Finite Automata. Wen-Guey Tzeng Computer Science Department National Chiao Tung University

Size: px
Start display at page:

Download "Finite Automata. Wen-Guey Tzeng Computer Science Department National Chiao Tung University"

Transcription

1 Finite Automata Wen-Guey Tzeng Computer Science Department National Chiao Tung University

2 Syllabus Deterministic finite acceptor Nondeterministic finite acceptor Equivalence of DFA and NFA Reduction of the number of states 2

3 Deterministic Finite Acceptor 3

4 A very low-level machine It has only states (control unit). It has no memory of any type. It has no output. Clock 4

5 A DFA M is defined by M=(Q,,, q 0, F) Q: a finite set of states : input alphabet (set of symbols) : Q x Q: a total function called transition function q 0 Q: the initial state F Q: set of final states A dfa is an acceptor for strings. 5

6 Example M=({q 0, q 1, q 2 }, {0,1},, q 0, {q 1 } ), where (q 0, 0)=q 0, (q 0, 1)=q 1, (q 1, 0)=q 0, (q 1, 1)=q 2, (q 2, 0)=q 2, (q 2, 1)=q 1 Transition table 0 1 q 0 q 0 q 1 q 1 q 0 q 2 q 2 q 2 q 1 6

7 Graph representation 7

8 How does it work? What does it represent? accept strings reject strings 8

9 From to * * : Qx * Q * (q,w) = the reached state after reading a string w by starting from state q. * (q, ) = q * (q, wa) = ( * (q, w), a)=p 9

10 Language L(M) w is accepted by M if *(q 0, w) F w is not accepted by M if *(q 0, w) F The language accepted by M is L(M)= {w * : * (q 0, w) F } 10

11 What language is accepted by M 11

12 What language is accepted by M L(M) = {a n b : n 0} 12

13 DFA design Find a dfa that accepts strings starting with prefix ab, where ={a, b} 13

14 Find a dfa that accepts strings ending with suffix ab. Problem: we don t know when the input ends until the machine stops Technique: each state records the characteristic of the input string up to the current position 14

15 Design a dfa for L={w {0,1}* : w contains substring 001} Consider

16 Design a dfa accepting all strings over {0, 1} except those containing substring

17 Design a dfa for L = {w {a,b}* : n a (w) is even and n b (w) is odd} 17

18 Can we design a dfa for L={a n b n : n 1}? 18

19 Regular languages Definition: a language L is regular if and only if some dfa M accepts L, that is, L=L(M). Show that L={awa : w {a,b}*} is regular. 19

20 Every finite language L is regular. 20

21 Questions? What languages are regular? How to determine whether a language L is regular or not? Yes design a DFA for L No show every DFA cannot accept it. Feasible? Find other ways. 21

22 Nondeterministic Finite Acceptor 22

23 An imaginary computing model As intermediate object to establish the relation between regular expressions and dfa Find important use in classifying complexity classes 23

24 An NFA M is defined by M=(Q,,, q 0, F) Q: finite set of states : input alphabet (set of symbols) : Qx( { }) 2 Q : nondeterministic transition function q 0 Q: the initial state F Q: set of final states Note (q 1, a)={q 0, q 2 } -transition: (q 1, )={q 1, q 2 } Unspecified transition: (q 1, b): not defined 24

25 Example: NFA with -transitions 0 1 q 0 {q 2 } - {q 1 } q 1 - {q 0, q 2 } {q 2 } F={q 0 } q

26 -transition (q 0, )={q 2 } Unspecified (undefined) transition (q 0, 0), Going into a dead state 26

27 Transition function * *(q i, w)=s : the states reachable from q i with input w q j S if and only if there is a walk, labeled with w, from q i to q j We can insert as many s as we want into w. Example *(q 0, a) = {q 1, q 2 } *(q 1, b) = {q 0 } *(q 0, aa)={q 1, q 2 } *(q 0, ab)= {q 0 } *(q 0, wa)= ڂ p δ (q 0,w) δ (p, a) 27

28 How to compute * Compute *(q, ) The states are reachable from q by a sequence of - transitions. Note q *(q, ) Note the difference between (q, ) and *(q, ) (q, ) = {p, r}, *(q, ) = {q, p, r, t, s, u} q p t r s u 28

29 *(q 0, ) = {q 0 }, *(q 1, ) = {q 1, q 2 }, *(q 2, ) = {q 2 }, Compute *(q 0, a) = Compute *(q 1, b) = Compute *(q 0, ab) = ڂ p δ (q,a) δ (p, b) 29

30 Language accepted by nfa A string w is accepted by nfa M if there is a walk w from q 0 to a final state q f, that is, *(q 0, w) F A string w is not accepted by M if there is not any walk w from q 0 to any final state q f The language L(M) accepted by nfa M is L(M)={ w * : *(q 0, w) F } Note: if *(q 0, w) is undefined (dead), then w is not accepted. 30

31 Example, For the following nfa, L(M)={ (10) n : n 0} *(q 0, 10111) cannot reach a final state no matter what paths it takes. Thus, is not accepted by M 31

