Entanglement in Particle Physics: Bell Inequalities, Geometry and Relativistics

Size: px
Start display at page:

Download "Entanglement in Particle Physics: Bell Inequalities, Geometry and Relativistics"

Transcription

1 Entanglement in Particle Physics: Bell Inequalities, Geometry and Relativistics Colloquium at PSI Reinhold A. Bertlmann Faculty of Physics, University of Vienna June 10 th, 2010

2 Outline

3 Part I

4 Quantum Information Quantum entanglement as source of quantum information theory quantum communication Alice Bob quantum teleportation: transfer of quantum states Alice Bob quantum cryptography: safe secret keys quantum computation: quantum gates, quantum computer R. Ursin, M. Aspelmeyer,..., A. Zeilinger Nature 430, 849, (2004)

5 Entanglement Outline Schrödinger 1935: Trilogy On the present situation in QM... entangled states verschränkte Zustände... quantum system with physically distant parts E. Schrödinger: The whole is in a definite state, the parts taken individually are not. Illustration of entanglement: Schrödinger s cat box, decaying atom, hammer, cyanide, cat entangled state separable state convex combination of product states ψ = 1 2 ( e alive + g dead )

6 EPR-Paradox Outline Einstein Podolsky Rosen 1935 Completeness of theory: Every element of physical reality must have a counter part in physical theory. Quantum system of 2 distant particles 1 2 very peculiar correlations between 1 2 one can predict outcome of measurement on 2 by measuring 1 EPR: 1, 2 predetermined values in a local and complete theory = QM incomplete! Bohr 1935: QM is complete! Furry 1935: QM model: spontaneous factorization of wavefunction

7 Bell s Theorem Bell s Theorem 1964 J.S. Bell:... in a certain experimental situation all LRT (local realistic theories) are incompatible with QM. Alice EPR-type experiment Bob

8 Expectation Value A(n, λ) values of observable A QM (n) σ (1) n B(m, λ) B QM (m) σ (2) m λ... hidden variable n, m... quantization directions A, B 1 8 >< +1 A(n, λ) = 0 no detection >: 1 particle 1 at Alice 8 >< +1 B(m, λ) = 0 no detection >: 1 particle 2 at Bob expectation value for combined spin measurement E(n, m) = R dλ ρ(λ)a(n, λ)b(m, λ) with R dλ ρ(λ) = 1 independent of m n Bell s locality hypothesis

9 Bell Inequalities E(n, m) E(n, m ) dλ ρ(λ) A(n, λ)b(m, λ) { 1 ± A(n, λ)b(m, λ) } + dλ ρ(λ) A(n, λ)b(m, λ) { 1 ± A(n, λ)b(m, λ) } = Bell inequality CHSH-type Clauser, Horne, Shimony, Holt S = E(n, m) E(n, m ) + E(n, m ) + E(n, m) 2 LRT in terms of probabilities E(n, m) = P(n, m ) + P(n, m ) P(n, m ) P(n, m ) = P(n, m ) Bell inequality of Wigner-type P(n, m) P(n, n ) + P(n, m)

10 Bell Inequality QM Quantum Mechanics quantum mechanical expectation value in spin singlet state ψ = 1 2 ( ) E(n, m) = ψ A QM (n)b QM (m) ψ = ψ σ n σ m ψ = cos(n m) for choice n m = 3π 4, n m = n m = n m = π 4 Bell angles = QM S QM = 2 2! > 2 LRT contradiction!

11 Experiments Outline Experiments: polarization of entangled photons Freedman and Clauser 1972 Fry and Thompson 1976 Aspect group 1982 Zeilinger group 1998 Results: Experiments violate BI! e.g. Weihs,..., Zeilinger: polarizers random time flip = S exp = 2.73 ± 0.02 experiment in agreement with QM Conclusion: QM and Nature are nonlocal!

12 Spooky Outline

13 Literature Introduction to BI s J.S. Bell: Speakables and Unspeakables in QM, Cambr.Uni.Press 1987 R.A. Bertlmann, A. Zeilinger: Quantum [Un]speakables, Springer 2002 A. Einstein, B. Podolsky, N. Rosen: Phys.Rev. 47, 777 (1935) E. Schrödinger: Naturwissenschaften 23, 807, 823, 844 (1935)

14 Part II

15 Strange Mesons Strange mesons selected by Nature to demonstrate fundamental principles of QM such as : superposition principle oscillation and decay property regeneration mechanism quasi-spin property K-meson bound state of quarks (q q) : u... up flavor d... down s... strange mass: MeV J P = 0 pseudoscalar strong interactions: S conservation weak interactions: S violation

16 QM of K-mesons Strangeness eigenstates S K 0 = + K 0 S K 0 = K 0 CP-transformation P... parity C... charge conjugation CP eigenstates CP K 0 = K 0 CP K 0 = K 0 CP K 0 1 = + K 0 1 K 0 1 = 1 2 ( K 0 K 0 ) CP K 0 2 = K 0 2 K 0 2 = 1 2 ( K 0 + K 0 ) strong interactions: CP conservation weak interactions: small CP violation almost conserved

17 K-meson decays K K decay S K1 0 2π τ S sec short-lived K L K2 0 3π τ L sec long-lived physical masses m S, m L with m = m L m S = ev small CP-violation K L 2π small short-lived, long-lived states ε 10 3 CP-violating parameter K S = 1 ( p K 0 q N K 0 ) p = 1 + ε, q = 1 ε K L = 1 ( p K 0 + q K 0 ) N 2 = p 2 + q 2 N decaying states evolve in time Weisskopf-Wigner approximation KS L (t) = e iλ S L t KSL with λs L = ms L i 2 ΓS L and ΓS L τ 1 S L = time evolution for K 0 and K 0

18 K 0 K 0 Outline Oscillation K 0 beam produced at t = 0 probability for finding K 0 or K 0 at t > 0 K 0 K 0 (t) 2 = 1 { e Γ S t + e ΓLt + 2 e Γt cos( mt) } 4 K 0 K 0 (t) 2 = 1 { e Γ S t + e ΓLt 2 e Γt cos( mt) } 4 with m = m L m S and Γ = 1 2 (Γ L + Γ S ) ΓS L τ 1 S L K 0 beam oscillates with frequency m/2π oscillation visible at t τ S, m τ S = 0.47 K 0 beam at t = 0 = K 0 equal to K 0 far away from source through K L

19 Quasi-spin of K-mesons K 0 K 0 2-dim Hilbertspace strangeness +1 up 1 down / operators in quasi-spin space: S σ 3 CP σ 1 CP σ 2 Hamiltonian H = M i 2 Γ = ( ) 1 2 a 1 + h σ with KS L eigenstates Analogy K-meson spin- 1 2 photon K 0 z V K 0 z H K S xy L = 1 2 ( V i H ) K L xy R = 1 2 ( V + i H )

20 Bell Inequality Wigner-type LRT satisfy BI choice: fix quasi-spin freedom in time freedom in quasi-spin fix time choose: fix time vary quasi-spin of K-meson = rotation in quasi-spin space for BI we need 3 different angles quasi-spins: K S, K 0, K 0 1 Bell inequality of Wigner-type P(K S, K 0 ) P(K S, K 0 1 ) + P(K 0 1, K 0 ) P... probability contains unphysical CP-even state K 0 1 But! BI inequality for physical CP-parameter experimentally testable! how does it come?

