Quantum bit commitment and authentication

Lecture 2: Quantum bit commitment and authentication QIC 890/891 Selected advanced topics in quantum information Spring 2013 Topic: Topics in quantum cryptography Lecture 2: Quantum bit commitment and authentication Lecturer: Gus Gutoski This lecture is

More information

University of Tokyo: Advanced Algorithms Summer Lecture 6 27 May. Let s keep in mind definitions from the previous lecture:

University of Tokyo: Advanced Algorithms Summer Lecture 6 27 May. Let s keep in mind definitions from the previous lecture: University of Tokyo: Advanced Algorithms Summer 2010 Lecture 6 27 May Lecturer: François Le Gall Scribe: Baljak Valentina As opposed to prime factorization, primality testing is determining whether a given

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming E5295/5B5749 Convex optimization with engineering applications Lecture 5 Convex programming and semidefinite programming A. Forsgren, KTH 1 Lecture 5 Convex optimization 2006/2007 Convex quadratic program

More information

Semidefinite Programming (SDP)

Semidefinite Programming (SDP) Chapter 3 Semidefinite Programming (SDP) You should all be familiar with linear programs, the theory of duality, and the use of linear programs to solve a variety of problems in polynomial time; flow or

More information

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma 4-1 Algebra and Duality P. Parrilo and S. Lall 2006.06.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone of valid

More information

Lecture 3: Semidefinite Programming

Lecture 3: Semidefinite Programming Lecture 3: Semidefinite Programming Lecture Outline Part I: Semidefinite programming, examples, canonical form, and duality Part II: Strong Duality Failure Examples Part III: Conditions for strong duality

More information

Winter 2011 Josh Benaloh Brian LaMacchia

Winter 2011 Josh Benaloh Brian LaMacchia Winter 2011 Josh Benaloh Brian LaMacchia Fun with Public-Key Tonight we ll Introduce some basic tools of public-key crypto Combine the tools to create more powerful tools Lay the ground work for substantial

More information

Quantum Simultaneous Contract Signing

Quantum Simultaneous Contract Signing Quantum Simultaneous Contract Signing J. Bouda, M. Pivoluska, L. Caha, P. Mateus, N. Paunkovic 22. October 2010 Based on work presented on AQIS 2010 J. Bouda, M. Pivoluska, L. Caha, P. Mateus, N. Quantum

More information

Linear and Combinatorial Optimization

Linear and Combinatorial Optimization Linear and Combinatorial Optimization The dual of an LP-problem. Connections between primal and dual. Duality theorems and complementary slack. Philipp Birken (Ctr. for the Math. Sc.) Lecture 3: Duality

More information

Computational hardness. Feb 2 abhi shelat

Computational hardness. Feb 2 abhi shelat L4 6501 Computational hardness Feb 2 abhi shelat Eve Alice Bob Eve Alice Bob k Gen k Eve Alice Bob c=enck(mi) k Gen k Eve c Alice Bob c=enck(mi) k Gen k Eve c Alice c=enck(mi) Bob m=deck(c) k Gen k Eve

More information

Zero sum games Proving the vn theorem. Zero sum games. Roberto Lucchetti. Politecnico di Milano

Zero sum games Proving the vn theorem. Zero sum games. Roberto Lucchetti. Politecnico di Milano Politecnico di Milano General form Definition A two player zero sum game in strategic form is the triplet (X, Y, f : X Y R) f (x, y) is what Pl1 gets from Pl2, when they play x, y respectively. Thus g

More information

Today: Linear Programming (con t.)

Today: Linear Programming (con t.) Today: Linear Programming (con t.) COSC 581, Algorithms April 10, 2014 Many of these slides are adapted from several online sources Reading Assignments Today s class: Chapter 29.4 Reading assignment for

More information

4 Choice axioms and Baire category theorem

4 Choice axioms and Baire category theorem Tel Aviv University, 2013 Measure and category 30 4 Choice axioms and Baire category theorem 4a Vitali set....................... 30 4b No choice....................... 31 4c Dependent choice..................

