24. x 2 y xy y sec(ln x); 1 e x y 1 cos(ln x), y 2 sin(ln x) 25. y y tan x 26. y 4y sec 2x 28.

Size: px
Start display at page:

Download "24. x 2 y xy y sec(ln x); 1 e x y 1 cos(ln x), y 2 sin(ln x) 25. y y tan x 26. y 4y sec 2x 28."

Transcription

1 16 CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS 11. y 3y y 1 4. x yxyy sec(ln x); 1 e x y 1 cos(ln x), y sin(ln x) ex 1. y y y 1 x 13. y3yy sin e x 14. yyy e t arctan t 15. yyy e t ln t 16. y y y 41x 17. 3y6y6y e x sec x 18. 4y 4y y e x/ 11 x In Problems 5 8 solve the given third-order differential equation by variation of parameters. 5. y ytan x 6. y 4ysec x 7. y y y y e 4x 8. ex y 3y y 1 e x In Problems 19 solve each differential equation by variation of parameters, subject to the initial conditions y(0) 1, y(0) yy xe x/ 0. yyy x 1 1. yy8y e x e x. y4y4y (1x 6x)e x In Problems 3 and 4 the indicated functions are known linearly independent solutions of the associated homogeneous differential equation on (0, ). Find the general solution of the given nonhomogeneous equation. 3. x yxy(x 1 4)y x 3/ ; y 1 x 1/ cos x, y x 1/ sin x Discussion Problems In Problems 9 and 30 discuss how the methods of undetermined coefficients and variation of parameters can be combined to solve the given differential equation. Carry out your ideas. 9. 3y6y30y 15 sin x e x tan 3x 30. yyy 4x 3 x 1 e x 31. What are the intervals of definition of the general solutions in Problems 1, 7, 9, and 18? Discuss why the interval of definition of the general solution in Problem 4 is not (0, ). 3. Find the general solution of x 4 yx 3 y4x y 1 given that y 1 x is a solution of the associated homogeneous equation. 4.7 CAUCHY-EULER EQUATION REVIEW MATERIAL Review the concept of the auxiliary equation in Section 4.3. INTRODUCTION The same relative ease with which we were able to find explicit solutions of higher-order linear differential equations with constant coefficients in the preceding sections does not, in general, carry over to linear equations with variable coefficients. We shall see in Chapter 6 that when a linear DE has variable coefficients, the best that we can usually expect is to find a solution in the form of an infinite series. However, the type of differential equation that we consider in this section is an exception to this rule; it is a linear equation with variable coefficients whose general solution can always be expressed in terms of powers of x, sines, cosines, and logarithmic functions. Moreover, its method of solution is quite similar to that for constant-coefficient equations in that an auxiliary equation must be solved. Cauchy-Euler Equation A linear differential equation of the form a n x n dn y dx n a n1x n1 dn1 y dx n1 a 1x dx a 0y g(x), Copyright 01 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has

2 4.7 CAUCHY-EULER EQUATION 163 where the coefficients a n, a n1,..., a 0 are constants, is known as a Cauchy-Euler equation. The differential equation is named in honor of two of the most prolifi mathematicians of all time. Augustin-Louis Cauchy (French, ) and Leonhard Euler (Swiss, ). The observable characteristic of this type of equation is that the degree k n, n 1,..., 1, 0 of the monomial coefficients x k matches the order k of differentiation d k ydx k : same d a n x n y d n a n1 x n1 y n1.... dx n dx n1 As in Section 4.3, we start the discussion with a detailed examination of the forms of the general solutions of the homogeneous second-order equation ax d y bx cy 0. (1) The solution of higher-order equations follows analogously. Also, we can solve the nonhomogeneous equation ax ybxycy g(x) by variation of parameters, once we have determined the complementary function y c. Note The coefficient ax of y is zero at x 0. Hence to guarantee that the fundamental results of Theorem are applicable to the Cauchy-Euler equation, we focus our attention on finding the general solutions defined on the interval ( ). Method of Solution We try a solution of the form y x m, where m is to be determined. Analogous to what happened when we substituted e mx into a linear equation with constant coefficients, when we substitute x m, each term of a Cauchy-Euler equation becomes a polynomial in m times x m, since a k x k dk y dx k a kx k m(m 1)(m ) (m k 1)x mk a k m(m 1)(m ) (m k 1)x m. same For example, when we substitute y x m, the second-order equation becomes ax d y bx cy am(m 1)xm bmx m cx m (am(m 1) bm c)x m. Thus y x m is a solution of the differential equation whenever m is a solution of the auxiliary equation am(m 1) bm c 0 or am (b a)m c 0. There are three different cases to be considered, depending on whether the roots of this quadratic equation are real and distinct, real and equal, or complex. In the last case the roots appear as a conjugate pair. Case I: Distinct Real Roots Let m 1 and m denote the real roots of (1) such that m 1 m. Then and y x m y 1 x m 1 form a fundamental set of solutions. Hence the general solution is y c 1 x m 1 c x m. () (3) EXAMPLE 1 Distinct Roots Solve x d y x 4y 0. Copyright 01 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has