21 Experiment Outline BI optimal Inequality for weights p, q of K S, K 0, K 0 1 Experiment decay of K-mesons p q experimentally testable! semileptonic decay of strange mesons quark level K 0 (d s) π (dū) l + ν l s ū l + ν l K 0 ( ds) π + ( du) l ν l s u l ν l = l + tags K 0 in K L state p 2... probability for K 0 in K L l tags K 0 l = µ, e q 2... probability for K 0 in K L charge asymmetry δ = Γ(K L π l + ν l ) Γ(K L π + l ν l ) = p 2 q 2 Γ(K L π l + ν l )+Γ(K L π + l ν l ) p 2 + q 2

22 Conclusion Outline p q Bell inequality for δ δ 0 Experiment: δ exp = (3.27 ± 0.12) 10 3 BI violated! consider 2 BI s δ 0 and δ 0 K 0 K 0, p q = δ = 0 CP conservation in contradiction to experiment! Conclusion LRT are only compatible with strict CP conservation in K 0 K 0 mixing! δ 0 K 0 K 0 entanglement CP violation nonlocal contextual

23 Literature BI s for K-mesons R.A. Bertlmann, B.C. Hiesmayr: Phys.Rev.A 63, (2001) R.A. Bertlmann, W. Grimus, B.C. Hiesmayr: Phys.Lett.A 289, 21 (2001) F. Uchiyama: Phys.Lett.A 231, 295 (1997) A. Bramon, M. Nowakowski: Phys.Rev.Lett. 83, 1 (1990) N. Gisin, A. Go: Am.J.Phys. 69 (3), 264 (2001) G.C. Ghirardi, R. Grassi, R. Ragazzon: DAΦNE Physics Handbook, Vol.I, p.283 (1992) J.S. Bell: Speakables and Unspeakables in Quantum Mechanics, Cambridge University Press 1987 R.A. Bertlmann, A. Zeilinger: Quantum [Un]speakables, Springer 2002

24 Part III

25 Separability Outline Hilbert space H = H A H B Alice & Bob Set of separable states defined by density matrices ρ i = ψ i ψ i { S = ρ = p i ρ i A ρ i B 0 p i 1, } p i = 1 i i reduced density matrix ρ B = tr Aρ Entangled state if not separable ω S c complement of S S S c = H Separability criterion (2 2 and 2 3 dimensions) Theorem: positive partial transposition Peres, Horodecki (1 A T B ) ρ 0 ρ separable T B (σ i B) kl = (σ i B) lk

26 Bell Inequality CHSH-type consider usual Bell inequalities CHSH inequality A CHSH... CHSH operator Clauser-Horne-Shimony-Holt (ρ A CHSH ) 2 with A CHSH = n σ A ( m m ) σ B + n σ A ( m+ m ) σ B ρ local ρ separ QM (ρ A CHSH ) = 2 2 ρ = ψ ψ Bell singlet with ψ = 1 2 ( A B A B )

27 Werner State Outline shift CHSH-operator (ρ 2 1 A CHSH ) 0 and (ρ 2 1 A CHSH ) < 0 Example Werner state inequality valid for all entangled states? YES for pure entangled states NO for mixed entangled states ρ W = p ρ + (1 p) for 1 3 < p 1 2 satisfies CHSH Bell inequality! usual BI s not good to find entangled states!

28 Entanglement Witness Entanglement witness inequality EWI detects entanglement of state observable A entanglement witness such that (ρ A) 0 ρ S (ω A) < 0 for some ω S c A A t tangent functional if ρ 0 S such that (ρ 0 A) = 0 then ρ 0 S A t characterizes convex set S of separable states Entanglement measure Hilbert Schmidt distance D(ω) E(ω) D(ω) = min ρ S ρ ω 2 2 distance D(ω) of entangled state ω S c to set S of separable states

29 BNT Theorem consider EWI EWI (ρ A) (ω A) 0 ρ S maximal violation of EWI B(ω) = max [ min (ρ A) (ω A) ] A α 2 1 ρ S Theorem Bertlmann Narnhofer Thirring B(ω) = D(ω) min of D ρ 0 ω S c max of B A max A t A max = ρ 0 ω (ρ 0 ρ 0 ω) 1 ρ 0 ω 2

30 Illustration of BNT Theorem maximal violation of EWI B(ω) is equal to distance D(ω) ω set of separable states S optimal operator A max to set S is tangent

31 Geometry of Entangled States 4 Bell states ψ ρ = 1 4 ( 1 σx A σ x B σ y A σy B σz A σ z B) P 0 φ ω = 1 4 ( 1 σx A σ x B + σ y A σy B + σz A σ z B) P 1 φ + ω + = 1 4 ( 1 + σx A σ x B σ y A σy B + σz A σ z B) P 2 ψ + ρ + = 1 4 ( 1 + σx A σ x B + σ y A σy B σz A σ z B) P 3 Density matrix in (c 1, c 2, c 3 ) parameter space spin space ρ c = 1 4 ( i=1 c i σa i σb i ) positivity of density matrix = tetrahedron (P 0, P 1, P 2, P 3 ) simplex partial transposition positivity separable Thm Peres Horodecki