32 Design nfa s Design an nfa for L={w {a,b}* : w contains substring abb } 32

33 Design an nfa for L={w {a,b}* : w does not contain substring abb } Cannot exchange final and non-final states 33

34 Design an nfa for L={a n b : n 0} {b n a : n 1} 34

35 Equivalence of nfa and dfa Two finite acceptors M 1 and M 2 are equivalent if and only if L(M 1 )=L(M 2 ) 35

36 C dfa : the class of dfa s C nfa : the class of nfa s Is the class C nfa more powerful than C dfa? Is there a language accepted by an nfa, but not accepted by any dfa? 36

37 Convert nfa to dfa: M N =(Q N,, N, q 0, F N ) M D =(Q D,, D, {q 0 }, F D ) Key point: dfa simulates transitions of nfa M N : q 0 {q i, q j,, q k } (state set) by * N M D : [q 0 ] [q i, q j,, q k ] (a state) by * D A set of states in M N is a state in M D q 0 w w w q i q j {q 0 } w {q i q j q k } q k 37

38 Recursion property M N : {q i, q j,, q k } {p r, p s,, p t } by N* in one step (on input symbol) M D : [q i, q j,, q k ] [p r, p s,, p t ] by D in one step q i a p r q i a p s {q i q j q k } a {p r p s p t } a q i a p t 38

39 Algorithm: nfa dfa 1. Compute N *(q, a) for all q Q N, a, 2. Start with {q 0 } in Q D 3. Expand to {q i, q j,, q k } from existent states For any unspecified {q i, q j,, q k } and a, compute D ({q i, q j,, q k }, a) = N *(q i, a) N *(q j, a) N *(q k, a) Repeat until all states are expanded. 4. For F D, a state {q i, q j,, q k } is in F D if any of q i, q j,, q k is in F N. {q 0 } is in F D if is accepted by M N 39

40 Example: Preparation *(q 0, 0) *(q 0, 1) *(q 1, 0) *(q 1, 1) *(q 2, 0) *(q 2, 1) 40

41 Expand from {q 0 } 41

42 42

43 Why correct? For any w +, D ({q 0 }, w) = {q i, q j,, q k } if and only if N *(q 0, w) = {q i, q j,, q k } Base: D ({q 0 }, a) = N *(q 0, a) for any a Hypothesis: true for w n D ({q 0 }, w) = N *(q 0, w) = {q i, q j,, q k } Induction step: true for wa =n+1 D *({q 0 }, wa) = D ({q i, q j,, q k }, a) = N *(q i, a) N *(q j, a) N *(q k, a) = N *(q 0, wa) 43

44 Some thoughts Every dfa accepts a unique language. For a given language, there are many dfa s that accept it. Questions How do we know two dfa s are equivalent? How do find a minimum-state dfa for a given L, if existing? For any regular language, is the minimum-state dfa s unique? 44

45 Reduction of States Ideas: Remove inaccessible states Find equivalent states Mark() Merge equivalent states Reduce() 45

46 Indistinguishable states Two states p and q are indistinguishable if for every w *, *(p, w) F *(q, w) F *(p, w) F *(q, w) F Merge indistinguishable states as a new state. How to find indistinguishable states? 46

47 Two states are distinguishable if there is w *, *(p, w) F and *(q, w) F, or *(p, w) F and *(q, w) F x p w q 0 y q w States p and q are distinguishable. They cannot be merged. 47

48 Observation (backward check) Start: Final and non-final states are distinguishable Recursion: if (p, a)=r, (q, a)=s, and (r, s) are distinguishable, then (p, q) are distinguishable. 48

49 Find distinguishable states: Procedure Mark(): 1. Remove all inaccessible states. 2. For all pairs of states (p, q), if p F and q F, or vice versa, then mark (p, q) as distinguishable. 3. Repeat the following until no un-marked pairs are marked For all pairs (p, q) and a, compute (p, a)=p a and (q, a)=q a. If (p a, q a ) is distinguishable, then mark (p, q) as distinguishable. 49

50 From equivalence classes to the dfa: Procedure: Reduce() 1. Use Mark() to find equivalence classes. 2. For each class {q i, q j,, q k }, create a state [ij k]. 3. ([ij k], a) = [lm n] if (q r, a)=q p, q r {q i, q j,,q k}, q p {q l, q m,, q n } 4. For each state [ij k], if some r [ij k] and q r F, then[ij k] F. 5. Output the reduced dfa, described above. 50

51 Example q 0 q 1 q 2 q 3 q 4 q0 q1 q2 q3 q4 51

52 52

53 Exercise p 3 p 0 b b b a a p 2 p 4 a b a a p 6 b p1 b a a p 5 53

54 Remarks For every regular language L, the minimum-state dfa is unique. The minimun-state dfa for L can be found from any dfa for L by the procedure mark() and reduce(). 54

55 Example Find a minimum-state dfa for L={a n b : n 0} {b n a : n 1} 55

Finite Automata. Seungjin Choi

Finite Automata. Seungjin Choi Finite Automata Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr 1 / 28 Outline

