Estimating direct effects in cohort and case-control studies

Size: px
Start display at page:

Download "Estimating direct effects in cohort and case-control studies"

Transcription

1 Estimating direct effects in cohort and case-control studies, Ghent University

2 Direct effects Introduction Motivation The problem of standard approaches Controlled direct effect models In many research studies, the interest is in knowing the effect of an exposure on an outcome, which is not mediated by a given intermediate variable or mediator. We term this a direct effect. Mediator M U Exposure X Outcome Y

3 Motivation The problem of standard approaches Controlled direct effect models Example 1: randomized microbicide trials (1) This is for instance the case when the intervention of interest stimulates secondary interventions. Padian et al., Lancet 2007

4 Motivation The problem of standard approaches Controlled direct effect models Example 1: randomized microbicide trials (2) For policy-making, the interest is in the pure effect of diaphragm and microbicide use, other than through changing condom use. Condom use M Microbicide X HIV Y

5 Example 2: genetic pathways (1) Motivation The problem of standard approaches Controlled direct effect models Interest in direct effect inference is also motivated by the general interest in understanding the biological pathways between an exposure and an outcome. When the smoke clears... (Chanock and Hunter, Nature 2008) Three studies identify and association between genetic variation at a location on chromosome 15 and risk of lung cancer. But they disagree on whether the link is direct or mediated through nicotine dependence.

6 Example 2: genetic pathways (2) Motivation The problem of standard approaches Controlled direct effect models Is the association with smoking real and the cause of an association with lung cancer? Smoking M Gene X Lung cancer Y

7 The standard approach Motivation The problem of standard approaches Controlled direct effect models Mediator M U Exposure X Outcome Y It is standard to adjust the association between exposure X and outcome Y for the mediator M (Baron and Kenny, 1986): E(Y X, M) = γ 0 + γ 1 X + γ 2 M

8 The standard approach Motivation The problem of standard approaches Controlled direct effect models Mediator M U Exposure X Outcome Y It is standard to adjust the association between exposure X and outcome Y for the mediator M (Baron and Kenny, 1986): E(Y X, M) = γ 0 + γ 1 X + γ 2 M Even when X is randomly assigned, this introduces bias in the presence of (unmeasured) confounders U for the association between mediator and outcome.

9 No unmeasured confounders Motivation The problem of standard approaches Controlled direct effect models Confounder L Mediator M U Exposure X Outcome Y We assume that all confounders L for the association between mediator and outcome have been measured. Additional adjustment for L removes this bias: E(Y X, M, L) = γ 0 + γ 1 X + γ 2 M + γ 3 L

10 Motivation The problem of standard approaches Controlled direct effect models The problem of intermediate confounding Confounder L Mediator M U Exposure X Outcome Y It is often realistic to believe that some of those confounders L are themselves affected by the exposure. Additional adjustment for L then continues to introduce bias.

11 Motivation The problem of standard approaches Controlled direct effect models Limitations of structural equations and path analysis Confounder L Mediator M U Exposure X Outcome Y 1 Methods based on path analysis and linear structural equation models frequently ignore the possible presence of the unmeasured factors U.

12 Motivation The problem of standard approaches Controlled direct effect models Limitations of structural equations and path analysis Confounder L Mediator M U Exposure X Outcome Y 1 Methods based on path analysis and linear structural equation models frequently ignore the possible presence of the unmeasured factors U. 2 When they acknowledge this, inference becomes dependent on the chosen model for f(l X).

13 Controlled direct effects Motivation The problem of standard approaches Controlled direct effect models In view of this, Robins (1999) proposes to model direct effects directly. counterfactual outcome Y(x, m): outcome if, contrary to fact, exposure and mediator took level x and m

14 Controlled direct effects Motivation The problem of standard approaches Controlled direct effect models In view of this, Robins (1999) proposes to model direct effects directly. counterfactual outcome Y(x, m): outcome if, contrary to fact, exposure and mediator took level x and m average controlled direct effect of exposure X on outcome Y when holding the mediator M fixed at m E {Y(x, m) Y(0, m)}

15 Motivation The problem of standard approaches Controlled direct effect models Structural nested direct effect models Structural nested direct effect model (Robins, 1999) is model for the average controlled direct effect Example E {Y(x, m) Y(0, m)} E {Y(x, m) Y(0, m)} = βx = β 1 x + β 2 xm How can we estimate the direct effect parameter β in model E {Y(x, m) Y(0, m)} = βx?

16 Inverse probability weighting Sequential G-estimation (SG) Inverse probability weighted estimator (1) Confounder L Mediator M U Exposure X Outcome Y Robins (1999) proposes inverse weighting the data by 1 f(m X, L)

17 Inverse probability weighting Sequential G-estimation (SG) Inverse probability weighted estimator (2) Confounder L Mediator M U Exposure X Outcome Y This removes the association between the mediator and its causes, so that only a direct effect remains.

18 Inverse probability weighting Sequential G-estimation (SG) Inverse probability weighted estimator (3) An estimate of the direct exposure effect β may thus be obtained by regressing outcome on exposure and mediator, after weighting each subject by 1 f(m X, L)

19 Inverse probability weighting Sequential G-estimation (SG) Inverse probability weighted estimator (3) An estimate of the direct exposure effect β may thus be obtained by regressing outcome on exposure and mediator, after weighting each subject by 1 f(m X, L) The resulting estimator may behave erratically in finite samples when the mediator M is quantitative; or has strong predictors X and L. In view of this, we developed alternative estimators. Goetgeluk, S., Vansteelandt, S. and Goetghebeur, E. (2009). Estimation of controlled direct effects. JRSS B.