32 Illustration of Geometry intersection of tetrahedrons = separable states double-pyramide (convex set)

33 Entangled Separable States

34 Literature EWI R.A. Bertlmann, H. Narnhofer W. Thirring: Phys.Rev.A 66, (2002) M. Horodecki, P. Horodecki, R. Horodecki: in Quantum Information, eds. G. Alber et al., Springer Tracts in Modern Physics Vol. 173, p. 151 (2001) K.G.H. Vollbrecht, R.F. Werner: quant-ph/ B. Terhal: Phys.Lett.A 271, 319 (2000) and quant-ph/ D. Bruß: J. Math. Phys. 43, 4237 (2002) M. Lewenstein, D. Bruß, J.I. Cirac, B. Kraus, M. Kuś, J. Samsonowicz, A. Sanpera, R. Tarrach: Journal of Modern Optics, 47, 2841 (2000) M. Lewenstein, B. Kraus, J.I. Cirac, P. Horodecki: Phys.Rev.A 62, (2000) and quant-ph/

35 Part IV

36 Lorentz Transformations for Spin- 1 2 Particles massive spin- 1 2 particle state p, σ p... momentum, σ... spin Lorentz transformation Λ = momentum dependent rotation of spin Wigner rotation: W(Λ, p) := L 1 (Λp) Λ L(p) U(Λ) p, σ = N(p) U(W(Λ, p)) Λp, σ W(Λ, p)) Wigner s little group: Lorentz transformations that leave invariant the chosen standard momentum k here: k... rest frame momentum = little group = SO(3)

37 Wigner Rotations Figure: Wigner rotation of spins for particles moving (anti-)parallel to the z-axis and observer moving along the x-direction, original figure: P. M. Alsing, and G. J. Milburn, Quant. Inf. Comp. 2, No. 6 (2002)

38 Mixing Spin & Momentum consider finite width momentum space distribution: ψ 1 particle = dµ(p) f σ (p) p, σ σ Lorentz transformation = entangles spin- and momentum degrees of freedom = spin entropy not invariant i.e. trace over momentum = mixed spin state Peres Scudo Terno 2 particles: change of spin entanglement Gingrich Adami dependent on boost strength & initial state: width of distributions entanglement (spin spin / spin mom / mom mom)

39 Initial State Outline Initial state: ψ total = ψ mom ψ spin spins and momenta initially separable from each other momenta: entangled ψ mom = cos α p +, p + sin α p, p + momenta sharp single rotation spins: entangled ψ spin = cos β + sin β Bell ψ ± states

40 Boosted State Lorentz transformation Λ: ρ = ψ ψ = ρ Λ = ψ Λ ψ Λ transformed state ψ Λ total = cos α Λp +, Λp (U + U ) ψ spin + sin α Λp, Λp + (U U + ) ψ spin only two } momenta {{} allowed: initially: p+, p after boost: Λp+, Λp momentum qubits total system: 4 qubits: 2 momentum qubits Λp +, Λp & 2 spin qubits, study entanglement between different partitions of 4 qubit Hilbertspace using linear entropy of subsystems ρ i : linear entropy E(ρ) = i ( 1 Tr ρ 2 i )

41 Partition into 4 Individual Qubits subsystems consist of 1 qubit each momentum Λp +, Λp or spin, Entanglement change: E(ρ Λ ) E(ρ) = sin 2 δ sin 2 (2α) cos 2 (2β) Wigner angle δ depends on boost strength and direction Entanglement-Egg-Tray: Difference between linear entropies of initial and δ = ± π 2 Wigner rotated Bell-type state

42 Partition into Spin & Momentum subsystems consist of 2 momentum or 2 spin qubits respectively Entanglement after boost: E(ρ Λ ) = 1 2 sin2 δ sin 2 (2α) (1 sin(2β)) ˆ3 + cos(2δ) + 2 sin 2 δ sin(2β) initially E(ρ) = 0 in this partition Entanglement change between momentum and spin of δ = ± π 4 Wigner rotated spin-bell-type state

43 Results for Initial Bell ψ ± Spin States Entanglement change for 1 vs 3 qubit partition and spin momentum partition maximal Wigner angle δ = π 2 = Entanglement change in these partitions identical Wigner angle: as function of boost velocities v and w in perpendicular directions however: Entanglement in partition Alice Bob is invariant!

44 Initial Spin Triplet States Different spin states: ψ spin = sin θ cos φ + sin θ sin φ 1 2 ( + ) + cos θ parametrization using spherical coordinates in space of spin triplet states completely analogous results to Bell ψ ± spin states Figures: Plots shown for maximally entangled momentum states and Wigner angles π 2 (left) and π 4 (right)

45 Literature A. Peres, P.F. Scudo, and D.R. Terno, Phys.Rev.Lett. 88, (2002) P.M. Alsing, and G.J. Milburn, Quant.Inf.Comp. 2, No. 6 (2002) R.M. Gingrich and Ch. Adami, Phys.Rev.Lett. 89, (2002) I. Fuentes-Schuller and R.B. Mann, Phys.Rev.Lett. 95, (2005) T.F. Jordan, A. Shaji, and E.C.G. Sudarshan, Phys.Rev.A 73, (2006) N. Friis, R.A. Bertlmann, M. Huber, and B.C. Hiesmayr, Phys.Rev.A 81, (2010)

46 Quantum Strange Geometry of Relativistic Outline Entanglement Entanglement Entanglement Entanglement Vienna Quantum Engineers Philipp Krammer, Nicolai Friis, Reinhold A. Bertlmann Walter Grimus Beatrix Hiesmayr Andreas Gabriel, Tanja Traxler, Hatice Tataroglu Reinhold A. Bertlmann Entanglement in Particle Physics: Bell Inequalities, Geometry

Generalized Bell Inequality and Entanglement Witness

Generalized Bell Inequality and Entanglement Witness Nonlocal Seminar 2005 Bratislava, April 29th 2005 Reinhold A. Bertlmann Generalized Bell Inequality and Entanglement Witness Institute for Theoretical Physics University of Vienna Motivation Composite

More information

Entanglement in Particle Physics

Entanglement in Particle Physics Entanglement in Particle Physics Reinhold A. Bertlmann Faculty of Physics, University of Vienna Lecture at University of Siegen 11 July 2013 1 Contents Ø Composite quantum systems, pure or mixed states

More information

Entanglement, Decoherence and Bell Inequalities in Particle Physics

Entanglement, Decoherence and Bell Inequalities in Particle Physics Schladming Lectures 2004 Reinhold A. Bertlmann Entanglement, Decoherence and Bell Inequalities in Particle Physics Institute for Theoretical Physics Working group in Vienna Herbert Pietschmann Walter Grimus

