CS151 Complexity Theory. Lecture 13 May 15, 2017

Size: px
Start display at page:

Download "CS151 Complexity Theory. Lecture 13 May 15, 2017"

Transcription

1 CS151 Complexity Theory Lecture 13 May 15, 2017

2 Relationship to other classes To compare to classes of decision problems, usually consider P #P which is a decision class easy: NP, conp P #P easy: P #P PSPACE Toda s Theorem (homework): PH P #P. May 15,

3 Relationship to other classes Question: is #P hard because it entails finding NP witnesses? or is counting difficult by itself? May 15,

4 Bipartite Matchings Definition: G = (U, V, E) bipartite graph with U = V a perfect matching in G is a subset M E that touches every node, and no two edges in M share an endpoint May 15,

5 Bipartite Matchings Definition: G = (U, V, E) bipartite graph with U = V a perfect matching in G is a subset M E that touches every node, and no two edges in M share an endpoint May 15,

6 Bipartite Matchings #MATCHING: given a bipartite graph G = (U, V, E) how many perfect matchings does it have? Theorem: #MATCHING is #P-complete. But can find a perfect matching in polynomial time! counting itself must be difficult May 15,

7 Cycle Covers Claim: 1-1 correspondence between cycle covers in G and perfect matchings in G #MATCHING and #CYCLE-COVER parsimoniously reducible to each other G = (U, V, E) May 15, G = (V, E ) 3 4

8 Cycle Covers cycle cover: collection of node-disjoint directed cycles that touch every node #CYCLE-COVER: given directed graph G = (V, E) how many cycle covers does it have? Theorem: #CYCLE-COVER is #P-complete. implies #MATCHING is #P-complete May 15,

9 Cycle Cover is #P-complete variable gadget: every cycle cover includes left cycle or right cycle clause gadget: cycle cover cannot use all three outer edges and each of 7 ways to exclude at least one gives exactly 1 cover using those external edges May 15, x i x i

10 Cycle Cover is #P-complete May 15,

11 Cycle Cover is #P-complete May 15,

12 Cycle Cover is #P-complete clause gadget corresponding to (A B C) has xor gadget between outer 3 edges and A, B, C u v xor v u A A B B xor gadget ensures that exactly one of two edges can be in cover C C May 15,

13 Cycle Cover is #P-complete Proof outline (reduce from #SAT) ( x 1 x 2 x 3 ) ( x 3 x 1 ) (x 3 x 2 ) xor gadgets (exactly 1 of two edges is in cover)... clause gadgets x 1 x 1 x 2 x 2 x 3 x 3 N.B. must avoid reducing SAT to MATCHING! variable gadgets May 15,

14 Cycle Cover is #P-complete Introduce edge weights cycle cover weight is product of weights of its edges implement xor gadget by weight of cycle cover that obeys xor multiplied by 4 (mod N) weight of cycle cover that violates xor multiplied by N large integer May 15,

15 Cycle Cover is #P-complete Weighted xor gadget: N-1 u v xor v u weight of cycle cover that obeys xor multiplied by 4 (mod N) weight of cycle cover that violates xor multiplied by N u v (unlabeled weights are 1) N-1 N v u May 15,

16 Cycle Cover is #P-complete Simulating positive edge weights need to handle 2, 3, 4, 5,, N k k times 3 May 15,

17 Cycle Cover is #P-complete ( x 1 x 2 x 3 ) ( x 3 x 1 ) (x 3 x 2 ) xor gadget (exactly 1 of two edges is in cover)... clause gadget variable gadgets: x 1 x 1 x 2 x 2 x 3 x 3 m = # xor gadgets; n = # variables; N > 4 m 2 n # covers (mod N) = (4 m ) (#sat. assignments) May 15,

18 New Topic proof systems interactive proofs and their power Arthur-Merlin games May 15,

19 Proof systems L = { (A, 1 k ) : A is a true mathematical assertion with a proof of length k} What is a proof? complexity insight: meaningless unless can be efficiently verified May 15,

20 Proof systems given language L, goal is to prove x L proof system for L is a verification algorithm V completeness: x L 9 proof, V accepts (x, proof) true assertions have proofs soundness: x L 8 proof*, V rejects (x, proof*) false assertions have no proofs efficiency: 8 x, proof: V(x, proof) runs in polynomial time in x May 15,

21 Classical Proofs previous definition: recall: classical proof system L NP iff expressible as L = { x 9y, y < x k, (x, y) R } and R P. NP is the set of languages with classical proof systems (R is the verifier) May 15,

22 Interactive Proofs Two new ingredients: randomness: verifier tosses coins, errs with some small probability interaction: rather than reading proof, verifier interacts with computationally unbounded prover NP proof systems lie in this framework: prover sends proof, verifier does not use randomness May 15,

23 Interactive Proofs interactive proof system for L is an interactive protocol (P, V) Prover common input: x Verifier... # rounds = poly( x ) accept/ reject May 15,

24 Interactive Proofs interactive proof system for L is an interactive protocol (P, V) completeness: x L Pr[V accepts in (P, V)(x)] 2/3 soundness: x L 8 P* Pr[V accepts in (P*, V)(x)] 1/3 efficiency: V is p.p.t. machine repetition: can reduce error to any ε May 15,

25 Interactive Proofs IP = {L : L has an interactive proof system} Observations/questions: philosophically interesting: captures more broadly what it means to be convinced a statement is true clearly NP IP. Potentially larger. How much larger? if larger, randomness is essential (why?) May 15,