20 Sequential G-estimator (1) Inverse probability weighting Sequential G-estimation (SG) Confounder L Mediator M U Exposure X Outcome Y First, remove the indirect effect from the outcome, Y Y ˆγM, where ˆγ is estimate from a regression model E(Y X, M, L) = δ 1 + δ 2 X + δ 3 L + γm

21 Sequential G-estimator (2) Inverse probability weighting Sequential G-estimation (SG) Confounder L Mediator M U Exposure X Outcome Y* Now only a direct effect remains. Next, we remove the direct effect from the outcome Y (β) Y ˆγM βx

22 Sequential G-estimator (3) Inverse probability weighting Sequential G-estimation (SG) Confounder L Mediator M U Exposure X Outcome Y* Now, X and Y (β) must be (mean) independent.

23 Sequential G-estimator (4) Inverse probability weighting Sequential G-estimation (SG) We thus estimate the direct effect parameter β as the value for which (Goetgeluk et al., JRSS B 2008; Joffe and Greene, Biometrics 2009; Vansteelandt et al., Gen Epi 2009) X Y (β)

24 Sequential G-estimator (4) Inverse probability weighting Sequential G-estimation (SG) We thus estimate the direct effect parameter β as the value for which (Goetgeluk et al., JRSS B 2008; Joffe and Greene, Biometrics 2009; Vansteelandt et al., Gen Epi 2009) X Y (β) That is by solving 0 = i {X i E(X)}(Y i ˆγM i βx i ) for β, where ˆγ is obtained by fitting E(Y X, M, L) = δ 1 + δ 2 X + δ 3 L + γm

25 Simulation study Introduction Inverse probability weighting Sequential G-estimation (SG) n = 200 data-generating model: linear structural equation model

26 Bias Introduction Inverse probability weighting Sequential G-estimation (SG) Direct effect Direct effect Direct effect R yu R yu R yu Direct effect Direct effect Direct effect R ml 2 R ml 2 R ml

27 Relative efficiency Introduction Inverse probability weighting Sequential G-estimation (SG) Relative Efficiency Relative Efficiency Relative Efficiency R yu R yu R yu Relative Efficiency Relative Efficiency Relative Efficiency R ml 2 R ml 2 R ml

28 Case-control studies Sequential G-estimation Suppose now that subjects were sampled conditional on their disease status (Y = 1: case; Y = 0, control). Confounder L Mediator M U Exposure X Outcome Y Selection

29 Sequential G-estimation Sequential G-estimation subject to selection bias Removing the mediator effect from the outcome induces selection bias. Y Y ˆγM Y Y + ˆγM Confounder L Mediator M U Exposure X Outcome Y* Selection

30 Sequential G-estimation Multiplicative direct effect models Consider the multiplicative direct effect model P{Y(x, m) = 1} P{Y(0, m) = 1} = exp(βx) exp(βx) expresses the relative change in probability of disease when the exposure X is increased from 0 to x units while holding the mediator fixed at m.

31 Estimation principle (1) Sequential G-estimation The effect of the mediator on disease risk can be estimated through the odds ratio exp(γ m M) in the logistic regression model: logitp(y = 1 M, X, L) = γ 0 + γ m M + γ x X + γ l L

32 Estimation principle (1) Sequential G-estimation The effect of the mediator on disease risk can be estimated through the odds ratio exp(γ m M) in the logistic regression model: logitp(y = 1 M, X, L) = γ 0 + γ m M + γ x X + γ l L When the disease prevalence is low, Y exp( γ m M) therefore approximates the expected outcome that would be observed if the effect of mediator on outcome were removed.

33 Estimation principle (2) Sequential G-estimation By further removing the direct exposure effect, we obtain a residual outcome Y exp( γ m M βx) which is no longer affected by X. At the population level, n 0 = (X i E(X i ))Y i exp( ˆγ m M i βx i ) i=1 is thus an unbiased equation for β.

34 Estimation principle (2) Sequential G-estimation By further removing the direct exposure effect, we obtain a residual outcome Y exp( γ m M βx) which is no longer affected by X. At the population level, n 0 = (X i E(X i ))Y i exp( ˆγ m M i βx i ) i=1 is thus an unbiased equation for β. This continues to be true in outcome-dependent sampling designs.

35 Estimation principle (2) Sequential G-estimation By further removing the direct exposure effect, we obtain a residual outcome Y exp( γ m M βx) which is no longer affected by X. At the population level, n 0 = (X i E(X i ))Y i exp( ˆγ m M i βx i ) i=1 is thus an unbiased equation for β. This continues to be true in outcome-dependent sampling designs. It requires approximating E(X i ) with the sample average of X i in the controls.

36 Sequential G-estimation : effect of X on L, n = 200 Seq-G Logistic Reg n β P(Y = 1) Mean SD Mean SD

37 Sequential G-estimation : no effect of X on L, n = 200 Seq-G Logistic Reg n β P(Y = 1) Mean SD Mean SD

38 Conclusions (1) Introduction Sequential G-estimation Inferring direct effects requires adjustment for all confounders of the effect of mediator on outcome. When these confounders are themselves affected by the exposure, standard methods are not applicable.

39 Conclusions (1) Introduction Sequential G-estimation Inferring direct effects requires adjustment for all confounders of the effect of mediator on outcome. When these confounders are themselves affected by the exposure, standard methods are not applicable. In that setting, sequential G-estimators are valid; easily applied; have good efficiency; and are fairly robust to model misspecification.

40 Conclusions (1) Introduction Sequential G-estimation Inferring direct effects requires adjustment for all confounders of the effect of mediator on outcome. When these confounders are themselves affected by the exposure, standard methods are not applicable. In that setting, sequential G-estimators are valid; easily applied; have good efficiency; and are fairly robust to model misspecification. Doubly robust direct effect estimators have additional robustness properties and allow for more flexible models. Goetgeluk, S., Vansteelandt, S. and Goetghebeur, E. (2009). Estimation of controlled direct effects. JRSS B.