More information

Einstein-Podolsky-Rosen paradox and Bell s inequalities

Einstein-Podolsky-Rosen paradox and Bell s inequalities Einstein-Podolsky-Rosen paradox and Bell s inequalities Jan Schütz November 27, 2005 Abstract Considering the Gedankenexperiment of Einstein, Podolsky, and Rosen as example the nonlocal character of quantum

More information

Bell inequalities for entangled kaons and their unitary time evolution

Bell inequalities for entangled kaons and their unitary time evolution UWThPh-001-3 January 001 Bell inequalities for entangled kaons and their unitary time evolution arxiv:hep-ph/0101356v 8 Feb 001 Reinhold A. Bertlmann and Beatrix C. Hiesmayr Institute for Theoretical Physics,

More information

Detection of photonic Bell states

Detection of photonic Bell states LECTURE 3 Detection of photonic Bell states d a c Beam-splitter transformation: b ˆB ˆB EXERCISE 10: Derive these three relations V a H a ˆB Detection: or V b H b or Two photons detected in H a, H b, V

More information

Relativistic Spin Operator with Observers in Motion

Relativistic Spin Operator with Observers in Motion EJTP 7, No. 3 00 6 7 Electronic Journal of Theoretical Physics Relativistic Spin Operator with Observers in Motion J P Singh Department of Management Studies, Indian Institute of Technology Roorkee, Roorkee

More information

Quantum mechanics and reality

Quantum mechanics and reality Quantum mechanics and reality Margaret Reid Centre for Atom Optics and Ultrafast Spectroscopy Swinburne University of Technology Melbourne, Australia Thank you! Outline Non-locality, reality and quantum

More information

Solving the Einstein Podolsky Rosen puzzle: The origin of non-locality in Aspect-type experiments

Solving the Einstein Podolsky Rosen puzzle: The origin of non-locality in Aspect-type experiments Front. Phys., 2012, 7(5): 504 508 DOI 10.1007/s11467-012-0256-x RESEARCH ARTICLE Solving the Einstein Podolsky Rosen puzzle: The origin of non-locality in Aspect-type experiments Werner A. Hofer Department

More information

Entanglement, Bell Inequalities and Decoherence in Particle Physics

Entanglement, Bell Inequalities and Decoherence in Particle Physics Entanglement, Bell Inequalities and Decoherence in Particle Physics Reinhold A. Bertlmann Institut für Theoretische Physik, Boltzmanngasse 5, A-1090 Vienna, Austria Reinhold.Bertlmann@univie.ac.at arxiv:quant-ph/041008v

More information

Kaonic Quantum Erasers. Gianni Garbarino

Kaonic Quantum Erasers. Gianni Garbarino Kaonic Quantum Erasers Gianni Garbarino Växjö (Sweden), June 11 16, 2007 Kaonic Quantum Erasers (page 1) Gianni Garbarino OUTLINE Introduction Quantitative Complementarity The Quantum Eraser Conclusions

More information

Geometry of Entanglement

Geometry of Entanglement Geometry of Entanglement Bachelor Thesis Group of Quantum Optics, Quantum Nanophysics and Quantum Information University of Vienna WS 21 2659 SE Seminar Quantenphysik I Supervising Professor: Ao. Univ.-Prof.

More information

CLASSIFICATION OF MAXIMALLY ENTANGLED STATES OF SPIN 1/2 PARTICLES

CLASSIFICATION OF MAXIMALLY ENTANGLED STATES OF SPIN 1/2 PARTICLES CLASSIFICATION OF MAXIMALLY ENTANGLED STATES OF SPIN 1/ PARTICLES S. Ghosh, G. Kar, and A. Roy Physics and Applied Mathematics Unit Indian Statistical Institute 03, B. T. Road Calcutta 700 035 India. E

More information

Bell tests in physical systems

Bell tests in physical systems Bell tests in physical systems Seung-Woo Lee St. Hugh s College, Oxford A thesis submitted to the Mathematical and Physical Sciences Division for the degree of Doctor of Philosophy in the University of

More information

Timeline: Bohm (1951) EPR (1935) CHSH (1969) Bell (1964) Theory. Freedman Clauser (1972) Aspect (1982) Weihs (1998) Weinland (2001) Zeilinger (2010)

Timeline: Bohm (1951) EPR (1935) CHSH (1969) Bell (1964) Theory. Freedman Clauser (1972) Aspect (1982) Weihs (1998) Weinland (2001) Zeilinger (2010) 1.EPR paradox 2.Bohm s version of EPR with spin ½ particles 3.Entangled states and production 4.Derivation of CHSH inequality - S parameter for mixed and entangled state 5. Loopholes 6.Experiments confirming

More information

Bell s inequalities and their uses

Bell s inequalities and their uses The Quantum Theory of Information and Computation http://www.comlab.ox.ac.uk/activities/quantum/course/ Bell s inequalities and their uses Mark Williamson mark.williamson@wofson.ox.ac.uk 10.06.10 Aims

More information

Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen

Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen Entanglement arnoldzwicky.org Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen PHYS403, July 26, 2017 Entanglement A quantum object can

More information

On PPT States in C K C M C N Composite Quantum Systems

On PPT States in C K C M C N Composite Quantum Systems Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 25 222 c International Academic Publishers Vol. 42, No. 2, August 5, 2004 On PPT States in C K C M C N Composite Quantum Systems WANG Xiao-Hong, FEI

More information

Violation of Bell Inequalities

Violation of Bell Inequalities Violation of Bell Inequalities Philipp Kurpiers and Anna Stockklauser 5/12/2011 Quantum Systems for Information Technology Einstein-Podolsky-Rosen paradox (1935) Goal: prove that quantum mechanics is incomplete

More information

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Max-Planck-Institut für Mathematik in den aturwissenschaften Leipzig Bell inequality for multipartite qubit quantum system and the maximal violation by Ming Li and Shao-Ming Fei Preprint no.: 27 2013 Bell

More information

Quantum entanglement and symmetry

Quantum entanglement and symmetry Journal of Physics: Conference Series Quantum entanglement and symmetry To cite this article: D Chrucisi and A Kossaowsi 2007 J. Phys.: Conf. Ser. 87 012008 View the article online for updates and enhancements.