26 Graph Isomorphism graphs G 0 = (V, E 0 ) and G 1 = (V, E 1 ) are isomorphic (G 0 G 1 ) if exists a permutation π:v V for which (x, y) E 0 (π(x), π(y)) E May 15,

27 Graph Isomorphism GI = {(G 0, G 1 ) : G 0 G 1 } in NP not known to be in P, or NP-complete GNI = complement of GI not known to be in NP Theorem (GMW): GNI IP indication IP may be more powerful than NP May 15,

28 GNI in IP interactive proof system for GNI: Prover if H G 0 r = 0, else r = 1 input: (G 0, G 1 ) H = π(g c ) r Verifier flip coin c {0,1}; pick random π accept iff r = c May 15,

29 GNI in IP completeness: if G 0 not isomorphic to G 1 then H is isomorphic to exactly one of (G 0, G 1 ) prover will choose correct r soundness: if G 0 G 1 then prover sees same distribution on H for c = 0, c = 1 no information on c any prover P* can succeed with probability at most 1/2 May 15,

30 The power of IP We showed GNI 2 IP GNI IP suggests IP more powerful than NP, since we don t know how to show GNI in NP GNI in conp Theorem (LFKN): conp IP May 15,

31 The power of IP Proof idea: input: φ(x 1, x 2,, x n ) prover: I claim φ has k satisfying assignments true iff φ(0, x 2,, x n ) has k 0 satisfying assignments φ(1, x 2,, x n ) has k 1 satisfying assignments k = k 0 + k 1 prover sends k 0, k 1 verifier sends random c {0,1} prover recursively proves φ = φ(c, x 2,, x n ) has k c satisfying assignments at end, verifier can check for itself. May 15,

32 The power of IP Analysis of proof idea: Completeness: φ(x 1, x 2,, x n ) has k satisfying assignments accept with prob. 1 Soundness: φ(x 1, x 2,, x n ) does not have k satisfying assigns. accept prob n Why? It is possible that k is only off by one; verifier only catches prover if coin flips c are successive bits of this assignment May 15,

33 The power of IP Solution to problem (ideas): replace {0,1} n with (F q ) n verifier substitutes random field element at each step vast majority of field elements catch cheating prover (rather than just 1) Theorem: L = { (φ, k): CNF φ has exactly k satisfying assignments} is in IP May 15,

34 The power of IP First step: arithmetization transform φ(x 1, x n ) into polynomial p φ (x 1, x 2, x n ) of degree d over a field F q ; q prime > 2 n recursively: x i x i φ (1 - p φ ) φ φ (p φ )(p φ ) φ φ 1 - (1 - p φ )(1 - p φ ) for all x {0,1} n we have p φ (x) = φ(x) degree d φ can compute p φ (x) in poly time from φ and x May 15,

35 The power of IP Prover wishes to prove: k = Σ x1 = 0, 1 Σ x 2 = 0,1 Σ xn = 0, 1 p φ (x 1, x 2,, x n ) Define: k z = Σ x2 = 0,1 Σ xn = 0, 1 p φ (z, x 2,, x n ) prover sends: k z for all z F q verifier: checks that k 0 + k 1 = k sends random z F q continue with proof that k z = Σ x2 = 0,1 Σ xn = 0, 1 p φ (z, x 2,, x n ) at end: verifier checks for itself May 15,

36 The power of IP Prover wishes to prove: k = Σ x1 = 0, 1 Σ x 2 = 0,1 Σ xn = 0, 1 p φ (x 1, x 2,, x n ) Define: k z = Σ x2 = 0,1 Σ xn = 0, 1 p φ (z, x 2,, x n ) a problem: can t send k z for all z F q solution: send the polynomial! recall degree d φ May 15,

37 The actual protocol input: (φ, k) Prover p 1 (x) p 1 (x) = Σ x2,,x n {0,1} p φ (x, x 2,, x n ) p 2 (x) = Σ x3,,x n {0,1} p φ (z 1, x, x 3,, x n ) p 2 (x) z 2 z 1 Verifier p 1 (0)+p 1 (1)=k? pick random z 1 in F q p 2 (0)+p 2 (1)=p 1 (z 1 )? pick random z 2 in F q p 3 (x) = Σ x4,,x n {0,1} p φ (z 1, z 2, x, x 4, x n ) p 3 (x) p 3 (0)+p 3 (1)=p 2 (z 2 )?. pick random z 3 in F q. p n (x) p n (0)+p n (1)=p n-1 (z n-1 )? p n (z n ) = p φ (z 1, z 2,, z n )? pick random z n in F q May 15,

38 Analysis of protocol Completeness: if (φ, k) L then honest prover on previous slide will always cause verifier to accept May 15,

39 Analysis of protocol Soundness: let p i (x) be the correct polynomials let p i *(x) be the polynomials sent by (cheating) prover (φ, k) L p 1 (0) + p 1 (1) k either p 1 *(0) + p 1 *(1) k (and V rejects) or p 1 * p 1 Pr z1 [p 1 *(z 1 ) = p 1 (z 1 )] d/q φ /2 n assume (p i+1 (0)+p i+1 (1)= ) p i (z i ) p i *(z i ) either p i+1 *(0) + p i+1 *(1) p i *(z i ) (and V rejects) or p i+1 * p i+1 Pr zi+1 [p i+1 *(z i+1 ) = p i+1 (z i+1 )] φ /2 n May 15,