More information

Global Optimization of Polynomials

Global Optimization of Polynomials Semidefinite Programming Lecture 9 OR 637 Spring 2008 April 9, 2008 Scribe: Dennis Leventhal Global Optimization of Polynomials Recall we were considering the problem min z R n p(z) where p(z) is a degree

More information

The Adjusted Winner Procedure : Characterizations and Equilibria

The Adjusted Winner Procedure : Characterizations and Equilibria The Adjusted Winner Procedure : Characterizations and Equilibria Simina Brânzei Aarhus University, Denmark Joint with Haris Aziz, Aris Filos-Ratsikas, and Søren Frederiksen Background Adjusted Winner:

More information

Lecture 5. x 1,x 2,x 3 0 (1)

Lecture 5. x 1,x 2,x 3 0 (1) Computational Intractability Revised 2011/6/6 Lecture 5 Professor: David Avis Scribe:Ma Jiangbo, Atsuki Nagao 1 Duality The purpose of this lecture is to introduce duality, which is an important concept

More information

Lecture 4 - Random walk, ruin problems and random processes

Lecture 4 - Random walk, ruin problems and random processes Lecture 4 - Random walk, ruin problems and random processes Jan Bouda FI MU April 19, 2009 Jan Bouda (FI MU) Lecture 4 - Random walk, ruin problems and random processesapril 19, 2009 1 / 30 Part I Random

More information

Bipartite entanglement

Bipartite entanglement 6 Bipartite entanglement Entanglement is a fundamental concept in quantum information theory, considered by many to be a quintessential characteristic that distinguishes quantum systems from their classical

More information

Lecture 15: Interactive Proofs

Lecture 15: Interactive Proofs COM S 6830 Cryptography Tuesday, October 20, 2009 Instructor: Rafael Pass Lecture 15: Interactive Proofs Scribe: Chin Isradisaikul In this lecture we discuss a new kind of proofs that involves interaction

More information

Lecture 14: Optimality Conditions for Conic Problems

Lecture 14: Optimality Conditions for Conic Problems EE 227A: Conve Optimization and Applications March 6, 2012 Lecture 14: Optimality Conditions for Conic Problems Lecturer: Laurent El Ghaoui Reading assignment: 5.5 of BV. 14.1 Optimality for Conic Problems

More information

CS261: Problem Set #3

CS261: Problem Set #3 CS261: Problem Set #3 Due by 11:59 PM on Tuesday, February 23, 2016 Instructions: (1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. (2) Submission instructions:

More information

Lecture 3,4: Multiparty Computation

Lecture 3,4: Multiparty Computation CS 276 Cryptography January 26/28, 2016 Lecture 3,4: Multiparty Computation Instructor: Sanjam Garg Scribe: Joseph Hui 1 Constant-Round Multiparty Computation Last time we considered the GMW protocol,

More information

CO350 Linear Programming Chapter 6: The Simplex Method

CO350 Linear Programming Chapter 6: The Simplex Method CO350 Linear Programming Chapter 6: The Simplex Method 8th June 2005 Chapter 6: The Simplex Method 1 Minimization Problem ( 6.5) We can solve minimization problems by transforming it into a maximization

More information

CS151 Complexity Theory. Lecture 13 May 15, 2017

CS151 Complexity Theory. Lecture 13 May 15, 2017 CS151 Complexity Theory Lecture 13 May 15, 2017 Relationship to other classes To compare to classes of decision problems, usually consider P #P which is a decision class easy: NP, conp P #P easy: P #P

More information

Optimal bounds for quantum bit commitment

Optimal bounds for quantum bit commitment Optimal bounds for quantum bit commitment André Chailloux LRI Université Paris-Sud andre.chailloux@gmail.fr Iordanis Kerenidis CNRS - LIAFA Université Paris 7 jkeren@liafa.jussieu.fr 1 Introduction Quantum

More information

2.1 Definition and graphical representation for games with up to three players

2.1 Definition and graphical representation for games with up to three players Lecture 2 The Core Let us assume that we have a TU game (N, v) and that we want to form the grand coalition. We model cooperation between all the agents in N and we focus on the sharing problem: how to

More information

Lecture 6 Sept. 14, 2015

Lecture 6 Sept. 14, 2015 PHYS 7895: Quantum Information Theory Fall 205 Prof. Mark M. Wilde Lecture 6 Sept., 205 Scribe: Mark M. Wilde This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0

More information

Quantum Mechanics II: Examples

Quantum Mechanics II: Examples Quantum Mechanics II: Examples Michael A. Nielsen University of Queensland Goals: 1. To apply the principles introduced in the last lecture to some illustrative examples: superdense coding, and quantum

More information

SIMPLE RANDOM WALKS: IMPROBABILITY OF PROFITABLE STOPPING

SIMPLE RANDOM WALKS: IMPROBABILITY OF PROFITABLE STOPPING SIMPLE RANDOM WALKS: IMPROBABILITY OF PROFITABLE STOPPING EMILY GENTLES Abstract. This paper introduces the basics of the simple random walk with a flair for the statistical approach. Applications in biology

More information

SEMIDEFINITE PROGRAM BASICS. Contents

SEMIDEFINITE PROGRAM BASICS. Contents SEMIDEFINITE PROGRAM BASICS BRIAN AXELROD Abstract. A introduction to the basics of Semidefinite programs. Contents 1. Definitions and Preliminaries 1 1.1. Linear Algebra 1 1.2. Convex Analysis (on R n