More information

Quantum Entanglement: Detection, Classification, and Quantification

Quantum Entanglement: Detection, Classification, and Quantification Quantum Entanglement: Detection, Classification, and Quantification Diplomarbeit zur Erlangung des akademischen Grades,,Magister der Naturwissenschaften an der Universität Wien eingereicht von Philipp

More information

Collapse versus correlations, EPR, Bell Inequalities, Cloning

Collapse versus correlations, EPR, Bell Inequalities, Cloning Collapse versus correlations, EPR, Bell Inequalities, Cloning The Quantum Eraser, continued Equivalence of the collapse picture and just blithely/blindly calculating correlations EPR & Bell No cloning

More information

D. Bouwmeester et. al. Nature (1997) Joep Jongen. 21th june 2007

D. Bouwmeester et. al. Nature (1997) Joep Jongen. 21th june 2007 al D. Bouwmeester et. al. Nature 390 575 (1997) Universiteit Utrecht 1th june 007 Outline 1 3 4 5 EPR Paradox 1935: Einstein, Podolsky & Rosen Decay of a π meson: π 0 e + e + Entangled state: ψ = 1 ( +

More information

Bell s Theorem...What?! Entanglement and Other Puzzles

Bell s Theorem...What?! Entanglement and Other Puzzles Bell s Theorem...What?! Entanglement and Other Puzzles Kyle Knoepfel 27 February 2008 University of Notre Dame Bell s Theorem p.1/49 Some Quotes about Quantum Mechanics Erwin Schrödinger: I do not like

More information

arxiv: v1 [quant-ph] 15 Feb 2016

arxiv: v1 [quant-ph] 15 Feb 2016 arxiv:1602.04645v1 [quant-ph] 15 Feb 2016 On the existence of a local quasi hidden variable (LqHV) model for each N-qudit state and the maximal quantum violation of Bell inequalities Elena R. Loubenets

More information

CSCO Criterion for Entanglement and Heisenberg Uncertainty Principle

CSCO Criterion for Entanglement and Heisenberg Uncertainty Principle CSCO Criterion for Entanglement and Heisenberg Uncertainty Principle J. Y. Zeng 1, Y. A. Lei 1, S. Y. Pei, X. C. Zeng 3 1 School of Physics, Peking University, Beijing, 1871, China Department of Physics,

More information

Bell's theorem, the measurement problem, Newton's self-gravitation and its connections to violations of the discrete symmetries C, P, T

Bell's theorem, the measurement problem, Newton's self-gravitation and its connections to violations of the discrete symmetries C, P, T Journal of Physics: Conference Series PAPER OPEN ACCESS Bell's theorem, the measurement problem, Newton's self-gravitation and its connections to violations of the discrete symmetries C, P, T To cite this

More information

Quantum measurements and Kolmogorovian probability theory

Quantum measurements and Kolmogorovian probability theory Quantum measurements and Kolmogorovian probability theory D.A.Slavnov arxiv:quant-ph/0301027v1 8 Jan 2003 Department of Physics, Moscow State University, Moscow 119992, Russia. E- mail: slavnov@goa.bog.msu.ru

More information

Basics on quantum information

Basics on quantum information Basics on quantum information Mika Hirvensalo Department of Mathematics and Statistics University of Turku mikhirve@utu.fi Thessaloniki, May 2016 Mika Hirvensalo Basics on quantum information 1 of 52 Brief

More information

Space-Time Symmetries

Space-Time Symmetries Space-Time Symmetries Outline Translation and rotation Parity Charge Conjugation Positronium T violation J. Brau Physics 661, Space-Time Symmetries 1 Conservation Rules Interaction Conserved quantity strong

More information

A history of entanglement

A history of entanglement A history of entanglement Jos Uffink Philosophy Department, University of Minnesota, jbuffink@umn.edu May 17, 2013 Basic mathematics for entanglement of pure states Let a compound system consists of two

More information

EPR correlations, Bell s theorem, and entanglement at a distance: the naive view of an experimentalist

EPR correlations, Bell s theorem, and entanglement at a distance: the naive view of an experimentalist EPR correlations, Bell s theorem, and entanglement at a distance: the naive view of an experimentalist KITP, May 19, 004 Alain Aspect Laboratoire Charles Fabry de l Institut d Optique http://atomoptic.iota.u-psud.fr

More information

Contextuality and the Kochen-Specker Theorem. Interpretations of Quantum Mechanics

Contextuality and the Kochen-Specker Theorem. Interpretations of Quantum Mechanics Contextuality and the Kochen-Specker Theorem Interpretations of Quantum Mechanics by Christoph Saulder 19. 12. 2007 Interpretations of quantum mechanics Copenhagen interpretation the wavefunction has no

More information

Introduction to Quantum Mechanics

Introduction to Quantum Mechanics Introduction to Quantum Mechanics R. J. Renka Department of Computer Science & Engineering University of North Texas 03/19/2018 Postulates of Quantum Mechanics The postulates (axioms) of quantum mechanics

More information

Basics on quantum information

Basics on quantum information Basics on quantum information Mika Hirvensalo Department of Mathematics and Statistics University of Turku mikhirve@utu.fi Thessaloniki, May 2014 Mika Hirvensalo Basics on quantum information 1 of 49 Brief

More information

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS P. Caban, K. Podlaski, J. Rembieliński, K. A. Smoliński and Z. Walczak Department of Theoretical Physics, University of Lodz Pomorska 149/153,

More information

AP/P387 Note2 Single- and entangled-photon sources

AP/P387 Note2 Single- and entangled-photon sources AP/P387 Note Single- and entangled-photon sources Single-photon sources Statistic property Experimental method for realization Quantum interference Optical quantum logic gate Entangled-photon sources Bell

More information

Has CHSH-inequality any relation to EPR-argument?

Has CHSH-inequality any relation to EPR-argument? arxiv:1808.03762v1 [quant-ph] 11 Aug 2018 Has CHSH-inequality any relation to EPR-argument? Andrei Khrennikov International Center for Mathematical Modeling in Physics, Engineering, Economics, and Cognitive

More information

Acceleration and Entanglement: a Deteriorating Relationship

Acceleration and Entanglement: a Deteriorating Relationship Acceleration and Entanglement: a Deteriorating Relationship R.B. Mann Phys. Rev. Lett. 95 120404 (2005) Phys. Rev. A74 032326 (2006) Phys. Rev. A79 042333 (2009) Phys. Rev. A80 02230 (2009) D. Ahn P. Alsing

More information

Laboratory 1: Entanglement & Bell s Inequalities

Laboratory 1: Entanglement & Bell s Inequalities Laboratory 1: Entanglement & Bell s Inequalities Jose Alejandro Graniel Institute of Optics University of Rochester, Rochester, NY 14627, U.S.A Abstract This experiment purpose was to study the violation

More information

QUANTUM ENTANGLEMENT AND ITS ASPECTS. Dileep Dhakal Masters of Science in Nanomolecular Sciences

QUANTUM ENTANGLEMENT AND ITS ASPECTS. Dileep Dhakal Masters of Science in Nanomolecular Sciences QUANTUM ENTANGLEMENT AND ITS ASPECTS Dileep Dhakal Masters of Science in Nanomolecular Sciences Jacobs University Bremen 26 th Nov 2010 Table of Contents: Quantum Superposition Schrödinger s Cat Pure vs.