40 Analysis of protocol Soundness (continued): if verifier does not reject, there must be some i for which: p i * p i and yet p i *(z i ) = p i (z i ) for each i, probability is φ /2 n union bound: probability that there exists an i for which the bad event occurs is n φ /2 n poly(n)/2 n << 1/3 May 15,

41 Analysis of protocol Conclude: L = { (φ, k): CNF φ has exactly k satisfying assignments} is in IP L is conp-hard, so conp IP Question remains: NP, conp IP. Potentially larger. How much larger? May 15,

42 IP = PSPACE Theorem: (Shamir) IP = PSPACE Note: IP PSPACE enumerate all possible interactions, explicitly calculate acceptance probability interaction extremely powerful! An implication: you can interact with master player of Generalized Geography and determine if she can win from the current configuration even if you do not have the power to compute optimal moves! May 15,

CS151 Complexity Theory. Lecture 14 May 17, 2017

CS151 Complexity Theory. Lecture 14 May 17, 2017 CS151 Complexity Theory Lecture 14 May 17, 2017 IP = PSPACE Theorem: (Shamir) IP = PSPACE Note: IP PSPACE enumerate all possible interactions, explicitly calculate acceptance probability interaction extremely

More information

Lecture Notes 17. Randomness: The verifier can toss coins and is allowed to err with some (small) probability if it is unlucky in its coin tosses.

Lecture Notes 17. Randomness: The verifier can toss coins and is allowed to err with some (small) probability if it is unlucky in its coin tosses. CS 221: Computational Complexity Prof. Salil Vadhan Lecture Notes 17 March 31, 2010 Scribe: Jonathan Ullman 1 Interactive Proofs ecall the definition of NP: L NP there exists a polynomial-time V and polynomial

More information

Notes on Complexity Theory Last updated: November, Lecture 10

Notes on Complexity Theory Last updated: November, Lecture 10 Notes on Complexity Theory Last updated: November, 2015 Lecture 10 Notes by Jonathan Katz, lightly edited by Dov Gordon. 1 Randomized Time Complexity 1.1 How Large is BPP? We know that P ZPP = RP corp

More information

2 Evidence that Graph Isomorphism is not NP-complete

2 Evidence that Graph Isomorphism is not NP-complete Topics in Theoretical Computer Science April 11, 2016 Lecturer: Ola Svensson Lecture 7 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Lecture 12: Interactive Proofs

Lecture 12: Interactive Proofs princeton university cos 522: computational complexity Lecture 12: Interactive Proofs Lecturer: Sanjeev Arora Scribe:Carl Kingsford Recall the certificate definition of NP. We can think of this characterization

More information

Introduction to Interactive Proofs & The Sumcheck Protocol

Introduction to Interactive Proofs & The Sumcheck Protocol CS294: Probabilistically Checkable and Interactive Proofs January 19, 2017 Introduction to Interactive Proofs & The Sumcheck Protocol Instructor: Alessandro Chiesa & Igor Shinkar Scribe: Pratyush Mishra

More information

Lecture 26: Arthur-Merlin Games

Lecture 26: Arthur-Merlin Games CS 710: Complexity Theory 12/09/2011 Lecture 26: Arthur-Merlin Games Instructor: Dieter van Melkebeek Scribe: Chetan Rao and Aaron Gorenstein Last time we compared counting versus alternation and showed

More information

Lecture 19: Interactive Proofs and the PCP Theorem

Lecture 19: Interactive Proofs and the PCP Theorem Lecture 19: Interactive Proofs and the PCP Theorem Valentine Kabanets November 29, 2016 1 Interactive Proofs In this model, we have an all-powerful Prover (with unlimited computational prover) and a polytime

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 20 February 23, 2018 February 23, 2018 CS21 Lecture 20 1 Outline the complexity class NP NP-complete probelems: Subset Sum NP-complete problems: NAE-3-SAT, max

More information

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 9

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 9 CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky Lecture 9 Lecture date: March 7-9, 2005 Scribe: S. Bhattacharyya, R. Deak, P. Mirzadeh 1 Interactive Proof Systems/Protocols 1.1 Introduction

More information

Time and space classes

Time and space classes Time and space classes Little Oh (o,

More information

Interactive Proofs 1

Interactive Proofs 1 CS294: Probabilistically Checkable and Interactive Proofs January 24, 2017 Interactive Proofs 1 Instructor: Alessandro Chiesa & Igor Shinkar Scribe: Mariel Supina 1 Pspace IP The first proof that Pspace

More information

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam Limits to Approximability: When Algorithms Won't Help You Note: Contents of today s lecture won t be on the exam Outline Limits to Approximability: basic results Detour: Provers, verifiers, and NP Graph

More information

Lecture 17: Interactive Proof Systems

Lecture 17: Interactive Proof Systems Computational Complexity Theory, Fall 2010 November 5 Lecture 17: Interactive Proof Systems Lecturer: Kristoffer Arnsfelt Hansen Scribe: Søren Valentin Haagerup 1 Interactive Proof Systems Definition 1.

More information

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München Complexity Theory Jörg Kreiker Chair for Theoretical Computer Science Prof. Esparza TU München Summer term 2010 2 Lecture 15 Public Coins and Graph (Non)Isomorphism 3 Intro Goal and Plan Goal understand

More information

Lecture Notes 20: Zero-Knowledge Proofs

Lecture Notes 20: Zero-Knowledge Proofs CS 127/CSCI E-127: Introduction to Cryptography Prof. Salil Vadhan Fall 2013 Lecture Notes 20: Zero-Knowledge Proofs Reading. Katz-Lindell Ÿ14.6.0-14.6.4,14.7 1 Interactive Proofs Motivation: how can parties

More information

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH.