3 164 CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS SOLUTION Rather than just memorizing equation (), it is preferable to assume y x m as the solution a few times to understand the origin and the difference between this new form of the auxiliary equation and that obtained in Section 4.3. Differentiate twice, dx mxm1, and substitute back into the differential equation: if m 3m 4 0. Now (m 1)(m 4) 0 implies m 1 1, m 4, so y c 1 x 1 c x 4. Case II: Repeated Real Roots If the roots of () are repeated (that is, m 1 m ), then we obtain only one solution namely, y x m 1. When the roots of the quadratic equation am (b a)m c 0 are equal, the discriminant of the coefficients is necessarily zero. It follows from the quadratic formula that the root must be m 1 (b a)a. Now we can construct a second solution y, using (5) of Section 4.. We firs write the Cauchy-Euler equation in the standard form and make the identifications P(x) bax and (b>ax) dx (b>a) ln x. Thus y x m 1 d y dx b ax e(b/a)ln x x m 1 d y dx m(m 1)xm, x d y x 4y x m(m 1)x m x mx m1 4x m x m (m(m 1) m 4) x m (m 3m 4) 0 dx dx c ax y 0 x m 1 x b/a x m 1 dx ; e (b / a)ln x e ln xb / a x b / a x m 1 x b/a x (ba)/a dx ; m 1 (b a)/a x m 1 dx x xm 1 ln x. The general solution is then y c 1 x m 1 c x m 1 ln x. (4) EXAMPLE Repeated Roots Solve SOLUTION 4x d y 8x y 0. The substitution y x m yields 4x d y 8x y xm (4m(m 1) 8m 1) x m (4m 4m 1) 0 when 4m 4m 1 0 or (m 1) 0. Since m 1 1, it follows from (4) that the general solution is y c 1 x 1/ c x 1/ ln x. For higher-order equations, if m 1 is a root of multiplicity k, then it can be shown that x m 1, x m 1 ln x, x m 1 (ln x),..., x m 1 (ln x) k1 Copyright 01 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has

4 4.7 CAUCHY-EULER EQUATION 165 are k linearly independent solutions. Correspondingly, the general solution of the differential equation must then contain a linear combination of these k solutions. Case III: Conjugate Complex Roots If the roots of () are the conjugate pair m 1 a ib, m a ib, where a and b 0 are real, then a solution is But when the roots of the auxiliary equation are complex, as in the case of equations with constant coefficients, we wish to write the solution in terms of real functions only. We note the identity which, by Euler s formula, is the same as y C 1 xi C xi. x i (e ln x ) i e i ln x, x ib cos(b ln x) i sin(b ln x). Similarly, x ib cos(b ln x) i sin(b ln x). Adding and subtracting the last two results yields x ib x ib cos(b ln x) and x ib x ib i sin(b ln x), respectively. From the fact that y C 1 x aib C x aib is a solution for any values of the constants, we see, in turn, for C 1 C 1 and C 1 1, C 1 that y 1 or y 1 x(x i x i) and y x(x i x i) y 1 x cos( ln x) and y ix sin( ln x) are also solutions. Since W(x a cos(b ln x), x a sin(b ln x)) bx a1 0, b 0 on the interval (0, ), we conclude that 0 x y 1 x cos( ln x) and y x sin( ln x) constitute a fundamental set of real solutions of the differential equation. Hence the general solution is y x[c 1 cos( ln x) c sin( ln x)]. (5) _1 (a) solution for 0 x 1 y 10 1 EXAMPLE 3 An Initial-Value Problem Solve 4x y17y 0, y(1) 1, y(1) 1. SOLUTION The y term is missing in the given Cauchy-Euler equation; nevertheless, the substitution y x m yields 5 x 4x y17y x m (4m(m 1) 17) x m (4m 4m 17) 0 when 4m 4m From the quadratic formula we find that the roots are m 1 1 and m 1 i i. With the identifications and b we see from (5) that the general solution of the differential equation is 1 y x 1/ [c 1 cos( ln x) c sin( ln x)] (b) solution for 0 x 100 FIGURE Solution curve of IVP in Example 3 By applying the initial conditions y(1) 1, y(1) 1 to the foregoing solution and using ln 1 0, we then find, in turn, that c 1 1 and c 0. Hence the solution of the initial-value problem is y x 1/ cos( ln x). The graph of this function, obtained with the aid of computer software, is given in Figure The particular solution is seen to be oscillatory and unbounded as x :. Copyright 01 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has

5 166 CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS The next example illustrates the solution of a third-order Cauchy-Euler equation. EXAMPLE 4 Third-Order Equation Solve x d 3 y 3 dx d y 3 5x 7x 8y 0. SOLUTION dx mxm1, The first three derivatives of y x m are d y dx m(m 1)xm, so the given differential equation becomes d 3 y dx 3 m(m 1)(m )xm3, x d 3 y 3 dx d y 3 5x 7x 8y x3 m(m 1)(m )x m3 5x m(m 1)x m 7xmx m1 8x m x m (m(m 1)(m ) 5m(m 1) 7m 8) x m (m 3 m 4m 8) x m (m )(m 4) 0. In this case we see that y x m will be a solution of the differential equation for m 1, m i, and m 3 i. Hence the general solution is y c 1 x c cos( ln x) c 3 sin( ln x). Nonhomogeneous Equations The method of undetermined coefficient described in Sections 4.5 and 4.6 does not carry over, in general, to nonhomogeneous linear differential equations with variable coefficients. Consequently, in our next example the method of variation of parameters is employed. EXAMPLE 5 Variation of Parameters Solve x y3xy3y x 4 e x. SOLUTION Since the equation is nonhomogeneous, we first solve the associated homogeneous equation. From the auxiliary equation (m 1)(m 3) 0 we fin y c c 1 x c x 3. Now before using variation of parameters to find a particular solution y p u 1 y 1 u y, recall that the formulas u 1 W 1 > W and u W > W, where W 1, W, and W are the determinants defined on page 158, were derived under the assumption that the differential equation has been put into the standard form yp(x)y Q(x)y f(x). Therefore we divide the given equation by x, and from y 3 x y 3 x y x e x we make the identification f(x) x e x. Now with y 1 x, y x 3, and W x x 3 0 x 1 3x x 3, W 1 3 x e x 3x x 5 e x, W x 0 1 x e x 3 e x, x we fin u 1 x5 e x x e x and u x 3 x3 e x e x. x 3 The integral of the last function is immediate, but in the case of u 1 we integrate by parts twice. The results are u 1 x e x xe x e x and u e x. Hence y p u 1 y 1 u y is y p (x e x xe x e x )x e x x 3 x e x xe x. Finally, y y c y p c 1 x c x 3 x e x xe x. Copyright 01 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has