More information

Entanglement and non-locality of pure quantum states

Entanglement and non-locality of pure quantum states MSc in Photonics Universitat Politècnica de Catalunya (UPC) Universitat Autònoma de Barcelona (UAB) Universitat de Barcelona (UB) Institut de Ciències Fotòniques (ICFO) PHOTONICSBCN http://www.photonicsbcn.eu

More information

EPR paradox, Bell inequality, etc.

EPR paradox, Bell inequality, etc. EPR paradox, Bell inequality, etc. Compatible and incompatible observables AA, BB = 0, then compatible, can measure simultaneously, can diagonalize in one basis commutator, AA, BB AAAA BBBB If we project

More information

Probabilistic exact cloning and probabilistic no-signalling. Abstract

Probabilistic exact cloning and probabilistic no-signalling. Abstract Probabilistic exact cloning and probabilistic no-signalling Arun Kumar Pati Quantum Optics and Information Group, SEECS, Dean Street, University of Wales, Bangor LL 57 IUT, UK (August 5, 999) Abstract

More information

Quantum Entanglement, Quantum Cryptography, Beyond Quantum Mechanics, and Why Quantum Mechanics Brad Christensen Advisor: Paul G.

Quantum Entanglement, Quantum Cryptography, Beyond Quantum Mechanics, and Why Quantum Mechanics Brad Christensen Advisor: Paul G. Quantum Entanglement, Quantum Cryptography, Beyond Quantum Mechanics, and Why Quantum Mechanics Brad Christensen Advisor: Paul G. Kwiat Physics 403 talk: December 2, 2014 Entanglement is a feature of compound

More information

Quantum Entanglement, Beyond Quantum Mechanics, and Why Quantum Mechanics

Quantum Entanglement, Beyond Quantum Mechanics, and Why Quantum Mechanics Quantum Entanglement, Beyond Quantum Mechanics, and Why Quantum Mechanics Brad Christensen Advisor: Paul G. Kwiat Physics 403 talk: July 28, 2014 Entanglement is a feature of compound quantum systems States

More information

Is Entanglement Sufficient to Enable Quantum Speedup?

Is Entanglement Sufficient to Enable Quantum Speedup? arxiv:107.536v3 [quant-ph] 14 Sep 01 Is Entanglement Sufficient to Enable Quantum Speedup? 1 Introduction The mere fact that a quantum computer realises an entangled state is ususally concluded to be insufficient

More information

Entanglement: concept, measures and open problems

Entanglement: concept, measures and open problems Entanglement: concept, measures and open problems Division of Mathematical Physics Lund University June 2013 Project in Quantum information. Supervisor: Peter Samuelsson Outline 1 Motivation for study

More information

Michael H. Shulman, 2006 (Revisited ) WHY QUANTUM MECHANICS IS NON-LOCAL?

Michael H. Shulman, 2006 (Revisited ) WHY QUANTUM MECHANICS IS NON-LOCAL? Michael H. Shulman, 2006 (shulman@dol.ru) (Revisited 20.07.2008) WHY QUANTUM MECHANICS IS NON-LOCAL? A question on a correspondence between the famous Bell s Theorem and Quantum Mechanics foundations is

More information

arxiv: v1 [quant-ph] 27 Oct 2014

arxiv: v1 [quant-ph] 27 Oct 2014 Entangled Entanglement: The Geometry of GHZ States Gabriele Uchida, 1 Reinhold A. Bertlmann, and Beatrix C. Hiesmayr, 3 1 University of Vienna, Faculty of Computer Science, Währinger Strasse 9, 1090 Vienna,

More information

DIRECT CP-VIOLATION AS A TEST OF QUANTUM MECHANICS

DIRECT CP-VIOLATION AS A TEST OF QUANTUM MECHANICS DIRECT CP-VIOLATION AS A TEST OF QUANTUM MECHANICS F. Benatti Dipartimento di Fisica Teorica, Università di Trieste Strada Costiera 11, 34014 Trieste, Italy and Istituto Nazionale di Fisica Nucleare, Sezione

More information

1.1.1 Bell Inequality - Spin correlation

1.1.1 Bell Inequality - Spin correlation January 8, 015 Lecture IV 1.1.1 Bell Inequality - Spin correlation Consider the final spin singlet state of the decay η 0 µ + µ We suppose that the η 0 decays and the muon and µ + travel in opposite directions,

More information

Entanglement and nonlocality

Entanglement and nonlocality Entanglement and nonlocality (collected notes) Fabio Grazioso 2015-06-24 23:06 EDT 2 Contents 1 Introduction 5 1.1 foreword.................................... 5 1.2 general picture................................

More information

Quantification of Gaussian quantum steering. Gerardo Adesso

Quantification of Gaussian quantum steering. Gerardo Adesso Quantification of Gaussian quantum steering Gerardo Adesso Outline Quantum steering Continuous variable systems Gaussian entanglement Gaussian steering Applications Steering timeline EPR paradox (1935)

More information

Einstein, Podolsky and Rosen Paradox, Bell Inequalities and the Relation to the de Broglie-Bohm Theory

Einstein, Podolsky and Rosen Paradox, Bell Inequalities and the Relation to the de Broglie-Bohm Theory Einstein, Podolsky and Rosen Paradox, Bell Inequalities and the Relation to the de Broglie-Bohm Theory Bachelor Thesis for the degree of Bachelor of Science at the University of Vienna submitted by Partener

More information

Einstein-Podolsky-Rosen correlations and Bell correlations in the simplest scenario

Einstein-Podolsky-Rosen correlations and Bell correlations in the simplest scenario Einstein-Podolsky-Rosen correlations and Bell correlations in the simplest scenario Huangjun Zhu (Joint work with Quan Quan, Heng Fan, and Wen-Li Yang) Institute for Theoretical Physics, University of