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH. CMPSCI 601: Recall From Last Time Lecture 26 Theorem: All CFL s are in sac. Facts: ITADD, MULT, ITMULT and DIVISION on -bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE

More information

Lecture 22: Oct 29, Interactive proof for graph non-isomorphism

Lecture 22: Oct 29, Interactive proof for graph non-isomorphism E0 4 Computational Complexity Theory Indian Institute of Science, Bangalore Fall 04 Department of Computer Science and Automation Lecture : Oct 9, 04 Lecturer: Chandan Saha

More information

Lecture Hardness of Set Cover

Lecture Hardness of Set Cover PCPs and Inapproxiability CIS 6930 October 5, 2009 Lecture Hardness of Set Cover Lecturer: Dr. My T. Thai Scribe: Ying Xuan 1 Preliminaries 1.1 Two-Prover-One-Round Proof System A new PCP model 2P1R Think

More information

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München Complexity Theory Jörg Kreiker Chair for Theoretical Computer Science Prof. Esparza TU München Summer term 2010 Lecture 16 IP = PSPACE 3 Goal and Plan Goal IP = PSPACE Plan 1. PSPACE IP by showing QBF

More information

1 Recap: Interactive Proofs

1 Recap: Interactive Proofs Theoretical Foundations of Cryptography Lecture 16 Georgia Tech, Spring 2010 Zero-Knowledge Proofs 1 Recap: Interactive Proofs Instructor: Chris Peikert Scribe: Alessio Guerrieri Definition 1.1. An interactive

More information

Notes for Lecture 25

Notes for Lecture 25 U.C. Berkeley CS276: Cryptography Handout N25 Luca Trevisan April 23, 2009 Notes for Lecture 25 Scribed by Alexandra Constantin, posted May 4, 2009 Summary Today we show that the graph isomorphism protocol

More information

2 Natural Proofs: a barrier for proving circuit lower bounds

2 Natural Proofs: a barrier for proving circuit lower bounds Topics in Theoretical Computer Science April 4, 2016 Lecturer: Ola Svensson Lecture 6 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Zero-Knowledge Proofs and Protocols

Zero-Knowledge Proofs and Protocols Seminar: Algorithms of IT Security and Cryptography Zero-Knowledge Proofs and Protocols Nikolay Vyahhi June 8, 2005 Abstract A proof is whatever convinces me. Shimon Even, 1978. Zero-knowledge proof is

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science Lecture 28: A Computational Lens on Proofs December 6th, 2016 Evolution of proof First there was GORM GORM = Good Old Regular Mathematics Pythagoras s

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Umans Complexity Theory Lectures Lecture 12: The Polynomial-Time Hierarchy Oracle Turing Machines Oracle Turing Machine (OTM): Deterministic multitape TM M with special query tape special states q?, q

More information

Non-Interactive ZK:The Feige-Lapidot-Shamir protocol

Non-Interactive ZK:The Feige-Lapidot-Shamir protocol Non-Interactive ZK: The Feige-Lapidot-Shamir protocol April 20, 2009 Remainders FLS protocol Definition (Interactive proof system) A pair of interactive machines (P, V ) is called an interactive proof

More information

Rational Proofs with Multiple Provers. Jing Chen, Samuel McCauley, Shikha Singh Department of Computer Science

Rational Proofs with Multiple Provers. Jing Chen, Samuel McCauley, Shikha Singh Department of Computer Science Rational Proofs with Multiple Provers Jing Chen, Samuel McCauley, Shikha Singh Department of Computer Science Outline of the Talk RATIONAL INTERACTIVE PROOFS with MULTI-PROVERs Interactive Proofs [GMR,

More information

CSCI 1590 Intro to Computational Complexity

CSCI 1590 Intro to Computational Complexity CSCI 1590 Intro to Computational Complexity Interactive Proofs John E. Savage Brown University April 20, 2009 John E. Savage (Brown University) CSCI 1590 Intro to Computational Complexity April 20, 2009

More information

Lecture 3: Interactive Proofs and Zero-Knowledge

Lecture 3: Interactive Proofs and Zero-Knowledge CS 355 Topics in Cryptography April 9, 2018 Lecture 3: Interactive Proofs and Zero-Knowledge Instructors: Henry Corrigan-Gibbs, Sam Kim, David J. Wu So far in the class, we have only covered basic cryptographic

More information

6.841/18.405J: Advanced Complexity Wednesday, April 2, Lecture Lecture 14

6.841/18.405J: Advanced Complexity Wednesday, April 2, Lecture Lecture 14 6.841/18.405J: Advanced Complexity Wednesday, April 2, 2003 Lecture Lecture 14 Instructor: Madhu Sudan In this lecture we cover IP = PSPACE Interactive proof for straightline programs. Straightline program

More information

Lecture 26. Daniel Apon

Lecture 26. Daniel Apon Lecture 26 Daniel Apon 1 From IPPSPACE to NPPCP(log, 1): NEXP has multi-prover interactive protocols If you ve read the notes on the history of the PCP theorem referenced in Lecture 19 [3], you will already

More information

Theorem 11.1 (Lund-Fortnow-Karloff-Nisan). There is a polynomial length interactive proof for the