41 Conclusions (2) Introduction Sequential G-estimation Under a rare disease assumption, results are easily extended to outcome-dependent sampling designs under relative risk models. Vansteelandt, S. (2009). Estimating direct effects in cohort and case-control studies. Epidemiology. Work on logistic direct effects models is ongoing.

Casual Mediation Analysis

Casual Mediation Analysis Casual Mediation Analysis Tyler J. VanderWeele, Ph.D. Upcoming Seminar: April 21-22, 2017, Philadelphia, Pennsylvania OXFORD UNIVERSITY PRESS Explanation in Causal Inference Methods for Mediation and Interaction

More information

Confounding, mediation and colliding

Confounding, mediation and colliding Confounding, mediation and colliding What types of shared covariates does the sibling comparison design control for? Arvid Sjölander and Johan Zetterqvist Causal effects and confounding A common aim of

More information

Mediation analyses. Advanced Psychometrics Methods in Cognitive Aging Research Workshop. June 6, 2016

Mediation analyses. Advanced Psychometrics Methods in Cognitive Aging Research Workshop. June 6, 2016 Mediation analyses Advanced Psychometrics Methods in Cognitive Aging Research Workshop June 6, 2016 1 / 40 1 2 3 4 5 2 / 40 Goals for today Motivate mediation analysis Survey rapidly developing field in

More information

Causality II: How does causal inference fit into public health and what it is the role of statistics?

Causality II: How does causal inference fit into public health and what it is the role of statistics? Causality II: How does causal inference fit into public health and what it is the role of statistics? Statistics for Psychosocial Research II November 13, 2006 1 Outline Potential Outcomes / Counterfactual

More information

Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal

Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal Marginal versus conditional effects: does it make a difference? Mireille Schnitzer, PhD Université de Montréal Overview In observational and experimental studies, the goal may be to estimate the effect

More information

Causal inference in epidemiological practice

Causal inference in epidemiological practice Causal inference in epidemiological practice Willem van der Wal Biostatistics, Julius Center UMC Utrecht June 5, 2 Overview Introduction to causal inference Marginal causal effects Estimating marginal

More information

Mediation Analysis for Health Disparities Research

Mediation Analysis for Health Disparities Research Mediation Analysis for Health Disparities Research Ashley I Naimi, PhD Oct 27 2016 @ashley_naimi wwwashleyisaacnaimicom ashleynaimi@pittedu Orientation 24 Numbered Equations Slides at: wwwashleyisaacnaimicom/slides

More information

Flexible mediation analysis in the presence of non-linear relations: beyond the mediation formula.

Flexible mediation analysis in the presence of non-linear relations: beyond the mediation formula. FACULTY OF PSYCHOLOGY AND EDUCATIONAL SCIENCES Flexible mediation analysis in the presence of non-linear relations: beyond the mediation formula. Modern Modeling Methods (M 3 ) Conference Beatrijs Moerkerke

More information

Estimating the Marginal Odds Ratio in Observational Studies

Estimating the Marginal Odds Ratio in Observational Studies Estimating the Marginal Odds Ratio in Observational Studies Travis Loux Christiana Drake Department of Statistics University of California, Davis June 20, 2011 Outline The Counterfactual Model Odds Ratios

More information

Causal Effect Estimation Under Linear and Log- Linear Structural Nested Mean Models in the Presence of Unmeasured Confounding

Causal Effect Estimation Under Linear and Log- Linear Structural Nested Mean Models in the Presence of Unmeasured Confounding University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Summer 8-13-2010 Causal Effect Estimation Under Linear and Log- Linear Structural Nested Mean Models in the Presence of

More information

Harvard University. A Note on the Control Function Approach with an Instrumental Variable and a Binary Outcome. Eric Tchetgen Tchetgen

Harvard University. A Note on the Control Function Approach with an Instrumental Variable and a Binary Outcome. Eric Tchetgen Tchetgen Harvard University Harvard University Biostatistics Working Paper Series Year 2014 Paper 175 A Note on the Control Function Approach with an Instrumental Variable and a Binary Outcome Eric Tchetgen Tchetgen

More information

Natural direct and indirect effects on the exposed: effect decomposition under. weaker assumptions

Natural direct and indirect effects on the exposed: effect decomposition under. weaker assumptions Biometrics 59, 1?? December 2006 DOI: 10.1111/j.1541-0420.2005.00454.x Natural direct and indirect effects on the exposed: effect decomposition under weaker assumptions Stijn Vansteelandt Department of

More information

More Statistics tutorial at Logistic Regression and the new:

More Statistics tutorial at  Logistic Regression and the new: Logistic Regression and the new: Residual Logistic Regression 1 Outline 1. Logistic Regression 2. Confounding Variables 3. Controlling for Confounding Variables 4. Residual Linear Regression 5. Residual

More information

arxiv: v2 [math.st] 4 Mar 2013

arxiv: v2 [math.st] 4 Mar 2013 Running head:: LONGITUDINAL MEDIATION ANALYSIS 1 arxiv:1205.0241v2 [math.st] 4 Mar 2013 Counterfactual Graphical Models for Longitudinal Mediation Analysis with Unobserved Confounding Ilya Shpitser School

More information

Causal Mediation Analysis Short Course

Causal Mediation Analysis Short Course Causal Mediation Analysis Short Course Linda Valeri McLean Hospital and Harvard Medical School May 14, 2018 Plan of the Course 1. Concepts of Mediation 2. Regression Approaches 3. Sensitivity Analyses

More information

Double Robustness. Bang and Robins (2005) Kang and Schafer (2007)