6 4.7 CAUCHY-EULER EQUATION 167 Reduction to Constant Coefficient The similarities between the forms of solutions of Cauchy-Euler equations and solutions of linear equations with constant coefficients are not just a coincidence. For example, when the roots of the auxiliary equations for aybycy 0 and ax ybxycy 0 are distinct and real, the respective general solutions are y c 1 e m 1x c e m x and y c 1 x m 1 c x m, x 0. (5) In view of the identity e ln x x, x 0, the second solution given in (5) can be expressed in the same form as the first solution y c 1 e m 1 ln x c e m ln x c 1 e m 1t c e m t, where t ln x. This last result illustrates the fact that any Cauchy-Euler equation can always be rewritten as a linear differential equation with constant coefficients by means of the substitution x e t. The idea is to solve the new differential equation in terms of the variable t, using the methods of the previous sections, and, once the general solution is obtained, resubstitute t ln x. This method, illustrated in the last example, requires the use of the Chain Rule of differentiation. EXAMPLE 6 Changing to Constant Coefficient Solve x yxyy ln x. SOLUTION With the substitution x e t or t ln x, it follows that dx dt dt dx 1 x dt d y dx 1 d x dx dt dt 1 x ; Chain Rule 1 x d y 1 dt x dt 1 x 1 x d y dt Substituting in the given differential equation and simplifying yields d y y t. dt dt Since this last equation has constant coefficients, its auxiliary equation is m m 1 0, or (m 1) 0. Thus we obtain y c c 1 e t c te t. By undetermined coefficients we try a particular solution of the form y p A Bt. This assumption leads to B A Bt t, so A and B 1. Using y y c y p, we get y c 1 e t c te t t. ; Product Rule and Chain Rule dt. By resubstituting e t x and t ln x we see that the general solution of the original differential equation on the interval (0, ) is y c 1 x c x ln x ln x. Solutions For x < 0 In the preceding discussion we have solved Cauchy-Euler equations for x 0. One way of solving a Cauchy-Euler equation for x 0 is to change the independent variable by means of the substitution t x(which implies t 0) and using the Chain Rule: dt dx dt dx dt and d y dx d dt dt dt dx d y dt. Copyright 01 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has

7 168 CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS See Problems 37 and 38 in Exercises 4.7. A Different Form A second-order equation of the form a(x x 0 ) d y dx b(x x 0) cy 0 dx is also a Cauchy-Euler equation. Observe that (6) reduces to (1) when x 0 0. We can solve (6) as we did (1), namely, seeking solutions of y (x x 0 ) m and using dx m(x x 0) m1 and d y dx m(m 1)(x x 0) m. Alternatively, we can reduce (6) to the familiar form (1) by means of the change of independent variable t x x 0, solving the reduced equation, and resubstituting. See Problems 39 4 in Exercises 4.7. (6) EXERCISES 4.7 In Problems 1 18 solve the given differential equation. 1. x yy 0. 4x yy 0 3. xyy0 4. xy3y0 5. x yxy4y 0 6. x y5xy3y 0 7. x y3xyy 0 8. x y3xy4y x y5xyy x y4xyy x y5xy4y 0 1. x y8xy6y x y6xyy x y7xy41y x 3 y6y x 3 yxyy xy (4) 6y x 4 y (4) 6x 3 y9x y3xyy 0 In Problems 19 4 solve the given differential equation by variation of parameters. 19. xy4yx 4 0. x y5xyy x x 1. x yxyy x. x yxyyx 4 e x 3. x yxyy ln x 4. x yxyy 1 x 1 In Problems 5 30 solve the given initial-value problem. Use a graphing utility to graph the solution curve. 5. x y3xy0, y(1) 0, y(1) 4 6. x y5xy8y 0, y() 3, y() 0 Answers to selected odd-numbered problems begin on page ANS x yxyy 0, y(1) 1, y(1) 8. x y3xy4y 0, y(1) 5, y(1) xyy x, y(1) 1, y(1) 1 x y5xy8y 8x 6, y 1 0, y1 0 In Problems use the substitution x e t to transform the given Cauchy-Euler equation to a differential equation with constant coefficients. Solve the original equation by solving the new equation using the procedures in Sections x y9xy0y 0 3. x y9xy5y x y10xy8y x 34. x y4xy6y ln x 35. x y3xy13y 4 3x 36. x 3 y3x y6xy6y 3 ln x 3 In Problems 37 and 38 use the substitution t xto solve the given initial-value problem on the interval (, 0) x yy 0, y(1), y(1) x y4xy6y 0, y() 8, y() 0 In Problems 39 and 40 use y (x x 0 ) m to solve the given differential equation. 39. (x 3) y8(x 1)y 14y (x 1) y(x 1)y 5y 0 Copyright 01 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ebook and/or echapter(s). Editorial review has

17.2 Nonhomogeneous Linear Equations. 27 September 2007

17.2 Nonhomogeneous Linear Equations. 27 September 2007 17.2 Nonhomogeneous Linear Equations 27 September 2007 Nonhomogeneous Linear Equations The differential equation to be studied is of the form ay (x) + by (x) + cy(x) = G(x) (1) where a 0, b, c are given

More information

c n (x a) n c 0 c 1 (x a) c 2 (x a) 2...

c n (x a) n c 0 c 1 (x a) c 2 (x a) 2... 3 CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS 6. REVIEW OF POWER SERIES REVIEW MATERIAL Infinite series of constants, p-series, harmonic series, alternating harmonic series, geometric series, tests

More information

37. f(t) sin 2t cos 2t 38. f(t) cos 2 t. 39. f(t) sin(4t 5) 40.