More information

Finite Automata. Finite Automata

Finite Automata. Finite Automata Finite Automata Finite Automata Formal Specification of Languages Generators Grammars Context-free Regular Regular Expressions Recognizers Parsers, Push-down Automata Context Free Grammar Finite State

More information

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA)

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA) Deterministic Finite Automata Non deterministic finite automata Automata we ve been dealing with have been deterministic For every state and every alphabet symbol there is exactly one move that the machine

More information

CS 154, Lecture 3: DFA NFA, Regular Expressions

CS 154, Lecture 3: DFA NFA, Regular Expressions CS 154, Lecture 3: DFA NFA, Regular Expressions Homework 1 is coming out Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and

More information

Deterministic Finite Automaton (DFA)

Deterministic Finite Automaton (DFA) 1 Lecture Overview Deterministic Finite Automata (DFA) o accepting a string o defining a language Nondeterministic Finite Automata (NFA) o converting to DFA (subset construction) o constructed from a regular

More information

Properties of Regular Languages. Wen-Guey Tzeng Department of Computer Science National Chiao Tung University

Properties of Regular Languages. Wen-Guey Tzeng Department of Computer Science National Chiao Tung University Properties of Regular Languages Wen-Guey Tzeng Department of Computer Science National Chiao Tung University Closure Properties Question: L is a regular language and op is an operator on strings. Is op(l)

More information

Automata and Languages

Automata and Languages Automata and Languages Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Nondeterministic Finite Automata with empty moves (-NFA) Definition A nondeterministic finite automaton

More information

Finite Automata. BİL405 - Automata Theory and Formal Languages 1

Finite Automata. BİL405 - Automata Theory and Formal Languages 1 Finite Automata BİL405 - Automata Theory and Formal Languages 1 Deterministic Finite Automata (DFA) A Deterministic Finite Automata (DFA) is a quintuple A = (Q,,, q 0, F) 1. Q is a finite set of states

More information

Chapter 2: Finite Automata

Chapter 2: Finite Automata Chapter 2: Finite Automata Peter Cappello Department of Computer Science University of California, Santa Barbara Santa Barbara, CA 93106 cappello@cs.ucsb.edu Please read the corresponding chapter before

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata Not A DFA Does not have exactly one transition from every state on every symbol: Two transitions from q 0 on a No transition from q 1 (on either a or b) Though not a DFA,

More information

CMPSCI 250: Introduction to Computation. Lecture #22: From λ-nfa s to NFA s to DFA s David Mix Barrington 22 April 2013

CMPSCI 250: Introduction to Computation. Lecture #22: From λ-nfa s to NFA s to DFA s David Mix Barrington 22 April 2013 CMPSCI 250: Introduction to Computation Lecture #22: From λ-nfa s to NFA s to DFA s David Mix Barrington 22 April 2013 λ-nfa s to NFA s to DFA s Reviewing the Three Models and Kleene s Theorem The Subset

More information

Chapter Five: Nondeterministic Finite Automata

Chapter Five: Nondeterministic Finite Automata Chapter Five: Nondeterministic Finite Automata From DFA to NFA A DFA has exactly one transition from every state on every symbol in the alphabet. By relaxing this requirement we get a related but more

More information

Clarifications from last time. This Lecture. Last Lecture. CMSC 330: Organization of Programming Languages. Finite Automata.

Clarifications from last time. This Lecture. Last Lecture. CMSC 330: Organization of Programming Languages. Finite Automata. CMSC 330: Organization of Programming Languages Last Lecture Languages Sets of strings Operations on languages Finite Automata Regular expressions Constants Operators Precedence CMSC 330 2 Clarifications

More information

Languages. Non deterministic finite automata with ε transitions. First there was the DFA. Finite Automata. Non-Deterministic Finite Automata (NFA)

Languages. Non deterministic finite automata with ε transitions. First there was the DFA. Finite Automata. Non-Deterministic Finite Automata (NFA) Languages Non deterministic finite automata with ε transitions Recall What is a language? What is a class of languages? Finite Automata Consists of A set of states (Q) A start state (q o ) A set of accepting

More information

Recap DFA,NFA, DTM. Slides by Prof. Debasis Mitra, FIT.

Recap DFA,NFA, DTM. Slides by Prof. Debasis Mitra, FIT. Recap DFA,NFA, DTM Slides by Prof. Debasis Mitra, FIT. 1 Formal Language Finite set of alphabets Σ: e.g., {0, 1}, {a, b, c}, { {, } } Language L is a subset of strings on Σ, e.g., {00, 110, 01} a finite

More information

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism,

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism, CS 54, Lecture 2: Finite Automata, Closure Properties Nondeterminism, Why so Many Models? Streaming Algorithms 0 42 Deterministic Finite Automata Anatomy of Deterministic Finite Automata transition: for

More information

CMSC 330: Organization of Programming Languages. Theory of Regular Expressions Finite Automata

CMSC 330: Organization of Programming Languages. Theory of Regular Expressions Finite Automata : Organization of Programming Languages Theory of Regular Expressions Finite Automata Previous Course Review {s s defined} means the set of string s such that s is chosen or defined as given s A means