Double Robustness. Bang and Robins (2005) Kang and Schafer (2007) Double Robustness Bang and Robins (2005) Kang and Schafer (2007) Set-Up Assume throughout that treatment assignment is ignorable given covariates (similar to assumption that data are missing at random

More information

A comparison of 5 software implementations of mediation analysis

A comparison of 5 software implementations of mediation analysis Faculty of Health Sciences A comparison of 5 software implementations of mediation analysis Liis Starkopf, Thomas A. Gerds, Theis Lange Section of Biostatistics, University of Copenhagen Illustrative example

More information

Mediation Analysis: A Practitioner s Guide

Mediation Analysis: A Practitioner s Guide ANNUAL REVIEWS Further Click here to view this article's online features: Download figures as PPT slides Navigate linked references Download citations Explore related articles Search keywords Mediation

More information

An Introduction to Causal Mediation Analysis. Xu Qin University of Chicago Presented at the Central Iowa R User Group Meetup Aug 10, 2016

An Introduction to Causal Mediation Analysis. Xu Qin University of Chicago Presented at the Central Iowa R User Group Meetup Aug 10, 2016 An Introduction to Causal Mediation Analysis Xu Qin University of Chicago Presented at the Central Iowa R User Group Meetup Aug 10, 2016 1 Causality In the applications of statistics, many central questions

More information

Causal Mechanisms Short Course Part II:

Causal Mechanisms Short Course Part II: Causal Mechanisms Short Course Part II: Analyzing Mechanisms with Experimental and Observational Data Teppei Yamamoto Massachusetts Institute of Technology March 24, 2012 Frontiers in the Analysis of Causal

More information

A Unification of Mediation and Interaction. A 4-Way Decomposition. Tyler J. VanderWeele

A Unification of Mediation and Interaction. A 4-Way Decomposition. Tyler J. VanderWeele Original Article A Unification of Mediation and Interaction A 4-Way Decomposition Tyler J. VanderWeele Abstract: The overall effect of an exposure on an outcome, in the presence of a mediator with which

More information

Ignoring the matching variables in cohort studies - when is it valid, and why?

Ignoring the matching variables in cohort studies - when is it valid, and why? Ignoring the matching variables in cohort studies - when is it valid, and why? Arvid Sjölander Abstract In observational studies of the effect of an exposure on an outcome, the exposure-outcome association

More information

Revision list for Pearl s THE FOUNDATIONS OF CAUSAL INFERENCE

Revision list for Pearl s THE FOUNDATIONS OF CAUSAL INFERENCE Revision list for Pearl s THE FOUNDATIONS OF CAUSAL INFERENCE insert p. 90: in graphical terms or plain causal language. The mediation problem of Section 6 illustrates how such symbiosis clarifies the

More information

Statistical Methods for Causal Mediation Analysis

Statistical Methods for Causal Mediation Analysis Statistical Methods for Causal Mediation Analysis The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable

More information

Estimating and contextualizing the attenuation of odds ratios due to non-collapsibility

Estimating and contextualizing the attenuation of odds ratios due to non-collapsibility Estimating and contextualizing the attenuation of odds ratios due to non-collapsibility Stephen Burgess Department of Public Health & Primary Care, University of Cambridge September 6, 014 Short title:

More information

Causal mediation analysis: Definition of effects and common identification assumptions

Causal mediation analysis: Definition of effects and common identification assumptions Causal mediation analysis: Definition of effects and common identification assumptions Trang Quynh Nguyen Seminar on Statistical Methods for Mental Health Research Johns Hopkins Bloomberg School of Public

More information

Previous lecture. P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing.

Previous lecture. P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing. Previous lecture P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing. Interaction Outline: Definition of interaction Additive versus multiplicative

More information

Combining multiple observational data sources to estimate causal eects

Combining multiple observational data sources to estimate causal eects Department of Statistics, North Carolina State University Combining multiple observational data sources to estimate causal eects Shu Yang* syang24@ncsuedu Joint work with Peng Ding UC Berkeley May 23,

More information

Flexible Mediation Analysis in the Presence of Nonlinear Relations: Beyond the Mediation Formula

Flexible Mediation Analysis in the Presence of Nonlinear Relations: Beyond the Mediation Formula Multivariate Behavioral Research ISSN: 0027-3171 (Print) 1532-7906 (Online) Journal homepage: http://www.tandfonline.com/loi/hmbr20 Flexible Mediation Analysis in the Presence of Nonlinear Relations: Beyond

More information

Causal Inference. Prediction and causation are very different. Typical questions are:

Causal Inference. Prediction and causation are very different. Typical questions are: Causal Inference Prediction and causation are very different. Typical questions are: Prediction: Predict Y after observing X = x Causation: Predict Y after setting X = x. Causation involves predicting

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2004 Paper 155 Estimation of Direct and Indirect Causal Effects in Longitudinal Studies Mark J. van

More information

Specification Errors, Measurement Errors, Confounding

Specification Errors, Measurement Errors, Confounding Specification Errors, Measurement Errors, Confounding Kerby Shedden Department of Statistics, University of Michigan October 10, 2018 1 / 32 An unobserved covariate Suppose we have a data generating model

More information

Propensity Score Methods for Causal Inference

Propensity Score Methods for Causal Inference John Pura BIOS790 October 2, 2015 Causal inference Philosophical problem, statistical solution Important in various disciplines (e.g. Koch s postulates, Bradford Hill criteria, Granger causality) Good

More information

Comparative effectiveness of dynamic treatment regimes

Comparative effectiveness of dynamic treatment regimes Comparative effectiveness of dynamic treatment regimes An application of the parametric g- formula Miguel Hernán Departments of Epidemiology and Biostatistics Harvard School of Public Health www.hsph.harvard.edu/causal