37. f(t) sin 2t cos 2t 38. f(t) cos 2 t. 39. f(t) sin(4t 5) 40. 28 CHAPTER 7 THE LAPLACE TRANSFORM EXERCISES 7 In Problems 8 use Definition 7 to find {f(t)} 2 3 4 5 6 7 8 9 f (t),, f (t) 4,, f (t) t,, f (t) 2t,, f (t) sin t,, f (t), cos t, t t t 2 t 2 t t t t t t t

More information

UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH *

UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH * 4.4 UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH 19 Discussion Problems 59. Two roots of a cubic auxiliary equation with real coeffi cients are m 1 1 and m i. What is the corresponding homogeneous

More information

SOLUTIONS BY SUBSTITUTIONS

SOLUTIONS BY SUBSTITUTIONS 25 SOLUTIONS BY SUBSTITUTIONS 71 25 SOLUTIONS BY SUBSTITUTIONS REVIEW MATERIAL Techniques of integration Separation of variables Solution of linear DEs INTRODUCTION We usually solve a differential equation

More information

PRELIMINARY THEORY LINEAR EQUATIONS

PRELIMINARY THEORY LINEAR EQUATIONS 4.1 PRELIMINARY THEORY LINEAR EQUATIONS 117 4.1 PRELIMINARY THEORY LINEAR EQUATIONS REVIEW MATERIAL Reread the Remarks at the end of Section 1.1 Section 2.3 (especially page 57) INTRODUCTION In Chapter

More information

SOLUTIONS ABOUT ORDINARY POINTS

SOLUTIONS ABOUT ORDINARY POINTS 238 CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS In Problems 23 and 24 use a substitution to shift the summation index so that the general term of given power series involves x k. 23. nc n x n2 n 24.

More information

Linear DifferentiaL Equation

Linear DifferentiaL Equation Linear DifferentiaL Equation Massoud Malek The set F of all complex-valued functions is known to be a vector space of infinite dimension. Solutions to any linear differential equations, form a subspace

More information

Second Order ODE's (2A) Young Won Lim 5/5/15

Second Order ODE's (2A) Young Won Lim 5/5/15 Second Order ODE's (2A) Copyright (c) 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or

More information

dx n a 1(x) dy

dx n a 1(x) dy HIGHER ORDER DIFFERENTIAL EQUATIONS Theory of linear equations Initial-value and boundary-value problem nth-order initial value problem is Solve: a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)

More information

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai APPLIED MATHEMATICS Part 1: Ordinary Differential Equations Contents 1 First Order Differential Equations 3 1.1 Basic Concepts and Ideas................... 4 1.2 Separable Differential Equations................

More information

Chapter 3. Reading assignment: In this chapter we will cover Sections dx 1 + a 0(x)y(x) = g(x). (1)

Chapter 3. Reading assignment: In this chapter we will cover Sections dx 1 + a 0(x)y(x) = g(x). (1) Chapter 3 3 Introduction Reading assignment: In this chapter we will cover Sections 3.1 3.6. 3.1 Theory of Linear Equations Recall that an nth order Linear ODE is an equation that can be written in the

More information

Math 2142 Homework 5 Part 1 Solutions

Math 2142 Homework 5 Part 1 Solutions Math 2142 Homework 5 Part 1 Solutions Problem 1. For the following homogeneous second order differential equations, give the general solution and the particular solution satisfying the given initial conditions.

More information

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016 Math 4B Notes Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: T 2:45 :45pm Last updated 7/24/206 Classification of Differential Equations The order of a differential equation is the

More information

Second-Order Linear ODEs

Second-Order Linear ODEs C0.tex /4/011 16: 3 Page 13 Chap. Second-Order Linear ODEs Chapter presents different types of second-order ODEs and the specific techniques on how to solve them. The methods are systematic, but it requires

More information

Series Solutions of Differential Equations

Series Solutions of Differential Equations Chapter 6 Series Solutions of Differential Equations In this chapter we consider methods for solving differential equations using power series. Sequences and infinite series are also involved in this treatment.

More information

Lecture Notes on. Differential Equations. Emre Sermutlu

Lecture Notes on. Differential Equations. Emre Sermutlu Lecture Notes on Differential Equations Emre Sermutlu ISBN: Copyright Notice: To my wife Nurten and my daughters İlayda and Alara Contents Preface ix 1 First Order ODE 1 1.1 Definitions.............................

More information

4 Differential Equations

4 Differential Equations Advanced Calculus Chapter 4 Differential Equations 65 4 Differential Equations 4.1 Terminology Let U R n, and let y : U R. A differential equation in y is an equation involving y and its (partial) derivatives.