More information

Chapter 5. Finite Automata

Chapter 5. Finite Automata Chapter 5 Finite Automata 5.1 Finite State Automata Capable of recognizing numerous symbol patterns, the class of regular languages Suitable for pattern-recognition type applications, such as the lexical

More information

Deterministic Finite Automata (DFAs)

Deterministic Finite Automata (DFAs) CS/ECE 374: Algorithms & Models of Computation, Fall 28 Deterministic Finite Automata (DFAs) Lecture 3 September 4, 28 Chandra Chekuri (UIUC) CS/ECE 374 Fall 28 / 33 Part I DFA Introduction Chandra Chekuri

More information

Turing Machines. Wen-Guey Tzeng Computer Science Department National Chiao Tung University

Turing Machines. Wen-Guey Tzeng Computer Science Department National Chiao Tung University Turing Machines Wen-Guey Tzeng Computer Science Department National Chiao Tung University Alan Turing One of the first to conceive a machine that can run computation mechanically without human intervention.

More information

Deterministic Finite Automata (DFAs)

Deterministic Finite Automata (DFAs) Algorithms & Models of Computation CS/ECE 374, Fall 27 Deterministic Finite Automata (DFAs) Lecture 3 Tuesday, September 5, 27 Sariel Har-Peled (UIUC) CS374 Fall 27 / 36 Part I DFA Introduction Sariel

More information

Theory of Computation Lecture 1. Dr. Nahla Belal

Theory of Computation Lecture 1. Dr. Nahla Belal Theory of Computation Lecture 1 Dr. Nahla Belal Book The primary textbook is: Introduction to the Theory of Computation by Michael Sipser. Grading 10%: Weekly Homework. 30%: Two quizzes and one exam. 20%:

More information

Finite Automata. Warren McCulloch ( ) and Walter Pitts ( )

Finite Automata. Warren McCulloch ( ) and Walter Pitts ( ) 2 C H A P T E R Finite Automata Warren McCulloch (898 968) and Walter Pitts (923 969) Warren S. McCulloch was an American psychiatrist and neurophysiologist who co-founded Cybernetics. His greatest contributions

More information

Lecture 1: Finite State Automaton

Lecture 1: Finite State Automaton Lecture 1: Finite State Automaton Instructor: Ketan Mulmuley Scriber: Yuan Li January 6, 2015 1 Deterministic Finite Automaton Informally, a deterministic finite automaton (DFA) has finite number of s-

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata COMP2600 Formal Methods for Software Engineering Katya Lebedeva Australian National University Semester 2, 206 Slides by Katya Lebedeva. COMP 2600 Nondeterministic Finite

More information

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont )

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont ) CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont ) Sungjin Im University of California, Merced 2-3-214 Example II A ɛ B ɛ D F C E Example II A ɛ B ɛ D F C E NFA accepting

More information

Sri vidya college of engineering and technology

Sri vidya college of engineering and technology Unit I FINITE AUTOMATA 1. Define hypothesis. The formal proof can be using deductive proof and inductive proof. The deductive proof consists of sequence of statements given with logical reasoning in order

More information

Deterministic Finite Automata (DFAs)

Deterministic Finite Automata (DFAs) Algorithms & Models of Computation CS/ECE 374, Spring 29 Deterministic Finite Automata (DFAs) Lecture 3 Tuesday, January 22, 29 L A TEXed: December 27, 28 8:25 Chan, Har-Peled, Hassanieh (UIUC) CS374 Spring

More information

Java II Finite Automata I

Java II Finite Automata I Java II Finite Automata I Bernd Kiefer Bernd.Kiefer@dfki.de Deutsches Forschungszentrum für künstliche Intelligenz November, 23 Processing Regular Expressions We already learned about Java s regular expression

More information

Nondeterminism and Epsilon Transitions

Nondeterminism and Epsilon Transitions Nondeterminism and Epsilon Transitions Mridul Aanjaneya Stanford University June 28, 22 Mridul Aanjaneya Automata Theory / 3 Challenge Problem Question Prove that any square with side length a power of

More information

CSC236 Week 11. Larry Zhang

CSC236 Week 11. Larry Zhang CSC236 Week 11 Larry Zhang 1 Announcements Next week s lecture: Final exam review This week s tutorial: Exercises with DFAs PS9 will be out later this week s. 2 Recap Last week we learned about Deterministic

More information

2017/08/29 Chapter 1.2 in Sipser Ø Announcement:

2017/08/29 Chapter 1.2 in Sipser Ø Announcement: Nondeterministic Human-aware Finite Robo.cs Automata 2017/08/29 Chapter 1.2 in Sipser Ø Announcement: q Piazza registration: http://piazza.com/asu/fall2017/cse355 q First poll will be posted on Piazza

More information

Decision, Computation and Language

Decision, Computation and Language Decision, Computation and Language Non-Deterministic Finite Automata (NFA) Dr. Muhammad S Khan (mskhan@liv.ac.uk) Ashton Building, Room G22 http://www.csc.liv.ac.uk/~khan/comp218 Finite State Automata