Theorem 11.1 (Lund-Fortnow-Karloff-Nisan). There is a polynomial length interactive proof for the Lecture 11 IP, PH, and PSPACE May 4, 2004 Lecturer: Paul Beame Notes: Daniel Lowd 11.1 IP and PH Theorem 11.1 (Lund-Fortnow-Karloff-Nisan). There is a polynomial length interactive proof for the predicate

More information

Lecture : PSPACE IP

Lecture : PSPACE IP IITM-CS6845: Theory Toolkit February 16, 2012 Lecture 22-23 : PSPACE IP Lecturer: Jayalal Sarma.M.N. Scribe: Sivaramakrishnan.N.R. Theme: Between P and PSPACE 1 Interactive Protocol for #SAT In the previous

More information

Lecture 15: Interactive Proofs

Lecture 15: Interactive Proofs COM S 6830 Cryptography Tuesday, October 20, 2009 Instructor: Rafael Pass Lecture 15: Interactive Proofs Scribe: Chin Isradisaikul In this lecture we discuss a new kind of proofs that involves interaction

More information

CS151 Complexity Theory. Lecture 15 May 22, 2017

CS151 Complexity Theory. Lecture 15 May 22, 2017 CS151 Complexity Theory Lecture 15 New topic(s) Optimization problems, Approximation Algorithms, and Probabilistically Checkable Proofs Optimization Problems many hard problems (especially NP-hard) are

More information

From Secure MPC to Efficient Zero-Knowledge

From Secure MPC to Efficient Zero-Knowledge From Secure MPC to Efficient Zero-Knowledge David Wu March, 2017 The Complexity Class NP NP the class of problems that are efficiently verifiable a language L is in NP if there exists a polynomial-time

More information

CS154, Lecture 18: 1

CS154, Lecture 18: 1 CS154, Lecture 18: 1 CS 154 Final Exam Wednesday December 12, 12:15-3:15 pm STLC 111 You re allowed one double-sided sheet of notes Exam is comprehensive (but will emphasize post-midterm topics) Look for

More information

Lecture 23: More PSPACE-Complete, Randomized Complexity

Lecture 23: More PSPACE-Complete, Randomized Complexity 6.045 Lecture 23: More PSPACE-Complete, Randomized Complexity 1 Final Exam Information Who: You On What: Everything through PSPACE (today) With What: One sheet (double-sided) of notes are allowed When:

More information

Interactive Proofs. Merlin-Arthur games (MA) [Babai] Decision problem: D;

Interactive Proofs. Merlin-Arthur games (MA) [Babai] Decision problem: D; Interactive Proofs n x: read-only input finite σ: random bits control Π: Proof work tape Merlin-Arthur games (MA) [Babai] Decision problem: D; input string: x Merlin Prover chooses the polynomial-length

More information

CS 151 Complexity Theory Spring Solution Set 5

CS 151 Complexity Theory Spring Solution Set 5 CS 151 Complexity Theory Spring 2017 Solution Set 5 Posted: May 17 Chris Umans 1. We are given a Boolean circuit C on n variables x 1, x 2,..., x n with m, and gates. Our 3-CNF formula will have m auxiliary

More information

POLYNOMIAL SPACE QSAT. Games. Polynomial space cont d

POLYNOMIAL SPACE QSAT. Games. Polynomial space cont d T-79.5103 / Autumn 2008 Polynomial Space 1 T-79.5103 / Autumn 2008 Polynomial Space 3 POLYNOMIAL SPACE Polynomial space cont d Polynomial space-bounded computation has a variety of alternative characterizations

More information

Interactive Proof System

Interactive Proof System Interactive Proof System We have seen interactive proofs, in various disguised forms, in the definitions of NP, OTM, Cook reduction and PH. We will see that interactive proofs have fundamental connections

More information

Lecture 14: IP = PSPACE

Lecture 14: IP = PSPACE IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 14: IP = PSPACE David Mix Barrington and Alexis Maciel August 3, 2000 1. Overview We

More information

Arthur-Merlin Streaming Complexity

Arthur-Merlin Streaming Complexity Weizmann Institute of Science Joint work with Ran Raz Data Streams The data stream model is an abstraction commonly used for algorithms that process network traffic using sublinear space. A data stream

More information

Interactive protocols & zero-knowledge

Interactive protocols & zero-knowledge Interactive protocols & zero-knowledge - interactive protocols formalize what can be recognized by polynomial time restricted verifiers in arbitrary protocols - generalizes NP - zero-knowledge formalizes

More information

198:538 Complexity of Computation Lecture 16 Rutgers University, Spring March 2007

198:538 Complexity of Computation Lecture 16 Rutgers University, Spring March 2007 198:538 Complexity of Computation Lecture 16 Rutgers University, Spring 2007 8 March 2007 In this lecture we discuss Shamir s theorem that PSPACE is the set of languages that have interactive proofs with

More information

Lecture 5. 1 Review (Pairwise Independence and Derandomization)

Lecture 5. 1 Review (Pairwise Independence and Derandomization) 6.842 Randomness and Computation September 20, 2017 Lecture 5 Lecturer: Ronitt Rubinfeld Scribe: Tom Kolokotrones 1 Review (Pairwise Independence and Derandomization) As we discussed last time, we can

More information

6.840 Language Membership

6.840 Language Membership 6.840 Language Membership Michael Bernstein 1 Undecidable INP Practice final Use for A T M. Build a machine that asks EQ REX and then runs M on w. Query INP. If it s in P, accept. Note that the language