More information

) sm wl t. _.!!... e -pt sinh y t. Vo + mx" + cx' + kx = 0 (26) has a unique tions x(o) solution for t ;?; 0 satisfying given initial condi

) sm wl t. _.!!... e -pt sinh y t. Vo + mx + cx' + kx = 0 (26) has a unique tions x(o) solution for t ;?; 0 satisfying given initial condi 1 48 Chapter 2 Linear Equations of Higher Order 28. (Overdamped) If Xo = 0, deduce from Problem 27 that x(t) Vo = e -pt sinh y t. Y 29. (Overdamped) Prove that in this case the mass can pass through its

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS

5.3 SOLVING TRIGONOMETRIC EQUATIONS 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

Higher-order ordinary differential equations

Higher-order ordinary differential equations Higher-order ordinary differential equations 1 A linear ODE of general order n has the form a n (x) dn y dx n +a n 1(x) dn 1 y dx n 1 + +a 1(x) dy dx +a 0(x)y = f(x). If f(x) = 0 then the equation is called

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) c01.tex 8/10/2010 22: 55 Page 1 PART A Ordinary Differential Equations (ODEs) Chap. 1 First-Order ODEs Sec. 1.1 Basic Concepts. Modeling To get a good start into this chapter and this section, quickly

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

Second-Order Linear ODEs

Second-Order Linear ODEs Chap. 2 Second-Order Linear ODEs Sec. 2.1 Homogeneous Linear ODEs of Second Order On pp. 45-46 we extend concepts defined in Chap. 1, notably solution and homogeneous and nonhomogeneous, to second-order

More information

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012 Polytechnic Institute of NYU MA Final Practice Answers Fall Studying from past or sample exams is NOT recommended. If you do, it should be only AFTER you know how to do all of the homework and worksheet

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations (MA102 Mathematics II) Shyamashree Upadhyay IIT Guwahati Shyamashree Upadhyay ( IIT Guwahati ) Ordinary Differential Equations 1 / 15 Method of Undetermined Coefficients

More information

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y: 3 Algebraic Methods b The first appearance of the equation E Mc 2 in Einstein s handwritten notes. So far, the only general class of differential equations that we know how to solve are directly integrable

More information

MB4018 Differential equations

MB4018 Differential equations MB4018 Differential equations Part II http://www.staff.ul.ie/natalia/mb4018.html Prof. Natalia Kopteva Spring 2015 MB4018 (Spring 2015) Differential equations Part II 0 / 69 Section 1 Second-Order Linear

More information

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation. is called the reduced equation of (N).

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation. is called the reduced equation of (N). Section 3.4. Second Order Nonhomogeneous Equations y + p(x)y + q(x)y = f(x) (N) The corresponding homogeneous equation y + p(x)y + q(x)y = 0 (H) is called the reduced equation of (N). 1 General Results

More information

4.317 d 4 y. 4 dx d 2 y dy. 20. dt d 2 x. 21. y 3y 3y y y 6y 12y 8y y (4) y y y (4) 2y y 0. d 4 y 26.

4.317 d 4 y. 4 dx d 2 y dy. 20. dt d 2 x. 21. y 3y 3y y y 6y 12y 8y y (4) y y y (4) 2y y 0. d 4 y 26. 38 CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS sstems are also able, b means of their dsolve commands, to provide eplicit solutions of homogeneous linear constant-coefficient differential equations.

More information

Math 240 Calculus III

Math 240 Calculus III DE Higher Order Calculus III Summer 2015, Session II Tuesday, July 28, 2015 Agenda DE 1. of order n An example 2. constant-coefficient linear Introduction DE We now turn our attention to solving linear

More information

MA Ordinary Differential Equations

MA Ordinary Differential Equations MA 108 - Ordinary Differential Equations Santanu Dey Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 76 dey@math.iitb.ac.in March 21, 2014 Outline of the lecture Second

More information

Ma 221 Final Exam Solutions 5/14/13

Ma 221 Final Exam Solutions 5/14/13 Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes

More information

MATH 312 Section 4.3: Homogeneous Linear Equations with Constant Coefficients

MATH 312 Section 4.3: Homogeneous Linear Equations with Constant Coefficients MATH 312 Section 4.3: Homogeneous Linear Equations with Constant Coefficients Prof. Jonathan Duncan Walla Walla College Spring Quarter, 2007 Outline 1 Getting Started 2 Second Order Equations Two Real

More information

Analytic Trigonometry

Analytic Trigonometry 0 Analytic Trigonometry In this chapter, you will study analytic trigonometry. Analytic trigonometry is used to simplify trigonometric epressions and solve trigonometric equations. In this chapter, you

More information

2.3 Linear Equations 69

2.3 Linear Equations 69 2.3 Linear Equations 69 2.3 Linear Equations An equation y = fx,y) is called first-order linear or a linear equation provided it can be rewritten in the special form 1) y + px)y = rx) for some functions

More information

LECTURE 14: REGULAR SINGULAR POINTS, EULER EQUATIONS

LECTURE 14: REGULAR SINGULAR POINTS, EULER EQUATIONS LECTURE 14: REGULAR SINGULAR POINTS, EULER EQUATIONS 1. Regular Singular Points During the past few lectures, we have been focusing on second order linear ODEs of the form y + p(x)y + q(x)y = g(x). Particularly,

More information

Chapter 4. Higher-Order Differential Equations

Chapter 4. Higher-Order Differential Equations Chapter 4 Higher-Order Differential Equations i THEOREM 4.1.1 (Existence of a Unique Solution) Let a n (x), a n,, a, a 0 (x) and g(x) be continuous on an interval I and let a n (x) 0 for every x in this

More information

Second-Order Homogeneous Linear Equations with Constant Coefficients

Second-Order Homogeneous Linear Equations with Constant Coefficients 15 Second-Order Homogeneous Linear Equations with Constant Coefficients A very important class of second-order homogeneous linear equations consists of those with constant coefficients; that is, those

More information

Section 3.5: Implicit Differentiation

Section 3.5: Implicit Differentiation Section 3.5: Implicit Differentiation In the previous sections, we considered the problem of finding the slopes of the tangent line to a given function y = f(x). The idea of a tangent line however is not

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

CHAPTER 5. Higher Order Linear ODE'S

CHAPTER 5. Higher Order Linear ODE'S A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 2 A COLLECTION OF HANDOUTS ON SCALAR LINEAR ORDINARY

More information

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx.