More information

CS243, Logic and Computation Nondeterministic finite automata

CS243, Logic and Computation Nondeterministic finite automata CS243, Prof. Alvarez NONDETERMINISTIC FINITE AUTOMATA (NFA) Prof. Sergio A. Alvarez http://www.cs.bc.edu/ alvarez/ Maloney Hall, room 569 alvarez@cs.bc.edu Computer Science Department voice: (67) 552-4333

More information

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed HKN CS/ECE 374 Midterm 1 Review Nathan Bleier and Mahir Morshed For the most part, all about strings! String induction (to some extent) Regular languages Regular expressions (regexps) Deterministic finite

More information

Regular Language Equivalence and DFA Minimization. Equivalence of Two Regular Languages DFA Minimization

Regular Language Equivalence and DFA Minimization. Equivalence of Two Regular Languages DFA Minimization Regular Language Equivalence and DFA Minimization Equivalence of Two Regular Languages DFA Minimization Decision Property: Equivalence Given regular languages L and M, is L = M? Algorithm involves constructing

More information

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties of Regular Languages Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties Recall a closure property is a statement

More information

NFA and regex. the Boolean algebra of languages. regular expressions. Informatics 1 School of Informatics, University of Edinburgh

NFA and regex. the Boolean algebra of languages. regular expressions. Informatics 1 School of Informatics, University of Edinburgh NFA and regex cl the Boolean algebra of languages regular expressions Informatics The intersection of two regular languages is regular L = even numbers L = odd numbers L = mod L = mod Informatics The intersection

More information

CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1)

CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1) CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1) Definition 1 (Alphabet) A alphabet is a finite set of objects called symbols. Definition 2 (String)

More information

Nondeterminism. September 7, Nondeterminism

Nondeterminism. September 7, Nondeterminism September 7, 204 Introduction is a useful concept that has a great impact on the theory of computation Introduction is a useful concept that has a great impact on the theory of computation So far in our

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Theory of Regular Expressions DFAs and NFAs Reminders Project 1 due Sep. 24 Homework 1 posted Exam 1 on Sep. 25 Exam topics list posted Practice homework

More information

Lecture 4 Nondeterministic Finite Accepters

Lecture 4 Nondeterministic Finite Accepters Lecture 4 Nondeterministic Finite Accepters COT 4420 Theory of Computation Section 2.2, 2.3 Nondeterminism A nondeterministic finite automaton can go to several states at once. Transitions from one state

More information

Automata and Formal Languages - CM0081 Non-Deterministic Finite Automata

Automata and Formal Languages - CM0081 Non-Deterministic Finite Automata Automata and Formal Languages - CM81 Non-Deterministic Finite Automata Andrés Sicard-Ramírez Universidad EAFIT Semester 217-2 Non-Deterministic Finite Automata (NFA) Introduction q i a a q j a q k The

More information

Course 4 Finite Automata/Finite State Machines

Course 4 Finite Automata/Finite State Machines Course 4 Finite Automata/Finite State Machines The structure and the content of the lecture is based on (1) http://www.eecs.wsu.edu/~ananth/cpts317/lectures/index.htm, (2) W. Schreiner Computability and

More information

Languages. A language is a set of strings. String: A sequence of letters. Examples: cat, dog, house, Defined over an alphabet:

Languages. A language is a set of strings. String: A sequence of letters. Examples: cat, dog, house, Defined over an alphabet: Languages 1 Languages A language is a set of strings String: A sequence of letters Examples: cat, dog, house, Defined over an alphaet: a,, c,, z 2 Alphaets and Strings We will use small alphaets: Strings

More information

Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. The stack

Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. Pushdown Automata. The stack A pushdown automata (PDA) is essentially: An NFA with a stack A move of a PDA will depend upon Current state of the machine Current symbol being read in Current symbol popped off the top of the stack With

More information

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is,

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is, Recall A deterministic finite automaton is a five-tuple where S is a finite set of states, M = (S, Σ, T, s 0, F ) Σ is an alphabet the input alphabet, T : S Σ S is the transition function, s 0 S is the

More information

Closure under the Regular Operations

Closure under the Regular Operations September 7, 2013 Application of NFA Now we use the NFA to show that collection of regular languages is closed under regular operations union, concatenation, and star Earlier we have shown this closure

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata Mahesh Viswanathan Introducing Nondeterminism Consider the machine shown in Figure. Like a DFA it has finitely many states and transitions labeled by symbols from an input

More information

Lecture 5: Minimizing DFAs

Lecture 5: Minimizing DFAs 6.45 Lecture 5: Minimizing DFAs 6.45 Announcements: - Pset 2 is up (as of last night) - Dylan says: It s fire. - How was Pset? 2 DFAs NFAs DEFINITION Regular Languages Regular Expressions 3 4 Some Languages

More information

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata Sungjin Im University of California, Merced 1-27-215 Nondeterminism Michael Rabin and Dana Scott (1959) Michael Rabin Dana