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Umans Complexity Theory Lectures Lecture 8: Introduction to Randomized Complexity: - Randomized complexity classes, - Error reduction, - in P/poly - Reingold s Undirected Graph Reachability in RL Randomized

More information

6.896 Quantum Complexity Theory 30 October Lecture 17

6.896 Quantum Complexity Theory 30 October Lecture 17 6.896 Quantum Complexity Theory 30 October 2008 Lecturer: Scott Aaronson Lecture 17 Last time, on America s Most Wanted Complexity Classes: 1. QMA vs. QCMA; QMA(2). 2. IP: Class of languages L {0, 1} for

More information

Lecture 18: Zero-Knowledge Proofs

Lecture 18: Zero-Knowledge Proofs COM S 6810 Theory of Computing March 26, 2009 Lecture 18: Zero-Knowledge Proofs Instructor: Rafael Pass Scribe: Igor Gorodezky 1 The formal definition We intuitively defined an interactive proof to be

More information

MTAT Complexity Theory December 8th, Lecture 12

MTAT Complexity Theory December 8th, Lecture 12 MTAT.07.004 Complexity Theory December 8th, 2011 Lecturer: Peeter Laud Lecture 12 Scribe(s): Ilya Kuzovkin Introduction On the previous lecture we had a look onto interactive proofs, where the system consists

More information

Lecture 20: PSPACE. November 15, 2016 CS 1010 Theory of Computation

Lecture 20: PSPACE. November 15, 2016 CS 1010 Theory of Computation Lecture 20: PSPACE November 15, 2016 CS 1010 Theory of Computation Recall that PSPACE = k=1 SPACE(nk ). We will see that a relationship between time and space complexity is given by: P NP PSPACE = NPSPACE

More information

Interactive protocols & zero-knowledge

Interactive protocols & zero-knowledge Interactive protocols & zero-knowledge - interactive protocols formalize what can be recognized by polynomial time restricted verifiers in arbitrary protocols - generalizes NP - zero-knowledge formalizes

More information

QMA(2) workshop Tutorial 1. Bill Fefferman (QuICS)

QMA(2) workshop Tutorial 1. Bill Fefferman (QuICS) QMA(2) workshop Tutorial 1 Bill Fefferman (QuICS) Agenda I. Basics II. Known results III. Open questions/next tutorial overview I. Basics I.1 Classical Complexity Theory P Class of problems efficiently

More information

Theory of Computation Chapter 12: Cryptography

Theory of Computation Chapter 12: Cryptography Theory of Computation Chapter 12: Cryptography Guan-Shieng Huang Dec. 20, 2006 0-0 Introduction Alice wants to communicate with Bob secretely. x Alice Bob John Alice y=e(e,x) y Bob y??? John Assumption

More information

More NP-Complete Problems

More NP-Complete Problems CS 473: Algorithms, Spring 2018 More NP-Complete Problems Lecture 23 April 17, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 57 Recap NP: languages/problems that have

More information

Lecture 8 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak;

Lecture 8 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak; Topics in Theoretical Computer Science April 18, 2016 Lecturer: Ola Svensson Lecture 8 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 26 Computational Intractability Polynomial Time Reductions Sofya Raskhodnikova S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.1 What algorithms are

More information

Lecture 11: Non-Interactive Zero-Knowledge II. 1 Non-Interactive Zero-Knowledge in the Hidden-Bits Model for the Graph Hamiltonian problem

Lecture 11: Non-Interactive Zero-Knowledge II. 1 Non-Interactive Zero-Knowledge in the Hidden-Bits Model for the Graph Hamiltonian problem CS 276 Cryptography Oct 8, 2014 Lecture 11: Non-Interactive Zero-Knowledge II Instructor: Sanjam Garg Scribe: Rafael Dutra 1 Non-Interactive Zero-Knowledge in the Hidden-Bits Model for the Graph Hamiltonian

More information

Advanced Algorithms (XIII) Yijia Chen Fudan University

Advanced Algorithms (XIII) Yijia Chen Fudan University Advanced Algorithms (XIII) Yijia Chen Fudan University The PCP Theorem Theorem NP = PCP(log n, 1). Motivation Approximate solutions Definition (Approximation of MAX-3SAT) For every 3CNF formula ϕ, the

More information

1 Agenda. 2 History. 3 Probabilistically Checkable Proofs (PCPs). Lecture Notes Definitions. PCPs. Approximation Algorithms.

1 Agenda. 2 History. 3 Probabilistically Checkable Proofs (PCPs). Lecture Notes Definitions. PCPs. Approximation Algorithms. CS 221: Computational Complexity Prof. Salil Vadhan Lecture Notes 20 April 12, 2010 Scribe: Jonathan Pines 1 Agenda. PCPs. Approximation Algorithms. PCPs = Inapproximability. 2 History. First, some history

More information

Notes on Zero Knowledge

Notes on Zero Knowledge U.C. Berkeley CS172: Automata, Computability and Complexity Handout 9 Professor Luca Trevisan 4/21/2015 Notes on Zero Knowledge These notes on zero knowledge protocols for quadratic residuosity are based

More information

9. PSPACE. PSPACE complexity class quantified satisfiability planning problem PSPACE-complete

9. PSPACE. PSPACE complexity class quantified satisfiability planning problem PSPACE-complete 9. PSPACE PSPACE complexity class quantified satisfiability planning problem PSPACE-complete Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013 Kevin Wayne http://www.cs.princeton.edu/~wayne/kleinberg-tardos

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 25 Last time Class NP Today Polynomial-time reductions Adam Smith; Sofya Raskhodnikova 4/18/2016 L25.1 The classes P and NP P is the class of languages decidable

More information

1 More finite deterministic automata

1 More finite deterministic automata CS 125 Section #6 Finite automata October 18, 2016 1 More finite deterministic automata Exercise. Consider the following game with two players: Repeatedly flip a coin. On heads, player 1 gets a point.