More information

Help! Statistics! Mediation Analysis

Help! Statistics! Mediation Analysis Help! Statistics! Lunch time lectures Help! Statistics! Mediation Analysis What? Frequently used statistical methods and questions in a manageable timeframe for all researchers at the UMCG. No knowledge

More information

Causal inference in biomedical sciences: causal models involving genotypes. Mendelian randomization genes as Instrumental Variables

Causal inference in biomedical sciences: causal models involving genotypes. Mendelian randomization genes as Instrumental Variables Causal inference in biomedical sciences: causal models involving genotypes Causal models for observational data Instrumental variables estimation and Mendelian randomization Krista Fischer Estonian Genome

More information

Comparison of Three Approaches to Causal Mediation Analysis. Donna L. Coffman David P. MacKinnon Yeying Zhu Debashis Ghosh

Comparison of Three Approaches to Causal Mediation Analysis. Donna L. Coffman David P. MacKinnon Yeying Zhu Debashis Ghosh Comparison of Three Approaches to Causal Mediation Analysis Donna L. Coffman David P. MacKinnon Yeying Zhu Debashis Ghosh Introduction Mediation defined using the potential outcomes framework natural effects

More information

Mediation and Interaction Analysis

Mediation and Interaction Analysis Mediation and Interaction Analysis Andrea Bellavia abellavi@hsph.harvard.edu May 17, 2017 Andrea Bellavia Mediation and Interaction May 17, 2017 1 / 43 Epidemiology, public health, and clinical research

More information

Lecture 5: Poisson and logistic regression

Lecture 5: Poisson and logistic regression Dankmar Böhning Southampton Statistical Sciences Research Institute University of Southampton, UK S 3 RI, 3-5 March 2014 introduction to Poisson regression application to the BELCAP study introduction

More information

Causal Hazard Ratio Estimation By Instrumental Variables or Principal Stratification. Todd MacKenzie, PhD

Causal Hazard Ratio Estimation By Instrumental Variables or Principal Stratification. Todd MacKenzie, PhD Causal Hazard Ratio Estimation By Instrumental Variables or Principal Stratification Todd MacKenzie, PhD Collaborators A. James O Malley Tor Tosteson Therese Stukel 2 Overview 1. Instrumental variable

More information

Estimation of Optimal Treatment Regimes Via Machine Learning. Marie Davidian

Estimation of Optimal Treatment Regimes Via Machine Learning. Marie Davidian Estimation of Optimal Treatment Regimes Via Machine Learning Marie Davidian Department of Statistics North Carolina State University Triangle Machine Learning Day April 3, 2018 1/28 Optimal DTRs Via ML

More information

Methods for inferring short- and long-term effects of exposures on outcomes, using longitudinal data on both measures

Methods for inferring short- and long-term effects of exposures on outcomes, using longitudinal data on both measures Methods for inferring short- and long-term effects of exposures on outcomes, using longitudinal data on both measures Ruth Keogh, Stijn Vansteelandt, Rhian Daniel Department of Medical Statistics London

More information

Lecture 2: Poisson and logistic regression

Lecture 2: Poisson and logistic regression Dankmar Böhning Southampton Statistical Sciences Research Institute University of Southampton, UK S 3 RI, 11-12 December 2014 introduction to Poisson regression application to the BELCAP study introduction

More information

Sensitivity analysis and distributional assumptions

Sensitivity analysis and distributional assumptions Sensitivity analysis and distributional assumptions Tyler J. VanderWeele Department of Health Studies, University of Chicago 5841 South Maryland Avenue, MC 2007, Chicago, IL 60637, USA vanderweele@uchicago.edu

More information

Causal mediation analysis: Multiple mediators

Causal mediation analysis: Multiple mediators Causal mediation analysis: ultiple mediators Trang Quynh guyen Seminar on Statistical ethods for ental Health Research Johns Hopkins Bloomberg School of Public Health 330.805.01 term 4 session 4 - ay 5,

More information

A Decision Theoretic Approach to Causality

A Decision Theoretic Approach to Causality A Decision Theoretic Approach to Causality Vanessa Didelez School of Mathematics University of Bristol (based on joint work with Philip Dawid) Bordeaux, June 2011 Based on: Dawid & Didelez (2010). Identifying

More information

Selection on Observables: Propensity Score Matching.

Selection on Observables: Propensity Score Matching. Selection on Observables: Propensity Score Matching. Department of Economics and Management Irene Brunetti ireneb@ec.unipi.it 24/10/2017 I. Brunetti Labour Economics in an European Perspective 24/10/2017

More information

STAT 5500/6500 Conditional Logistic Regression for Matched Pairs

STAT 5500/6500 Conditional Logistic Regression for Matched Pairs STAT 5500/6500 Conditional Logistic Regression for Matched Pairs Motivating Example: The data we will be using comes from a subset of data taken from the Los Angeles Study of the Endometrial Cancer Data

More information

Statistical Analysis of Causal Mechanisms

Statistical Analysis of Causal Mechanisms Statistical Analysis of Causal Mechanisms Kosuke Imai Princeton University April 13, 2009 Kosuke Imai (Princeton) Causal Mechanisms April 13, 2009 1 / 26 Papers and Software Collaborators: Luke Keele,

More information

CAUSAL INFERENCE IN THE EMPIRICAL SCIENCES. Judea Pearl University of California Los Angeles (www.cs.ucla.edu/~judea)

CAUSAL INFERENCE IN THE EMPIRICAL SCIENCES. Judea Pearl University of California Los Angeles (www.cs.ucla.edu/~judea) CAUSAL INFERENCE IN THE EMPIRICAL SCIENCES Judea Pearl University of California Los Angeles (www.cs.ucla.edu/~judea) OUTLINE Inference: Statistical vs. Causal distinctions and mental barriers Formal semantics