More information

CHAPTER 1 Regular Languages. Contents

CHAPTER 1 Regular Languages. Contents Finite Automata (FA or DFA) CHAPTER Regular Languages Contents definitions, examples, designing, regular operations Non-deterministic Finite Automata (NFA) definitions, euivalence of NFAs and DFAs, closure

More information

September 11, Second Part of Regular Expressions Equivalence with Finite Aut

September 11, Second Part of Regular Expressions Equivalence with Finite Aut Second Part of Regular Expressions Equivalence with Finite Automata September 11, 2013 Lemma 1.60 If a language is regular then it is specified by a regular expression Proof idea: For a given regular language

More information

Equivalence of DFAs and NFAs

Equivalence of DFAs and NFAs CS 172: Computability and Complexity Equivalence of DFAs and NFAs It s a tie! DFA NFA Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: L.von Ahn, L. Blum, M. Blum What we ll do today Prove that DFAs

More information

Theory of Computation

Theory of Computation Theory of Computation COMP363/COMP6363 Prerequisites: COMP4 and COMP 6 (Foundations of Computing) Textbook: Introduction to Automata Theory, Languages and Computation John E. Hopcroft, Rajeev Motwani,

More information

CS 154. Finite Automata, Nondeterminism, Regular Expressions

CS 154. Finite Automata, Nondeterminism, Regular Expressions CS 54 Finite Automata, Nondeterminism, Regular Expressions Read string left to right The DFA accepts a string if the process ends in a double circle A DFA is a 5-tuple M = (Q, Σ, δ, q, F) Q is the set

More information

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever. ETH Zürich (D-ITET) September,

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever.  ETH Zürich (D-ITET) September, Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu ETH Zürich (D-ITET) September, 24 2015 Last week was all about Deterministic Finite Automaton We saw three main

More information

GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I

GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I Internal Examination 2017-18 B.Tech III Year VI Semester Sub: Theory of Computation (6CS3A) Time: 1 Hour 30 min. Max Marks: 40 Note: Attempt all three

More information

CS 455/555: Finite automata

CS 455/555: Finite automata CS 455/555: Finite automata Stefan D. Bruda Winter 2019 AUTOMATA (FINITE OR NOT) Generally any automaton Has a finite-state control Scans the input one symbol at a time Takes an action based on the currently

More information

CS 154 Formal Languages and Computability Assignment #2 Solutions

CS 154 Formal Languages and Computability Assignment #2 Solutions CS 154 Formal Languages and Computability Assignment #2 Solutions Department of Computer Science San Jose State University Spring 2016 Instructor: Ron Mak www.cs.sjsu.edu/~mak Assignment #2: Question 1

More information

Chapter 2: Finite Automata

Chapter 2: Finite Automata Chapter 2: Finite Automata 2.1 States, State Diagrams, and Transitions Finite automaton is the simplest acceptor or recognizer for language specification. It is also the simplest model of a computer. A

More information

Extended transition function of a DFA

Extended transition function of a DFA Extended transition function of a DFA The next two pages describe the extended transition function of a DFA in a more detailed way than Handout 3.. p./43 Formal approach to accepted strings We define the

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 5 CHAPTER 2 FINITE AUTOMATA 1. Deterministic Finite Automata DFA 2. Nondeterministic Finite Automata NDFA 3. Finite Automata

More information

Computer Sciences Department

Computer Sciences Department 1 Reference Book: INTRODUCTION TO THE THEORY OF COMPUTATION, SECOND EDITION, by: MICHAEL SIPSER 3 objectives Finite automaton Infinite automaton Formal definition State diagram Regular and Non-regular

More information

Non-deterministic Finite Automata (NFAs)

Non-deterministic Finite Automata (NFAs) Algorithms & Models of Computation CS/ECE 374, Fall 27 Non-deterministic Finite Automata (NFAs) Part I NFA Introduction Lecture 4 Thursday, September 7, 27 Sariel Har-Peled (UIUC) CS374 Fall 27 / 39 Sariel

More information

Algorithms for NLP

Algorithms for NLP Regular Expressions Chris Dyer Algorithms for NLP 11-711 Adapted from materials from Alon Lavie Goals of Today s Lecture Understand the properties of NFAs with epsilon transitions Understand concepts and

More information

Lecture 3: Finite Automata. Finite Automata. Deterministic Finite Automata. Summary. Dr Kieran T. Herley

Lecture 3: Finite Automata. Finite Automata. Deterministic Finite Automata. Summary. Dr Kieran T. Herley Lecture 3: Finite Automata Dr Kieran T. Herley Department of Computer Science University College Cork Summary Deterministic finite automata (DFA). Definition and operation of same. DFAs as string classifiers

More information

CSE 135: Introduction to Theory of Computation Optimal DFA

CSE 135: Introduction to Theory of Computation Optimal DFA CSE 35: Introduction to Theory of Computation Optimal DFA Sungjin Im University of California, Merced 2-9-25 Optimal Algorithms for Regular Languages Myhill-Nerode Theorem There is a unique optimal algorithm

More information

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata CISC 4090: Theory of Computation Chapter Regular Languages Xiaolan Zhang, adapted from slides by Prof. Werschulz Section.: Finite Automata Fordham University Department of Computer and Information Sciences

More information

Languages, regular languages, finite automata

Languages, regular languages, finite automata Notes on Computer Theory Last updated: January, 2018 Languages, regular languages, finite automata Content largely taken from Richards [1] and Sipser [2] 1 Languages An alphabet is a finite set of characters,

More information

Chapter 6: NFA Applications

Chapter 6: NFA Applications Chapter 6: NFA Applications Implementing NFAs The problem with implementing NFAs is that, being nondeterministic, they define a more complex computational procedure for testing language membership. To

More information

Uses of finite automata

Uses of finite automata Chapter 2 :Finite Automata 2.1 Finite Automata Automata are computational devices to solve language recognition problems. Language recognition problem is to determine whether a word belongs to a language.