More information

Complete problems for classes in PH, The Polynomial-Time Hierarchy (PH) oracle is like a subroutine, or function in

Complete problems for classes in PH, The Polynomial-Time Hierarchy (PH) oracle is like a subroutine, or function in Oracle Turing Machines Nondeterministic OTM defined in the same way (transition relation, rather than function) oracle is like a subroutine, or function in your favorite PL but each call counts as single

More information

Lecture 21: Counting and Sampling Problems

Lecture 21: Counting and Sampling Problems princeton univ. F 14 cos 521: Advanced Algorithm Design Lecture 21: Counting and Sampling Problems Lecturer: Sanjeev Arora Scribe: Today s topic of counting and sampling problems is motivated by computational

More information

Lecture 10: Zero-Knowledge Proofs

Lecture 10: Zero-Knowledge Proofs Lecture 10: Zero-Knowledge Proofs Introduction to Modern Cryptography Benny Applebaum Tel-Aviv University Fall Semester, 2011 12 Some of these slides are based on note by Boaz Barak. Quo vadis? Eo Romam

More information

Strong ETH Breaks With Merlin and Arthur. Or: Short Non-Interactive Proofs of Batch Evaluation

Strong ETH Breaks With Merlin and Arthur. Or: Short Non-Interactive Proofs of Batch Evaluation Strong ETH Breaks With Merlin and Arthur Or: Short Non-Interactive Proofs of Batch Evaluation Ryan Williams Stanford Two Stories Story #1: The ircuit and the Adversarial loud. Given: a 1,, a K F n Want:

More information

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 10

CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky. Lecture 10 CS 282A/MATH 209A: Foundations of Cryptography Prof. Rafail Ostrovsky Lecture 10 Lecture date: 14 and 16 of March, 2005 Scribe: Ruzan Shahinian, Tim Hu 1 Oblivious Transfer 1.1 Rabin Oblivious Transfer

More information

NP-Completeness. Algorithmique Fall semester 2011/12

NP-Completeness. Algorithmique Fall semester 2011/12 NP-Completeness Algorithmique Fall semester 2011/12 1 What is an Algorithm? We haven t really answered this question in this course. Informally, an algorithm is a step-by-step procedure for computing a

More information

Chapter 9. PSPACE: A Class of Problems Beyond NP. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 9. PSPACE: A Class of Problems Beyond NP. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 9 PSPACE: A Class of Problems Beyond NP Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 Geography Game Geography. Alice names capital city c of country she

More information

Real Interactive Proofs for VPSPACE

Real Interactive Proofs for VPSPACE Brandenburgische Technische Universität, Cottbus-Senftenberg, Germany Colloquium Logicum Hamburg, September 2016 joint work with M. Baartse 1. Introduction Blum-Shub-Smale model of computability and complexity

More information

CS Communication Complexity: Applications and New Directions

CS Communication Complexity: Applications and New Directions CS 2429 - Communication Complexity: Applications and New Directions Lecturer: Toniann Pitassi 1 Introduction In this course we will define the basic two-party model of communication, as introduced in the

More information

PCP Theorem and Hardness of Approximation

PCP Theorem and Hardness of Approximation PCP Theorem and Hardness of Approximation An Introduction Lee Carraher and Ryan McGovern Department of Computer Science University of Cincinnati October 27, 2003 Introduction Assuming NP P, there are many

More information

INAPPROX APPROX PTAS. FPTAS Knapsack P

INAPPROX APPROX PTAS. FPTAS Knapsack P CMPSCI 61: Recall From Last Time Lecture 22 Clique TSP INAPPROX exists P approx alg for no ε < 1 VertexCover MAX SAT APPROX TSP some but not all ε< 1 PTAS all ε < 1 ETSP FPTAS Knapsack P poly in n, 1/ε

More information

Probabilistically Checkable Arguments

Probabilistically Checkable Arguments Probabilistically Checkable Arguments Yael Tauman Kalai Microsoft Research yael@microsoft.com Ran Raz Weizmann Institute of Science ran.raz@weizmann.ac.il Abstract We give a general reduction that converts

More information

Lecture 22: Counting

Lecture 22: Counting CS 710: Complexity Theory 4/8/2010 Lecture 22: Counting Instructor: Dieter van Melkebeek Scribe: Phil Rydzewski & Chi Man Liu Last time we introduced extractors and discussed two methods to construct them.

More information

Lecture 24: Randomized Complexity, Course Summary

Lecture 24: Randomized Complexity, Course Summary 6.045 Lecture 24: Randomized Complexity, Course Summary 1 1/4 1/16 1/4 1/4 1/32 1/16 1/32 Probabilistic TMs 1/16 A probabilistic TM M is a nondeterministic TM where: Each nondeterministic step is called

More information

Approximate Verification

Approximate Verification Approximate Verification Michel de Rougemont Université de Paris-II Ekaterinenburg-April 2014 i ii Contents 1 Probabilistic Classes 3 1.1 Probabilistic decision classes...................................