More information

Emergence of the classical world from quantum physics: Schrödinger cats, entanglement, and decoherence

Emergence of the classical world from quantum physics: Schrödinger cats, entanglement, and decoherence Emergence of the classical world from quantum physics: Schrödinger cats, entanglement, and decoherence Luiz Davidovich Instituto de Física Universidade Federal do Rio de Janeiro Outline of the talk! Decoherence

More information

Testing Quantum Mechanics and Bell's Inequality with Astronomical Observations

Testing Quantum Mechanics and Bell's Inequality with Astronomical Observations Testing Quantum Mechanics and Bell's Inequality with Astronomical Observations Dr. Andrew Friedman NSF Research Associate, Visiting Research Scientist MIT Center for Theoretical Physics http://web.mit.edu/asf/www/

More information

PHY305: Notes on Entanglement and the Density Matrix

PHY305: Notes on Entanglement and the Density Matrix PHY305: Notes on Entanglement and the Density Matrix Here follows a short summary of the definitions of qubits, EPR states, entanglement, the density matrix, pure states, mixed states, measurement, and

More information

arxiv:quant-ph/ v1 28 Oct 2003

arxiv:quant-ph/ v1 28 Oct 2003 Bell s inequalities detect efficient entanglement arxiv:quant-ph/03066 v 8 Oct 003 Antonio Acín, Nicolas Gisin, Lluis Masanes 3, Valerio Scarani Institut de Ciències Fotòniques, Barcelona, Spain. Group

More information

arxiv: v1 [quant-ph] 25 Sep 2015

arxiv: v1 [quant-ph] 25 Sep 2015 Neutral kaons as an open quantum system in a second quantization approach Kordian Andrzej Smoliński arxiv:509.0768v quant-ph] 5 Sep 05 Department of Theoretical Physics, Faculty of Physics Applied Computer

More information

A Note on the Geometric Interpretation of Bell s Inequalities

A Note on the Geometric Interpretation of Bell s Inequalities Lett Math Phys DOI 10.1007/s11005-013-0631-8 A Note on the Geometric Interpretation of Bell s Inequalities PAOLO DAI PRA, MICHELE PAVON and NEERAJA SAHASRABUDHE Dipartimento di Matematica, Università di

More information

Simulating Maximal Quantum Entanglement without Communication. CERF, N. J., et al. Abstract

Simulating Maximal Quantum Entanglement without Communication. CERF, N. J., et al. Abstract Article Simulating Maximal Quantum Entanglement without Communication CERF, N. J., et al. Abstract It is known that all causal correlations between two parties which output each 1 bit, a and b, when receiving

More information

arxiv: v4 [quant-ph] 28 Feb 2018

arxiv: v4 [quant-ph] 28 Feb 2018 Tripartite entanglement detection through tripartite quantum steering in one-sided and two-sided device-independent scenarios arxiv:70086v [quant-ph] 8 Feb 08 C Jebaratnam,, Debarshi Das,, Arup Roy, 3

More information

Challenges in Quantum Information Science. Umesh V. Vazirani U. C. Berkeley

Challenges in Quantum Information Science. Umesh V. Vazirani U. C. Berkeley Challenges in Quantum Information Science Umesh V. Vazirani U. C. Berkeley 1 st quantum revolution - Understanding physical world: periodic table, chemical reactions electronic wavefunctions underlying

More information

Quantum nonlocality in two three-level systems

Quantum nonlocality in two three-level systems PHYSICAL REVIEW A, VOLUME 65, 0535 Quantum nonlocality in two three-level systems A. Acín, 1, T. Durt, 3 N. Gisin, 1 and J. I. Latorre 1 GAP-Optique, 0 rue de l École-de-Médecine, CH-111 Geneva 4, Switzerland

More information

Is quantum linear superposition exact on all energy scales? A unique case study with flavour oscillating systems

Is quantum linear superposition exact on all energy scales? A unique case study with flavour oscillating systems Is quantum linear superposition exact on all energy scales? A unique case study with flavour oscillating systems Supervisor: Dr. Beatrix C. Hiesmayr Universität Wien, Fakultät für Physik March 17, 2015

More information

arxiv: v2 [quant-ph] 21 Oct 2013

arxiv: v2 [quant-ph] 21 Oct 2013 Genuine hidden quantum nonlocality Flavien Hirsch, 1 Marco Túlio Quintino, 1 Joseph Bowles, 1 and Nicolas Brunner 1, 1 Département de Physique Théorique, Université de Genève, 111 Genève, Switzerland H.H.

More information

The controlled-not (CNOT) gate exors the first qubit into the second qubit ( a,b. a,a + b mod 2 ). Thus it permutes the four basis states as follows:

The controlled-not (CNOT) gate exors the first qubit into the second qubit ( a,b. a,a + b mod 2 ). Thus it permutes the four basis states as follows: C/CS/Phys C9 Qubit gates, EPR, ell s inequality 9/8/05 Fall 005 Lecture 4 Two-qubit gate: COT The controlled-not (COT) gate exors the first qubit into the second qubit ( a,b a,a b = a,a + b mod ). Thus

More information

Take that, Bell s Inequality!

Take that, Bell s Inequality! Take that, Bell s Inequality! Scott Barker November 10, 2011 Abstract Bell s inequality was tested using the CHSH method. Entangled photons were produced from two different laser beams by passing light

More information

arxiv: v3 [quant-ph] 20 Jan 2016

arxiv: v3 [quant-ph] 20 Jan 2016 arxiv:1508.01601v3 [quant-ph] 0 Jan 016 Two-player conflicting interest Bayesian games and Bell nonlocality Haozhen Situ April 14, 018 Abstract Nonlocality, one of the most remarkable aspects of quantum

More information

Article. Reference. Bell Inequalities for Arbitrarily High-Dimensional Systems. COLLINS, Daniel Geoffrey, et al.