More information

Computational Models #1

Computational Models #1 Computational Models #1 Handout Mode Nachum Dershowitz & Yishay Mansour March 13-15, 2017 Nachum Dershowitz & Yishay Mansour Computational Models #1 March 13-15, 2017 1 / 41 Lecture Outline I Motivation

More information

Deterministic Finite Automata (DFAs)

Deterministic Finite Automata (DFAs) Algorithms & Models of Computation CS/ECE 374, Fall 27 Deterministic Finite Automata (DFAs) Lecture 3 Tuesday, September 5, 27 Part I DFA Introduction Sariel Har-Peled (UIUC) CS374 Fall 27 / 36 Sariel

More information

Let us first give some intuitive idea about a state of a system and state transitions before describing finite automata.

Let us first give some intuitive idea about a state of a system and state transitions before describing finite automata. Finite Automata Automata (singular: automation) are a particularly simple, but useful, model of computation. They were initially proposed as a simple model for the behavior of neurons. The concept of a

More information

Regular Languages. Kleene Theorem I. Proving Kleene Theorem. Kleene Theorem. Proving Kleene Theorem. Proving Kleene Theorem

Regular Languages. Kleene Theorem I. Proving Kleene Theorem. Kleene Theorem. Proving Kleene Theorem. Proving Kleene Theorem Regular Languages Kleene Theorem I Today we continue looking at our first class of languages: Regular languages Means of defining: Regular Expressions Machine for accepting: Finite Automata Kleene Theorem

More information

Hashing Techniques For Finite Automata

Hashing Techniques For Finite Automata Hashing Techniques For Finite Automata Hady Zeineddine Logic Synthesis Course Project - Spring 2007 Professor Adnan Aziz 1. Abstract This report presents two hashing techniques - Alphabet and Power-Set

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 5-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY NON-DETERMINISM and REGULAR OPERATIONS THURSDAY JAN 6 UNION THEOREM The union of two regular languages is also a regular language Regular Languages Are

More information

CSE 311: Foundations of Computing. Lecture 23: Finite State Machine Minimization & NFAs

CSE 311: Foundations of Computing. Lecture 23: Finite State Machine Minimization & NFAs CSE : Foundations of Computing Lecture : Finite State Machine Minimization & NFAs State Minimization Many different FSMs (DFAs) for the same problem Take a given FSM and try to reduce its state set by

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures and Instructions 23.10. 3.11. 17.11. 24.11. 1.12. 11.12.

More information

Finite Automata. Dr. Neil T. Dantam. Fall CSCI-561, Colorado School of Mines. Dantam (Mines CSCI-561) Finite Automata Fall / 43

Finite Automata. Dr. Neil T. Dantam. Fall CSCI-561, Colorado School of Mines. Dantam (Mines CSCI-561) Finite Automata Fall / 43 Finite Automata Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2018 Dantam (Mines CSCI-561) Finite Automata Fall 2018 1 / 43 Outline Languages Review Traffic Light Example Deterministic Finite

More information

Automata and Formal Languages - CM0081 Finite Automata and Regular Expressions

Automata and Formal Languages - CM0081 Finite Automata and Regular Expressions Automata and Formal Languages - CM0081 Finite Automata and Regular Expressions Andrés Sicard-Ramírez Universidad EAFIT Semester 2018-2 Introduction Equivalences DFA NFA -NFA RE Finite Automata and Regular

More information

Chap. 1.2 NonDeterministic Finite Automata (NFA)

Chap. 1.2 NonDeterministic Finite Automata (NFA) Chap. 1.2 NonDeterministic Finite Automata (NFA) DFAs: exactly 1 new state for any state & next char NFA: machine may not work same each time More than 1 transition rule for same state & input Any one

More information

Lecture 3: Nondeterministic Finite Automata

Lecture 3: Nondeterministic Finite Automata Lecture 3: Nondeterministic Finite Automata September 5, 206 CS 00 Theory of Computation As a recap of last lecture, recall that a deterministic finite automaton (DFA) consists of (Q, Σ, δ, q 0, F ) where

More information

CSE 311 Lecture 23: Finite State Machines. Emina Torlak and Kevin Zatloukal

CSE 311 Lecture 23: Finite State Machines. Emina Torlak and Kevin Zatloukal CSE 3 Lecture 3: Finite State Machines Emina Torlak and Kevin Zatloukal Topics Finite state machines (FSMs) Definition and examples. Finite state machines with output Definition and examples. Finite state