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 19 November 8, 2017 CPSC 467, Lecture 19 1/37 Zero Knowledge Interactive Proofs (ZKIP) ZKIP for graph isomorphism Feige-Fiat-Shamir

More information

Lecture 18: PCP Theorem and Hardness of Approximation I

Lecture 18: PCP Theorem and Hardness of Approximation I Lecture 18: and Hardness of Approximation I Arijit Bishnu 26.04.2010 Outline 1 Introduction to Approximation Algorithm 2 Outline 1 Introduction to Approximation Algorithm 2 Approximation Algorithm Approximation

More information

Cryptography CS 555. Topic 23: Zero-Knowledge Proof and Cryptographic Commitment. CS555 Topic 23 1

Cryptography CS 555. Topic 23: Zero-Knowledge Proof and Cryptographic Commitment. CS555 Topic 23 1 Cryptography CS 555 Topic 23: Zero-Knowledge Proof and Cryptographic Commitment CS555 Topic 23 1 Outline and Readings Outline Zero-knowledge proof Fiat-Shamir protocol Schnorr protocol Commitment schemes

More information

COP 4531 Complexity & Analysis of Data Structures & Algorithms

COP 4531 Complexity & Analysis of Data Structures & Algorithms COP 4531 Complexity & Analysis of Data Structures & Algorithms Lecture 18 Reductions and NP-completeness Thanks to Kevin Wayne and the text authors who contributed to these slides Classify Problems According

More information

9. PSPACE 9. PSPACE. PSPACE complexity class quantified satisfiability planning problem PSPACE-complete

9. PSPACE 9. PSPACE. PSPACE complexity class quantified satisfiability planning problem PSPACE-complete Geography game Geography. Alice names capital city c of country she is in. Bob names a capital city c' that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable

More information

Classical Verification of Quantum Computations

Classical Verification of Quantum Computations Classical Verification of Quantum Computations Urmila Mahadev UC Berkeley September 12, 2018 Classical versus Quantum Computers Can a classical computer verify a quantum computation? Classical output (decision

More information

Cryptographic Protocols Notes 2

Cryptographic Protocols Notes 2 ETH Zurich, Department of Computer Science SS 2018 Prof. Ueli Maurer Dr. Martin Hirt Chen-Da Liu Zhang Cryptographic Protocols Notes 2 Scribe: Sandro Coretti (modified by Chen-Da Liu Zhang) About the notes:

More information

Space and Nondeterminism

Space and Nondeterminism CS 221 Computational Complexity, Lecture 5 Feb 6, 2018 Space and Nondeterminism Instructor: Madhu Sudan 1 Scribe: Yong Wook Kwon Topic Overview Today we ll talk about space and non-determinism. For some

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures New topic(s) Umans Complexity Theory Lectures Lecture 15: Approximation Algorithms and Probabilistically Checable Proos (PCPs) Optimization problems,, and Probabilistically Checable Proos 2 Optimization

More information

Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun

Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun 1 Probabilistic Method Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun Turning the MaxCut proof into an algorithm. { Las Vegas Algorithm Algorithm

More information

8. INTRACTABILITY I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley. Last updated on 2/6/18 2:16 AM

8. INTRACTABILITY I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley. Last updated on 2/6/18 2:16 AM 8. INTRACTABILITY I poly-time reductions packing and covering problems constraint satisfaction problems sequencing problems partitioning problems graph coloring numerical problems Lecture slides by Kevin

More information

Shamir s Theorem. Johannes Mittmann. Technische Universität München (TUM)

Shamir s Theorem. Johannes Mittmann. Technische Universität München (TUM) IP = PSPACE Shamir s Theorem Johannes Mittmann Technische Universität München (TUM) 4 th Joint Advanced Student School (JASS) St. Petersburg, April 2 12, 2006 Course 1: Proofs and Computers Johannes Mittmann

More information

Lecture 11: Proofs, Games, and Alternation

Lecture 11: Proofs, Games, and Alternation IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 11: Proofs, Games, and Alternation David Mix Barrington and Alexis Maciel July 31, 2000

More information

Session 4: Efficient Zero Knowledge. Yehuda Lindell Bar-Ilan University

Session 4: Efficient Zero Knowledge. Yehuda Lindell Bar-Ilan University Session 4: Efficient Zero Knowledge Yehuda Lindell Bar-Ilan University 1 Proof Systems Completeness: can convince of a true statement Soundness: cannot convince for a false statement Classic proofs: Written

More information

Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/21/2010

Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/21/2010 Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/2/200 Counting Problems Today we describe counting problems and the class #P that they define, and we show that every counting

More information

Interactive PCP. Yael Tauman Kalai Georgia Institute of Technology Ran Raz Weizmann Institute of Science

Interactive PCP. Yael Tauman Kalai Georgia Institute of Technology Ran Raz Weizmann Institute of Science Interactive PCP Yael Tauman Kalai Georgia Institute of Technology yael@csail.mit.edu Ran Raz Weizmann Institute of Science ran.raz@weizmann.ac.il Abstract A central line of research in the area of PCPs

More information

SOLUTION: SOLUTION: SOLUTION:

SOLUTION: SOLUTION: SOLUTION: Convert R and S into nondeterministic finite automata N1 and N2. Given a string s, if we know the states N1 and N2 may reach when s[1...i] has been read, we are able to derive the states N1 and N2 may

More information

NP-Complete Reductions 2

NP-Complete Reductions 2 x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 CS 447 11 13 21 23 31 33 Algorithms NP-Complete Reductions 2 Prof. Gregory Provan Department of Computer Science University College Cork 1 Lecture Outline NP-Complete

More information