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx. Mathematics 14 Fall Term 26 Solutions to Final Exam 1. Evaluate sin(ln t) dt. Solution. We first make the substitution t = e x, for which dt = e x. This gives sin(ln t) dt = e x sin(x). To evaluate the

More information

Consider an ideal pendulum as shown below. l θ is the angular acceleration θ is the angular velocity

Consider an ideal pendulum as shown below. l θ is the angular acceleration θ is the angular velocity 1 Second Order Ordinary Differential Equations 1.1 The harmonic oscillator Consider an ideal pendulum as shown below. θ l Fr mg l θ is the angular acceleration θ is the angular velocity A point mass m

More information

Homework #6 Solutions

Homework #6 Solutions Problems Section.1: 6, 4, 40, 46 Section.:, 8, 10, 14, 18, 4, 0 Homework #6 Solutions.1.6. Determine whether the functions f (x) = cos x + sin x and g(x) = cos x sin x are linearly dependent or linearly

More information

A: Brief Review of Ordinary Differential Equations

A: Brief Review of Ordinary Differential Equations A: Brief Review of Ordinary Differential Equations Because of Principle # 1 mentioned in the Opening Remarks section, you should review your notes from your ordinary differential equations (odes) course

More information

0.1 Problems to solve

0.1 Problems to solve 0.1 Problems to solve Homework Set No. NEEP 547 Due September 0, 013 DLH Nonlinear Eqs. reducible to first order: 1. 5pts) Find the general solution to the differential equation: y = [ 1 + y ) ] 3/. 5pts)

More information

Calculus IV - HW 3. Due 7/ Give the general solution to the following differential equations: y = c 1 e 5t + c 2 e 5t. y = c 1 e 2t + c 2 e 4t.

Calculus IV - HW 3. Due 7/ Give the general solution to the following differential equations: y = c 1 e 5t + c 2 e 5t. y = c 1 e 2t + c 2 e 4t. Calculus IV - HW 3 Due 7/13 Section 3.1 1. Give the general solution to the following differential equations: a y 25y = 0 Solution: The characteristic equation is r 2 25 = r 5r + 5. It follows that the

More information

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics MATHS 101: Calculus I

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics   MATHS 101: Calculus I Preliminaries 2 1 2 Lectures Department of Mathematics http://www.abdullaeid.net/maths101 MATHS 101: Calculus I (University of Bahrain) Prelim 1 / 35 Pre Calculus MATHS 101: Calculus MATHS 101 is all about

More information

Chapter Six. Polynomials. Properties of Exponents Algebraic Expressions Addition, Subtraction, and Multiplication Factoring Solving by Factoring

Chapter Six. Polynomials. Properties of Exponents Algebraic Expressions Addition, Subtraction, and Multiplication Factoring Solving by Factoring Chapter Six Polynomials Properties of Exponents Algebraic Expressions Addition, Subtraction, and Multiplication Factoring Solving by Factoring Properties of Exponents The properties below form the basis

More information

Indefinite Integration

Indefinite Integration Indefinite Integration 1 An antiderivative of a function y = f(x) defined on some interval (a, b) is called any function F(x) whose derivative at any point of this interval is equal to f(x): F'(x) = f(x)

More information

A Brief Review of Elementary Ordinary Differential Equations

A Brief Review of Elementary Ordinary Differential Equations A A Brief Review of Elementary Ordinary Differential Equations At various points in the material we will be covering, we will need to recall and use material normally covered in an elementary course on

More information

3. Identify and find the general solution of each of the following first order differential equations.

3. Identify and find the general solution of each of the following first order differential equations. Final Exam MATH 33, Sample Questions. Fall 7. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C x is the general solution of a differential

More information

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation Section 3.4. Second Order Nonhomogeneous Equations y + p(x)y + q(x)y = f(x) (N) The corresponding homogeneous equation y + p(x)y + q(x)y = 0 (H) is called the reduced equation of (N). 1 General Results

More information

Math Exam 2, October 14, 2008

Math Exam 2, October 14, 2008 Math 96 - Exam 2, October 4, 28 Name: Problem (5 points Find all solutions to the following system of linear equations, check your work: x + x 2 x 3 2x 2 2x 3 2 x x 2 + x 3 2 Solution Let s perform Gaussian

More information

Second-Order Linear ODEs

Second-Order Linear ODEs Second-Order Linear ODEs A second order ODE is called linear if it can be written as y + p(t)y + q(t)y = r(t). (0.1) It is called homogeneous if r(t) = 0, and nonhomogeneous otherwise. We shall assume

More information

6 Second Order Linear Differential Equations

6 Second Order Linear Differential Equations 6 Second Order Linear Differential Equations A differential equation for an unknown function y = f(x) that depends on a variable x is any equation that ties together functions of x with y and its derivatives.