More information

A Sampling of IMPACT Research:

A Sampling of IMPACT Research: A Sampling of IMPACT Research: Methods for Analysis with Dropout and Identifying Optimal Treatment Regimes Marie Davidian Department of Statistics North Carolina State University http://www.stat.ncsu.edu/

More information

In some settings, the effect of a particular exposure may be

In some settings, the effect of a particular exposure may be Original Article Attributing Effects to Interactions Tyler J. VanderWeele and Eric J. Tchetgen Tchetgen Abstract: A framework is presented that allows an investigator to estimate the portion of the effect

More information

Statistical inference in Mendelian randomization: From genetic association to epidemiological causation

Statistical inference in Mendelian randomization: From genetic association to epidemiological causation Statistical inference in Mendelian randomization: From genetic association to epidemiological causation Department of Statistics, The Wharton School, University of Pennsylvania March 1st, 2018 @ UMN Based

More information

The International Journal of Biostatistics

The International Journal of Biostatistics The International Journal of Biostatistics Volume 7, Issue 1 2011 Article 16 A Complete Graphical Criterion for the Adjustment Formula in Mediation Analysis Ilya Shpitser, Harvard University Tyler J. VanderWeele,

More information

Lecture 7: Interaction Analysis. Summer Institute in Statistical Genetics 2017

Lecture 7: Interaction Analysis. Summer Institute in Statistical Genetics 2017 Lecture 7: Interaction Analysis Timothy Thornton and Michael Wu Summer Institute in Statistical Genetics 2017 1 / 39 Lecture Outline Beyond main SNP effects Introduction to Concept of Statistical Interaction

More information

Literature review The attributable fraction in causal inference and genetics

Literature review The attributable fraction in causal inference and genetics Literature review The attributable fraction in causal inference and genetics Student: Elisabeth Dahlqwist Main supervisor: Arvid Sjölander Co-supervisor: Yudi Pawitan Department of Medical Epidemiology

More information

Causal Inference with General Treatment Regimes: Generalizing the Propensity Score

Causal Inference with General Treatment Regimes: Generalizing the Propensity Score Causal Inference with General Treatment Regimes: Generalizing the Propensity Score David van Dyk Department of Statistics, University of California, Irvine vandyk@stat.harvard.edu Joint work with Kosuke

More information

Marginal, crude and conditional odds ratios

Marginal, crude and conditional odds ratios Marginal, crude and conditional odds ratios Denitions and estimation Travis Loux Gradute student, UC Davis Department of Statistics March 31, 2010 Parameter Denitions When measuring the eect of a binary

More information

Mediation Analysis for Count and Zero-Inflated Count Data Without Sequential Ignorability and Its Application in Dental Studies

Mediation Analysis for Count and Zero-Inflated Count Data Without Sequential Ignorability and Its Application in Dental Studies Mediation Analysis for Count and Zero-Inflated Count Data Without Sequential Ignorability and Its Application in Dental Studies Zijian Guo, Dylan S. Small Department of Statistics, University of Pennsylvania

More information

Propensity Score Methods, Models and Adjustment

Propensity Score Methods, Models and Adjustment Propensity Score Methods, Models and Adjustment Dr David A. Stephens Department of Mathematics & Statistics McGill University Montreal, QC, Canada. d.stephens@math.mcgill.ca www.math.mcgill.ca/dstephens/siscr2016/

More information

arxiv: v2 [stat.me] 31 Dec 2012

arxiv: v2 [stat.me] 31 Dec 2012 1 arxiv:1109.1070v2 [stat.me] 31 Dec 2012 1 Mediation Analysis Without Sequential Ignorability: Using Baseline Covariates Interacted with Random Assignment as Instrumental Variables Dylan S. Small University

More information

Investigating mediation when counterfactuals are not metaphysical: Does sunlight exposure mediate the effect of eye-glasses on cataracts?

Investigating mediation when counterfactuals are not metaphysical: Does sunlight exposure mediate the effect of eye-glasses on cataracts? Investigating mediation when counterfactuals are not metaphysical: Does sunlight exposure mediate the effect of eye-glasses on cataracts? Brian Egleston Fox Chase Cancer Center Collaborators: Daniel Scharfstein,

More information

Department of Biostatistics University of Copenhagen

Department of Biostatistics University of Copenhagen Comparison of five software solutions to mediation analysis Liis Starkopf Mikkel Porsborg Andersen Thomas Alexander Gerds Christian Torp-Pedersen Theis Lange Research Report 17/01 Department of Biostatistics

More information

When Should We Use Linear Fixed Effects Regression Models for Causal Inference with Panel Data?

When Should We Use Linear Fixed Effects Regression Models for Causal Inference with Panel Data? When Should We Use Linear Fixed Effects Regression Models for Causal Inference with Panel Data? Kosuke Imai Department of Politics Center for Statistics and Machine Learning Princeton University Joint

More information

Downloaded from:

Downloaded from: Vansteelandt, S; Daniel, RM (2016) Interventional effects for mediation analysis with multiple mediators. Epidemiology (Cambridge, Mass). ISSN 1044-3983 DOI: https://doi.org/10.1097/ede.0000000000000596

More information

A Longitudinal Look at Longitudinal Mediation Models

A Longitudinal Look at Longitudinal Mediation Models A Longitudinal Look at Longitudinal Mediation Models David P. MacKinnon, Arizona State University Causal Mediation Analysis Ghent, Belgium University of Ghent January 8-9, 03 Introduction Assumptions Unique

More information

Chapter 22: Log-linear regression for Poisson counts

Chapter 22: Log-linear regression for Poisson counts Chapter 22: Log-linear regression for Poisson counts Exposure to ionizing radiation is recognized as a cancer risk. In the United States, EPA sets guidelines specifying upper limits on the amount of exposure