More information

Introduction to Number Theory. The study of the integers

Introduction to Number Theory. The study of the integers Introduction to Number Theory The study of the integers of Integers, The set of integers = {... 3, 2, 1, 0, 1, 2, 3,...}. In this lecture, if nothing is said about a variable, it is an integer. Def. We

More information

Quantum-Secure Coin-Flipping and Applications

Quantum-Secure Coin-Flipping and Applications Quantum-Secure Coin-Flipping and Applications Ivan Damgård and Carolin Lunemann DAIMI, Aarhus University, Denmark {ivan carolin}@cs.au.dk Abstract. In this paper, we prove classical coin-flipping secure

More information

Optimization 4. GAME THEORY

Optimization 4. GAME THEORY Optimization GAME THEORY DPK Easter Term Saddle points of two-person zero-sum games We consider a game with two players Player I can choose one of m strategies, indexed by i =,, m and Player II can choose

More information

High Fidelity to Low Weight. Daniel Gottesman Perimeter Institute

High Fidelity to Low Weight. Daniel Gottesman Perimeter Institute High Fidelity to Low Weight Daniel Gottesman Perimeter Institute A Word From Our Sponsor... Quant-ph/0212066, Security of quantum key distribution with imperfect devices, D.G., H.-K. Lo, N. Lutkenhaus,

More information

The CHSH game as a Bell test thought experiment

The CHSH game as a Bell test thought experiment The CHSH game as a Bell test thought experiment Logan Meredith December 10, 2017 1 Introduction The CHSH inequality, named after John Clauser, Michael Horne, Abner Shimony, and Richard Holt, provides an

More information

Introduction to quantum information processing

Introduction to quantum information processing Introduction to quantum information processing Measurements and quantum probability Brad Lackey 25 October 2016 MEASUREMENTS AND QUANTUM PROBABILITY 1 of 22 OUTLINE 1 Probability 2 Density Operators 3

More information

Understanding the Simplex algorithm. Standard Optimization Problems.

Understanding the Simplex algorithm. Standard Optimization Problems. Understanding the Simplex algorithm. Ma 162 Spring 2011 Ma 162 Spring 2011 February 28, 2011 Standard Optimization Problems. A standard maximization problem can be conveniently described in matrix form

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 14 October 16, 2013 CPSC 467, Lecture 14 1/45 Message Digest / Cryptographic Hash Functions Hash Function Constructions Extending

More information

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 9

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 9 CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky Lecture 9 Lecture date: March 7-9, 2005 Scribe: S. Bhattacharyya, R. Deak, P. Mirzadeh 1 Interactive Proof Systems/Protocols 1.1 Introduction

More information

Lecture 8. Strong Duality Results. September 22, 2008

Lecture 8. Strong Duality Results. September 22, 2008 Strong Duality Results September 22, 2008 Outline Lecture 8 Slater Condition and its Variations Convex Objective with Linear Inequality Constraints Quadratic Objective over Quadratic Constraints Representation

More information

LECTURE 5: APPLICATIONS TO CRYPTOGRAPHY AND COMPUTATIONS

LECTURE 5: APPLICATIONS TO CRYPTOGRAPHY AND COMPUTATIONS LECTURE 5: APPLICATIONS TO CRYPTOGRAPHY AND COMPUTATIONS Modular arithmetics that we have discussed in the previous lectures is very useful in Cryptography and Computer Science. Here we discuss several

More information

arxiv: v1 [quant-ph] 11 Apr 2016

arxiv: v1 [quant-ph] 11 Apr 2016 Zero-knowledge proof systems for QMA Anne Broadbent Zhengfeng Ji 2,3 Fang Song 4 John Watrous 5,6 arxiv:604.02804v [quant-ph] Apr 206 Department of Mathematics and Statistics University of Ottawa, Canada

More information

Summer School: Semidefinite Optimization

Summer School: Semidefinite Optimization Summer School: Semidefinite Optimization Christine Bachoc Université Bordeaux I, IMB Research Training Group Experimental and Constructive Algebra Haus Karrenberg, Sept. 3 - Sept. 7, 2012 Duality Theory

More information

Lecture 1: Shannon s Theorem

Lecture 1: Shannon s Theorem Lecture 1: Shannon s Theorem Lecturer: Travis Gagie January 13th, 2015 Welcome to Data Compression! I m Travis and I ll be your instructor this week. If you haven t registered yet, don t worry, we ll work

More information

Schur-Weyl duality, quantum data compression, tomography

Schur-Weyl duality, quantum data compression, tomography PHYSICS 491: Symmetry and Quantum Information April 25, 2017 Schur-Weyl duality, quantum data compression, tomography Lecture 7 Michael Walter, Stanford University These lecture notes are not proof-read