More information

MA22S3 Summary Sheet: Ordinary Differential Equations

MA22S3 Summary Sheet: Ordinary Differential Equations MA22S3 Summary Sheet: Ordinary Differential Equations December 14, 2017 Kreyszig s textbook is a suitable guide for this part of the module. Contents 1 Terminology 1 2 First order separable 2 2.1 Separable

More information

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA Calculus Weijiu Liu Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA 1 Opening Welcome to your Calculus I class! My name is Weijiu Liu. I will guide you

More information

Lecture IX. Definition 1 A non-singular Sturm 1 -Liouville 2 problem consists of a second order linear differential equation of the form.

Lecture IX. Definition 1 A non-singular Sturm 1 -Liouville 2 problem consists of a second order linear differential equation of the form. Lecture IX Abstract When solving PDEs it is often necessary to represent the solution in terms of a series of orthogonal functions. One way to obtain an orthogonal family of functions is by solving a particular

More information

1 Solution to Homework 4

1 Solution to Homework 4 Solution to Homework Section. 5. The characteristic equation is r r + = (r )(r ) = 0 r = or r =. y(t) = c e t + c e t y = c e t + c e t. y(0) =, y (0) = c + c =, c + c = c =, c =. To find the maximum value

More information

CLTI Differential Equations (3A) Young Won Lim 6/4/15

CLTI Differential Equations (3A) Young Won Lim 6/4/15 CLTI Differential Equations (3A) Copyright (c) 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

Chapter 2. First-Order Differential Equations

Chapter 2. First-Order Differential Equations Chapter 2 First-Order Differential Equations i Let M(x, y) + N(x, y) = 0 Some equations can be written in the form A(x) + B(y) = 0 DEFINITION 2.2. (Separable Equation) A first-order differential equation

More information

A Library of Functions

A Library of Functions LibraryofFunctions.nb 1 A Library of Functions Any study of calculus must start with the study of functions. Functions are fundamental to mathematics. In its everyday use the word function conveys to us

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Chapter 1 Introduction and Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

Course Notes for Calculus , Spring 2015

Course Notes for Calculus , Spring 2015 Course Notes for Calculus 110.109, Spring 2015 Nishanth Gudapati In the previous course (Calculus 110.108) we introduced the notion of integration and a few basic techniques of integration like substitution

More information

Chapter 4: Higher-Order Differential Equations Part 1

Chapter 4: Higher-Order Differential Equations Part 1 Chapter 4: Higher-Order Differential Equations Part 1 王奕翔 Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 8, 2013 Higher-Order Differential Equations Most of this

More information

كلية العلوم قسم الرياضيات المعادالت التفاضلية العادية

كلية العلوم قسم الرياضيات المعادالت التفاضلية العادية الجامعة اإلسالمية كلية العلوم غزة قسم الرياضيات المعادالت التفاضلية العادية Elementary differential equations and boundary value problems المحاضرون أ.د. رائد صالحة د. فاتن أبو شوقة 1 3 4 5 6 بسم هللا

More information

Algebra I. Book 2. Powered by...

Algebra I. Book 2. Powered by... Algebra I Book 2 Powered by... ALGEBRA I Units 4-7 by The Algebra I Development Team ALGEBRA I UNIT 4 POWERS AND POLYNOMIALS......... 1 4.0 Review................ 2 4.1 Properties of Exponents..........

More information

Higher Order Linear ODEs

Higher Order Linear ODEs im03.qxd 9/21/05 11:04 AM Page 59 CHAPTER 3 Higher Order Linear ODEs This chapter is new. Its material is a rearranged and somewhat extended version of material previously contained in some of the sections

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) Chapter 13 Ordinary Differential Equations (ODEs) We briefly review how to solve some of the most standard ODEs. 13.1 First Order Equations 13.1.1 Separable Equations A first-order ordinary differential

More information

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3 Math 201 Solutions to Assignment 1 1. Solve the initial value problem: x 2 dx + 2y = 0, y(0) = 2. x 2 dx + 2y = 0, y(0) = 2 2y = x 2 dx y 2 = 1 3 x3 + C y = C 1 3 x3 Notice that y is not defined for some

More information

Homework #3 Solutions

Homework #3 Solutions Homework #3 Solutions Math 82, Spring 204 Instructor: Dr. Doreen De eon Exercises 2.2: 2, 3 2. Write down the heat equation (homogeneous) which corresponds to the given data. (Throughout, heat is measured

More information

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS A second-order linear differential equation has the form 1 Px d y dx Qx dx Rxy Gx where P, Q, R, and G are continuous functions. Equations of this type arise

More information

Theory of Higher-Order Linear Differential Equations

Theory of Higher-Order Linear Differential Equations Chapter 6 Theory of Higher-Order Linear Differential Equations 6.1 Basic Theory A linear differential equation of order n has the form a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x) = b(x), (6.1.1)

More information

Formulas that must be memorized:

Formulas that must be memorized: Formulas that must be memorized: Position, Velocity, Acceleration Speed is increasing when v(t) and a(t) have the same signs. Speed is decreasing when v(t) and a(t) have different signs. Section I: Limits

More information

Work sheet / Things to know. Chapter 3

Work sheet / Things to know. Chapter 3 MATH 251 Work sheet / Things to know 1. Second order linear differential equation Standard form: Chapter 3 What makes it homogeneous? We will, for the most part, work with equations with constant coefficients

More information

Chapter 3 Higher Order Linear ODEs

Chapter 3 Higher Order Linear ODEs Chapter 3 Higher Order Linear ODEs Advanced Engineering Mathematics Wei-Ta Chu National Chung Cheng University wtchu@cs.ccu.edu.tw 1 2 3.1 Homogeneous Linear ODEs 3 Homogeneous Linear ODEs An ODE is of