More information

CS 322 D: Formal languages and automata theory

CS 322 D: Formal languages and automata theory CS 322 D: Formal languages and automata theory Tutorial NFA DFA Regular Expression T. Najla Arfawi 2 nd Term - 26 Finite Automata Finite Automata. Q - States 2. S - Alphabets 3. d - Transitions 4. q -

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures Tuesday 10:45 pm - 12:15 pm Instructions Tuesday 12:30

More information

Lecture 2: Regular Expression

Lecture 2: Regular Expression Lecture 2: Regular Expression Instructor: Ketan Mulmuley Scriber: Yuan Li January 8, 2015 In the last lecture, we proved that DFA, NFA, and NFA with ϵ-moves are equivalent. Recall that a language L Σ is

More information

Fooling Sets and. Lecture 5

Fooling Sets and. Lecture 5 Fooling Sets and Introduction to Nondeterministic Finite Automata Lecture 5 Proving that a language is not regular Given a language, we saw how to prove it is regular (union, intersection, concatenation,

More information

Proofs, Strings, and Finite Automata. CS154 Chris Pollett Feb 5, 2007.

Proofs, Strings, and Finite Automata. CS154 Chris Pollett Feb 5, 2007. Proofs, Strings, and Finite Automata CS154 Chris Pollett Feb 5, 2007. Outline Proofs and Proof Strategies Strings Finding proofs Example: For every graph G, the sum of the degrees of all the nodes in G

More information

Inf2A: Converting from NFAs to DFAs and Closure Properties

Inf2A: Converting from NFAs to DFAs and Closure Properties 1/43 Inf2A: Converting from NFAs to DFAs and Stuart Anderson School of Informatics University of Edinburgh October 13, 2009 Starter Questions 2/43 1 Can you devise a way of testing for any FSM M whether

More information

UNIT-III REGULAR LANGUAGES

UNIT-III REGULAR LANGUAGES Syllabus R9 Regulation REGULAR EXPRESSIONS UNIT-III REGULAR LANGUAGES Regular expressions are useful for representing certain sets of strings in an algebraic fashion. In arithmetic we can use the operations

More information

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages CS 154 Finite Automata vs Regular Expressions, Non-Regular Languages Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and guessing

More information

Finite Automata Part Two

Finite Automata Part Two Finite Automata Part Two DFAs A DFA is a Deterministic Finite Automaton A DFA is defined relative to some alphabet Σ. For each state in the DFA, there must be exactly one transition defined for each symbol

More information

TWO-WAY FINITE AUTOMATA & PEBBLE AUTOMATA. Written by Liat Peterfreund

TWO-WAY FINITE AUTOMATA & PEBBLE AUTOMATA. Written by Liat Peterfreund TWO-WAY FINITE AUTOMATA & PEBBLE AUTOMATA Written by Liat Peterfreund 1 TWO-WAY FINITE AUTOMATA A two way deterministic finite automata (2DFA) is a quintuple M Q,,, q0, F where: Q,, q, F are as before

More information

Chapter 3: The Church-Turing Thesis

Chapter 3: The Church-Turing Thesis Chapter 3: The Church-Turing Thesis 1 Turing Machine (TM) Control... Bi-direction Read/Write Turing machine is a much more powerful model, proposed by Alan Turing in 1936. 2 Church/Turing Thesis Anything

More information

FINITE STATE MACHINES (AUTOMATA)

FINITE STATE MACHINES (AUTOMATA) FINITE STATE MACHINES (AUTOMATA) Switch Example Think about the On/Off button Switch Example The corresponding Automaton Off Push On Push Input: Push Push Push Push Vending Machine Example 2 Vending machine

More information

Please give details of your answer. A direct answer without explanation is not counted.

Please give details of your answer. A direct answer without explanation is not counted. Please give details of your answer. A direct answer without explanation is not counted. Your answers must be in English. Please carefully read problem statements. During the exam you are not allowed to

More information

Turing Machines (TM) Deterministic Turing Machine (DTM) Nondeterministic Turing Machine (NDTM)

Turing Machines (TM) Deterministic Turing Machine (DTM) Nondeterministic Turing Machine (NDTM) Turing Machines (TM) Deterministic Turing Machine (DTM) Nondeterministic Turing Machine (NDTM) 1 Deterministic Turing Machine (DTM).. B B 0 1 1 0 0 B B.. Finite Control Two-way, infinite tape, broken into

More information

Finite Automata. Dr. Neil T. Dantam. Fall CSCI-561, Colorado School of Mines. Dantam (Mines CSCI-561) Finite Automata Fall / 35

Finite Automata. Dr. Neil T. Dantam. Fall CSCI-561, Colorado School of Mines. Dantam (Mines CSCI-561) Finite Automata Fall / 35 Finite Automata Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2017 Dantam (Mines CSCI-561) Finite Automata Fall 2017 1 / 35 Outline Dantam (Mines CSCI-561) Finite Automata Fall 2017 2 / 35

More information