More information

Approximation norms and duality for communication complexity lower bounds

Approximation norms and duality for communication complexity lower bounds Approximation norms and duality for communication complexity lower bounds Troy Lee Columbia University Adi Shraibman Weizmann Institute From min to max The cost of a best algorithm is naturally phrased

More information

Lecture notes for quantum semidefinite programming (SDP) solvers

Lecture notes for quantum semidefinite programming (SDP) solvers CMSC 657, Intro to Quantum Information Processing Lecture on November 15 and 0, 018 Fall 018, University of Maryland Prepared by Tongyang Li, Xiaodi Wu Lecture notes for quantum semidefinite programming

More information

Lecture: Quantum Information

Lecture: Quantum Information Lecture: Quantum Information Transcribed by: Crystal Noel and Da An (Chi Chi) November 10, 016 1 Final Proect Information Find an issue related to class you are interested in and either: read some papers

More information

Big-Oh notation and P vs NP

Big-Oh notation and P vs NP Big-Oh notation and P vs NP Hao Chung This presentation is mainly adapted from the lecture note of Prof. Mark Zhandry July 17, 2017 Hao Chung (NTU) crypto July 17, 2017 1 / 21 Overview 1 Big-Oh notation

More information

CS286.2 Lecture 15: Tsirelson s characterization of XOR games

CS286.2 Lecture 15: Tsirelson s characterization of XOR games CS86. Lecture 5: Tsirelson s characterization of XOR games Scribe: Zeyu Guo We first recall the notion of quantum multi-player games: a quantum k-player game involves a verifier V and k players P,...,

More information

arxiv: v2 [quant-ph] 1 Sep 2012

arxiv: v2 [quant-ph] 1 Sep 2012 QMA variants with polynomially many provers Sevag Gharibian Jamie Sikora Sarvagya Upadhyay arxiv:1108.0617v2 [quant-ph] 1 Sep 2012 September 3, 2012 Abstract We study three variants of multi-prover quantum

More information

ECE353: Probability and Random Processes. Lecture 3 - Independence and Sequential Experiments

ECE353: Probability and Random Processes. Lecture 3 - Independence and Sequential Experiments ECE353: Probability and Random Processes Lecture 3 - Independence and Sequential Experiments Xiao Fu School of Electrical Engineering and Computer Science Oregon State University E-mail: xiao.fu@oregonstate.edu

More information

Notes on Zero Knowledge

Notes on Zero Knowledge U.C. Berkeley CS172: Automata, Computability and Complexity Handout 9 Professor Luca Trevisan 4/21/2015 Notes on Zero Knowledge These notes on zero knowledge protocols for quadratic residuosity are based

More information

What is a random variable

What is a random variable OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MATH 256 Probability and Random Processes 04 Random Variables Fall 20 Yrd. Doç. Dr. Didem Kivanc Tureli didemk@ieee.org didem.kivanc@okan.edu.tr

More information

Complete Fairness in Multi-Party Computation Without an Honest Majority

Complete Fairness in Multi-Party Computation Without an Honest Majority Complete Fairness in Multi-Party Computation Without an Honest Maority S. Dov Gordon Jonathan Katz Abstract Gordon et al. recently showed that certain (non-trivial) functions can be computed with complete

More information

Limits on the power of quantum statistical zero-knowledge

Limits on the power of quantum statistical zero-knowledge Limits on the power of quantum statistical zero-knowledge John Watrous Department of Computer Science University of Calgary Calgary, Alberta, Canada jwatrous@cpsc.ucalgary.ca January 16, 2003 Abstract

More information

Recursive Estimation

Recursive Estimation Recursive Estimation Raffaello D Andrea Spring 08 Problem Set : Bayes Theorem and Bayesian Tracking Last updated: March, 08 Notes: Notation: Unless otherwise noted, x, y, and z denote random variables,

More information

Optimal Success Bounds for Single Query Quantum Algorithms Computing the General SUM Problem

Optimal Success Bounds for Single Query Quantum Algorithms Computing the General SUM Problem Optimal Success Bounds for Single Query Quantum Algorithms Computing the General SUM Problem by Alexander Valtchev A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

X = X X n, + X 2

X = X X n, + X 2 CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 22 Variance Question: At each time step, I flip a fair coin. If it comes up Heads, I walk one step to the right; if it comes up Tails, I walk

More information

CS Foundations of Communication Complexity

CS Foundations of Communication Complexity CS 49 - Foundations of Communication Complexity Lecturer: Toniann Pitassi 1 The Discrepancy Method Cont d In the previous lecture we ve outlined the discrepancy method, which is a method for getting lower

More information

4. Algebra and Duality

4. Algebra and Duality 4-1 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone

More information