More information

8.3 Partial Fraction Decomposition

8.3 Partial Fraction Decomposition 8.3 partial fraction decomposition 575 8.3 Partial Fraction Decomposition Rational functions (polynomials divided by polynomials) and their integrals play important roles in mathematics and applications,

More information

Math 308 Week 8 Solutions

Math 308 Week 8 Solutions Math 38 Week 8 Solutions There is a solution manual to Chapter 4 online: www.pearsoncustom.com/tamu math/. This online solutions manual contains solutions to some of the suggested problems. Here are solutions

More information

Series Solution of Linear Ordinary Differential Equations

Series Solution of Linear Ordinary Differential Equations Series Solution of Linear Ordinary Differential Equations Department of Mathematics IIT Guwahati Aim: To study methods for determining series expansions for solutions to linear ODE with variable coefficients.

More information

APPENDIX : PARTIAL FRACTIONS

APPENDIX : PARTIAL FRACTIONS APPENDIX : PARTIAL FRACTIONS Appendix : Partial Fractions Given the expression x 2 and asked to find its integral, x + you can use work from Section. to give x 2 =ln( x 2) ln( x + )+c x + = ln k x 2 x+

More information

Nonhomogeneous Linear Differential Equations with Constant Coefficients - (3.4) Method of Undetermined Coefficients

Nonhomogeneous Linear Differential Equations with Constant Coefficients - (3.4) Method of Undetermined Coefficients Nonhomogeneous Linear Differential Equations with Constant Coefficients - (3.4) Method of Undetermined Coefficients Consider an nth-order nonhomogeneous linear differential equation with constant coefficients:

More information

Math 131 Exam 2 Spring 2016

Math 131 Exam 2 Spring 2016 Math 3 Exam Spring 06 Name: ID: 7 multiple choice questions worth 4.7 points each. hand graded questions worth 0 points each. 0. free points (so the total will be 00). Exam covers sections.7 through 3.0

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations (MA102 Mathematics II) Shyamashree Upadhyay IIT Guwahati Shyamashree Upadhyay ( IIT Guwahati ) Ordinary Differential Equations 1 / 25 First order ODE s We will now discuss

More information

CHAPTER 2. Techniques for Solving. Second Order Linear. Homogeneous ODE s

CHAPTER 2. Techniques for Solving. Second Order Linear. Homogeneous ODE s A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES A COLLECTION OF HANDOUTS ON SCALAR LINEAR ORDINARY DIFFERENTIAL

More information

SECOND-ORDER DIFFERENTIAL EQUATIONS

SECOND-ORDER DIFFERENTIAL EQUATIONS Chapter 16 SECOND-ORDER DIFFERENTIAL EQUATIONS OVERVIEW In this chapter we extend our study of differential euations to those of second der. Second-der differential euations arise in many applications

More information

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES Taylor Series of a function f at x = a is ( f k )( a) ( x a) k k! It is a Power Series centered at a. Maclaurin Series of a function

More information

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0 Lecture 22 Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) Recall a few facts about power series: a n z n This series in z is centered at z 0. Here z can

More information

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations.

UNIVERSITY OF SOUTHAMPTON. A foreign language dictionary (paper version) is permitted provided it contains no notes, additions or annotations. UNIVERSITY OF SOUTHAMPTON MATH055W SEMESTER EXAMINATION 03/4 MATHEMATICS FOR ELECTRONIC & ELECTRICAL ENGINEERING Duration: 0 min Solutions Only University approved calculators may be used. A foreign language

More information

1+t 2 (l) y = 2xy 3 (m) x = 2tx + 1 (n) x = 2tx + t (o) y = 1 + y (p) y = ty (q) y =

1+t 2 (l) y = 2xy 3 (m) x = 2tx + 1 (n) x = 2tx + t (o) y = 1 + y (p) y = ty (q) y = DIFFERENTIAL EQUATIONS. Solved exercises.. Find the set of all solutions of the following first order differential equations: (a) x = t (b) y = xy (c) x = x (d) x = (e) x = t (f) x = x t (g) x = x log

More information

5.4 Variation of Parameters

5.4 Variation of Parameters 202 5.4 Variation of Parameters The method of variation of parameters applies to solve (1) a(x)y + b(x)y + c(x)y = f(x). Continuity of a, b, c and f is assumed, plus a(x) 0. The method is important because

More information

Background ODEs (2A) Young Won Lim 3/7/15

Background ODEs (2A) Young Won Lim 3/7/15 Background ODEs (2A) Copyright (c) 2014-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Math Assignment 5

Math Assignment 5 Math 2280 - Assignment 5 Dylan Zwick Fall 2013 Section 3.4-1, 5, 18, 21 Section 3.5-1, 11, 23, 28, 35, 47, 56 Section 3.6-1, 2, 9, 17, 24 1 Section 3.4 - Mechanical Vibrations 3.4.1 - Determine the period

More information

A Concise Introduction to Ordinary Differential Equations. David Protas

A Concise Introduction to Ordinary Differential Equations. David Protas A Concise Introduction to Ordinary Differential Equations David Protas A Concise Introduction to Ordinary Differential Equations 1 David Protas California State University, Northridge Please send any

More information

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1 Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1 Questions Example (3.5.3) Find a general solution of the differential equation y 2y 3y = 3te

More information

8.6 Partial Fraction Decomposition

8.6 Partial Fraction Decomposition 628 Systems of Equations and Matrices 8.6 Partial Fraction Decomposition This section uses systems of linear equations to rewrite rational functions in a form more palatable to Calculus students. In College

More information