More information

Covariate Balancing Propensity Score for General Treatment Regimes

Covariate Balancing Propensity Score for General Treatment Regimes Covariate Balancing Propensity Score for General Treatment Regimes Kosuke Imai Princeton University October 14, 2014 Talk at the Department of Psychiatry, Columbia University Joint work with Christian

More information

Correlation and regression

Correlation and regression 1 Correlation and regression Yongjua Laosiritaworn Introductory on Field Epidemiology 6 July 2015, Thailand Data 2 Illustrative data (Doll, 1955) 3 Scatter plot 4 Doll, 1955 5 6 Correlation coefficient,

More information

Integrated approaches for analysis of cluster randomised trials

Integrated approaches for analysis of cluster randomised trials Integrated approaches for analysis of cluster randomised trials Invited Session 4.1 - Recent developments in CRTs Joint work with L. Turner, F. Li, J. Gallis and D. Murray Mélanie PRAGUE - SCT 2017 - Liverpool

More information

OUTLINE CAUSAL INFERENCE: LOGICAL FOUNDATION AND NEW RESULTS. Judea Pearl University of California Los Angeles (www.cs.ucla.

OUTLINE CAUSAL INFERENCE: LOGICAL FOUNDATION AND NEW RESULTS. Judea Pearl University of California Los Angeles (www.cs.ucla. OUTLINE CAUSAL INFERENCE: LOGICAL FOUNDATION AND NEW RESULTS Judea Pearl University of California Los Angeles (www.cs.ucla.edu/~judea/) Statistical vs. Causal vs. Counterfactual inference: syntax and semantics

More information

Lecture 1 Introduction to Multi-level Models

Lecture 1 Introduction to Multi-level Models Lecture 1 Introduction to Multi-level Models Course Website: http://www.biostat.jhsph.edu/~ejohnson/multilevel.htm All lecture materials extracted and further developed from the Multilevel Model course

More information

Ratio of Mediator Probability Weighting for Estimating Natural Direct and Indirect Effects

Ratio of Mediator Probability Weighting for Estimating Natural Direct and Indirect Effects Ratio of Mediator Probability Weighting for Estimating Natural Direct and Indirect Effects Guanglei Hong University of Chicago, 5736 S. Woodlawn Ave., Chicago, IL 60637 Abstract Decomposing a total causal

More information

Lecture 2: Constant Treatment Strategies. Donglin Zeng, Department of Biostatistics, University of North Carolina

Lecture 2: Constant Treatment Strategies. Donglin Zeng, Department of Biostatistics, University of North Carolina Lecture 2: Constant Treatment Strategies Introduction Motivation We will focus on evaluating constant treatment strategies in this lecture. We will discuss using randomized or observational study for these

More information

Estimation of direct causal effects.

Estimation of direct causal effects. University of California, Berkeley From the SelectedWorks of Maya Petersen May, 2006 Estimation of direct causal effects. Maya L Petersen, University of California, Berkeley Sandra E Sinisi Mark J van

More information

13.1 Causal effects with continuous mediator and. predictors in their equations. The definitions for the direct, total indirect,

13.1 Causal effects with continuous mediator and. predictors in their equations. The definitions for the direct, total indirect, 13 Appendix 13.1 Causal effects with continuous mediator and continuous outcome Consider the model of Section 3, y i = β 0 + β 1 m i + β 2 x i + β 3 x i m i + β 4 c i + ɛ 1i, (49) m i = γ 0 + γ 1 x i +

More information

Unbiased estimation of exposure odds ratios in complete records logistic regression

Unbiased estimation of exposure odds ratios in complete records logistic regression Unbiased estimation of exposure odds ratios in complete records logistic regression Jonathan Bartlett London School of Hygiene and Tropical Medicine www.missingdata.org.uk Centre for Statistical Methodology

More information

Chapter 2: Describing Contingency Tables - II

Chapter 2: Describing Contingency Tables - II : Describing Contingency Tables - II Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM [Acknowledgements to Tim Hanson and Haitao Chu]

More information

Effects of multiple interventions

Effects of multiple interventions Chapter 28 Effects of multiple interventions James Robins, Miguel Hernan and Uwe Siebert 1. Introduction The purpose of this chapter is (i) to describe some currently available analytical methods for using

More information

Sections 2.3, 2.4. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis 1 / 21

Sections 2.3, 2.4. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis 1 / 21 Sections 2.3, 2.4 Timothy Hanson Department of Statistics, University of South Carolina Stat 770: Categorical Data Analysis 1 / 21 2.3 Partial association in stratified 2 2 tables In describing a relationship

More information

Simple Sensitivity Analysis for Differential Measurement Error. By Tyler J. VanderWeele and Yige Li Harvard University, Cambridge, MA, U.S.A.

Simple Sensitivity Analysis for Differential Measurement Error. By Tyler J. VanderWeele and Yige Li Harvard University, Cambridge, MA, U.S.A. Simple Sensitivity Analysis for Differential Measurement Error By Tyler J. VanderWeele and Yige Li Harvard University, Cambridge, MA, U.S.A. Abstract Simple sensitivity analysis results are given for differential

More information

Unpacking the Black Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies

Unpacking the Black Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies Unpacking the Black Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies Kosuke Imai Department of Politics Center for Statistics and Machine Learning Princeton

More information

Structural Nested Mean Models for Assessing Time-Varying Effect Moderation. Daniel Almirall

Structural Nested Mean Models for Assessing Time-Varying Effect Moderation. Daniel Almirall 1 Structural Nested Mean Models for Assessing Time-Varying Effect Moderation Daniel Almirall Center for Health Services Research, Durham VAMC & Dept. of Biostatistics, Duke University Medical Joint work

More information

Propensity Score Weighting with Multilevel Data

Propensity Score Weighting with Multilevel Data Propensity Score Weighting with Multilevel Data Fan Li Department of Statistical Science Duke University October 25, 2012 Joint work with Alan Zaslavsky and Mary Beth Landrum Introduction In comparative

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2011 Paper 288 Targeted Maximum Likelihood Estimation of Natural Direct Effect Wenjing Zheng Mark J.

More information

Estimating Post-Treatment Effect Modification With Generalized Structural Mean Models

Estimating Post-Treatment Effect Modification With Generalized Structural Mean Models Estimating Post-Treatment Effect Modification With Generalized Structural Mean Models Alisa Stephens Luke Keele Marshall Joffe December 5, 2013 Abstract In randomized controlled trials, the evaluation

More information

Mendelian randomization (MR)

Mendelian randomization (MR) Mendelian randomization (MR) Use inherited genetic variants to infer causal relationship of an exposure and a disease outcome. 1 Concepts of MR and Instrumental variable (IV) methods motivation, assumptions,

More information

Path analysis for discrete variables: The role of education in social mobility

Path analysis for discrete variables: The role of education in social mobility Path analysis for discrete variables: The role of education in social mobility Jouni Kuha 1 John Goldthorpe 2 1 London School of Economics and Political Science 2 Nuffield College, Oxford ESRC Research

More information

Lecture 4 Multiple linear regression

Lecture 4 Multiple linear regression Lecture 4 Multiple linear regression BIOST 515 January 15, 2004 Outline 1 Motivation for the multiple regression model Multiple regression in matrix notation Least squares estimation of model parameters

More information

Mendelian randomization as an instrumental variable approach to causal inference

Mendelian randomization as an instrumental variable approach to causal inference Statistical Methods in Medical Research 2007; 16: 309 330 Mendelian randomization as an instrumental variable approach to causal inference Vanessa Didelez Departments of Statistical Science, University

More information

IV-estimators of the causal odds ratio for a continuous exposure in prospective and retrospective designs

IV-estimators of the causal odds ratio for a continuous exposure in prospective and retrospective designs IV-estimators of the causal odds ratio for a continuous exposure in prospective and retrospective designs JACK BOWDEN (corresponding author) MRC Biostatistics Unit, Institute of Public Health, Robinson

More information

Estimating the treatment effect on the treated under time-dependent confounding in an application to the Swiss HIV Cohort Study

Estimating the treatment effect on the treated under time-dependent confounding in an application to the Swiss HIV Cohort Study Appl. Statist. (2018) 67, Part 1, pp. 103 125 Estimating the treatment effect on the treated under time-dependent confounding in an application to the Swiss HIV Cohort Study Jon Michael Gran, Oslo University

More information

Harvard University. Harvard University Biostatistics Working Paper Series. Semiparametric Estimation of Models for Natural Direct and Indirect Effects

Harvard University. Harvard University Biostatistics Working Paper Series. Semiparametric Estimation of Models for Natural Direct and Indirect Effects Harvard University Harvard University Biostatistics Working Paper Series Year 2011 Paper 129 Semiparametric Estimation of Models for Natural Direct and Indirect Effects Eric J. Tchetgen Tchetgen Ilya Shpitser

More information

Causal Mediation Analysis in R. Quantitative Methodology and Causal Mechanisms

Causal Mediation Analysis in R. Quantitative Methodology and Causal Mechanisms Causal Mediation Analysis in R Kosuke Imai Princeton University June 18, 2009 Joint work with Luke Keele (Ohio State) Dustin Tingley and Teppei Yamamoto (Princeton) Kosuke Imai (Princeton) Causal Mediation

More information

Structural Nested Mean Models for Assessing Time-Varying Effect Moderation. Daniel Almirall

Structural Nested Mean Models for Assessing Time-Varying Effect Moderation. Daniel Almirall 1 Structural Nested Mean Models for Assessing Time-Varying Effect Moderation Daniel Almirall Center for Health Services Research, Durham VAMC & Duke University Medical, Dept. of Biostatistics Joint work

More information

Lecture 12: Effect modification, and confounding in logistic regression

Lecture 12: Effect modification, and confounding in logistic regression Lecture 12: Effect modification, and confounding in logistic regression Ani Manichaikul amanicha@jhsph.edu 4 May 2007 Today Categorical predictor create dummy variables just like for linear regression

More information

Identification and Inference in Causal Mediation Analysis

Identification and Inference in Causal Mediation Analysis Identification and Inference in Causal Mediation Analysis Kosuke Imai Luke Keele Teppei Yamamoto Princeton University Ohio State University November 12, 2008 Kosuke Imai (Princeton) Causal Mediation Analysis

More information

Bootstrapping Sensitivity Analysis

Bootstrapping Sensitivity Analysis Bootstrapping Sensitivity Analysis Qingyuan Zhao Department of Statistics, The Wharton School University of Pennsylvania May 23, 2018 @ ACIC Based on: Qingyuan Zhao, Dylan S. Small, and Bhaswar B. Bhattacharya.

More information

Observational Studies 4 (2018) Submitted 12/17; Published 6/18

Observational Studies 4 (2018) Submitted 12/17; Published 6/18 Observational Studies 4 (2018) 193-216 Submitted 12/17; Published 6/18 Comparing logistic and log-binomial models for causal mediation analyses of binary mediators and rare binary outcomes: evidence to

More information

Probabilistic Index Models

Probabilistic Index Models Probabilistic Index Models Jan De Neve Department of Data Analysis Ghent University M3 Storrs, Conneticut, USA May 23, 2017 Jan.DeNeve@UGent.be 1 / 37 Introduction 2 / 37 Introduction to Probabilistic

More information