Article. Reference. Bell Inequalities for Arbitrarily High-Dimensional Systems. COLLINS, Daniel Geoffrey, et al. Article Bell Inequalities for Arbitrarily High-Dimensional Systems COLLINS, Daniel Geoffrey, et al. Abstract We develop a novel approach to Bell inequalities based on a constraint that the correlations

More information

Borromean Entanglement Revisited

Borromean Entanglement Revisited Borromean Entanglement Revisited Ayumu SUGITA Abstract An interesting analogy between quantum entangled states and topological links was suggested by Aravind. In particular, he emphasized a connection

More information

Quantum Mechanics: Fundamentals

Quantum Mechanics: Fundamentals Kurt Gottfried Tung-Mow Yan Quantum Mechanics: Fundamentals Second Edition With 75 Figures Springer Preface vii Fundamental Concepts 1 1.1 Complementarity and Uncertainty 1 (a) Complementarity 2 (b) The

More information

arxiv:quant-ph/ v1 15 Jun 1999

arxiv:quant-ph/ v1 15 Jun 1999 arxiv:quant-ph/9906049v1 15 Jun 1999 Bell inequality and the locality loophole: Active versus passive switches N. Gisin and H. Zbinden Group of Applied Physics University of Geneva, 1211 Geneva 4, Switzerland

More information

Mathematical and Physical Examination of the Locality Condition in Bell s Theorem

Mathematical and Physical Examination of the Locality Condition in Bell s Theorem Physics Essays volume 9, number 4, 006 Mathematical and Physical Examination of the Locality Condition in Bell s Theorem Abstract Using the Clauser Horne model of Bell s theorem, the locality condition

More information

Is Bell s Locality Condition Necessary for The Derivation of Bell s Inequality?

Is Bell s Locality Condition Necessary for The Derivation of Bell s Inequality? Annales de la Fondation Louis de Broglie, Volume 26 no 4, 2001 735 Is Bell s Locality Condition Necessary for The Derivation of Bell s Inequality? M. Golshani, A. Fahmi Institute for Studies in Theoretical

More information

Characterization of Multipartite Entanglement

Characterization of Multipartite Entanglement Characterization of Multipartite Entanglement Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften des Fachbereichs Physik der Universität Dortmund vorgelegt von Bo Chong Juni 2006

More information

Characterization of Bipartite Entanglement

Characterization of Bipartite Entanglement Characterization of Bipartite Entanglement Werner Vogel and Jan Sperling University of Rostock Germany Paraty, September 2009 Paraty, September 2009 UNIVERSITÄT ROSTOCK INSTITUT FÜR PHYSIK 1 Table of Contents

More information

Quantum entanglement and its detection with few measurements

Quantum entanglement and its detection with few measurements Quantum entanglement and its detection with few measurements Géza Tóth ICFO, Barcelona Universidad Complutense, 21 November 2007 1 / 32 Outline 1 Introduction 2 Bipartite quantum entanglement 3 Many-body

More information

Testing Quantum Mechanics and bell s inequality with Observations of Causally Disconnected cosmological events Andrew Friedman

Testing Quantum Mechanics and bell s inequality with Observations of Causally Disconnected cosmological events Andrew Friedman Testing Quantum Mechanics and bell s inequality with Observations of Causally Disconnected cosmological events Andrew Friedman NSF STS Postdoctoral Fellow MIT Center for Theoretical Physics http://web.mit.edu/asf/www/

More information

Group on optical information processing. Pierre Guillot-Noël (Chimie Paris) Ivan Lorgeré (LAC)

Group on optical information processing. Pierre Guillot-Noël (Chimie Paris) Ivan Lorgeré (LAC) Group on optical information processing Pierre Guillot-Noël (Chimie Paris) Ivan Lorgeré (LAC) 1 From Einstein s intuition to quantum bits: a new quantum age? Alain ASPECT - Institut d Optique - Palaiseau

More information

On the Relation between Quantum Discord and Purified Entanglement

On the Relation between Quantum Discord and Purified Entanglement On the Relation between Quantum Discord and Purified Entanglement by Eric Webster A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics

More information

The nature of Reality: Einstein-Podolsky-Rosen Argument in QM

The nature of Reality: Einstein-Podolsky-Rosen Argument in QM The nature of Reality: Einstein-Podolsky-Rosen Argument in QM Michele Caponigro ISHTAR, Bergamo University Abstract From conceptual point of view, we argue about the nature of reality inferred from EPR

More information

Physics is becoming too difficult for physicists. David Hilbert (mathematician)

Physics is becoming too difficult for physicists. David Hilbert (mathematician) Physics is becoming too difficult for physicists. David Hilbert (mathematician) Simple Harmonic Oscillator Credit: R. Nave (HyperPhysics) Particle 2 X 2-Particle wave functions 2 Particles, each moving

More information

Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage

Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage C. S. Unnikrishnan Fundamental Interactions Laboratory Tata Institute

More information

DIPLOMARBEIT. Titel der Diplomarbeit. Entanglement under Global Unitary Operations. angestrebter akademischer Grad

DIPLOMARBEIT. Titel der Diplomarbeit. Entanglement under Global Unitary Operations. angestrebter akademischer Grad DIPLOMARBEIT Titel der Diplomarbeit Entanglement under Global Unitary Operations angestrebter akademischer Grad Magister der Naturwissenschaften (Mag. rer.nat.) Verfasser: Philipp Köhler Matrikel-Nummer:

More information

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016 Problem 3: The EPR state (30 points) The Einstein-Podolsky-Rosen (EPR) paradox is based around a thought experiment of measurements

More information

arxiv: v2 [quant-ph] 21 Nov 2017

arxiv: v2 [quant-ph] 21 Nov 2017 arxiv:1709.03348v2 [quant-ph] 21 Nov 2017 Relativity, Anomalies and Objectivity Loophole in Recent Tests of Local Realism Adam Bednorz Abstract Local realism is in conflict with special quantum Belltype

More information

arxiv: v2 [quant-ph] 22 Sep 2008

arxiv: v2 [quant-ph] 22 Sep 2008 Distilling Non-Locality Manuel Forster Severin Winkler Stefan Wolf Computer Science Department, ETH Zürich, ETH Zentrum, CH-8092 Zürich, Switzerland. E-mail: {forstema,swinkler,wolfst}@ethz.ch arxiv:0809.3173v2

More information

Problems with/failures of QM

Problems with/failures of QM CM fails to describe macroscopic quantum phenomena. Phenomena where microscopic properties carry over into macroscopic world: superfluidity Helium flows without friction at sufficiently low temperature.

More information

arxiv: v2 [quant-ph] 30 Oct 2015

arxiv: v2 [quant-ph] 30 Oct 2015 Experimental violation of Bell inequalities for multi-dimensional systems Hsin-Pin Lo 1, Che-Ming Li 2,*, Atsushi Yabushita 1,+, Yueh-Nan Chen 3, Chih-Wei Luo 1, and Takayoshi Kobayashi 1,4,5,++ arxiv:1501.06429v2

More information

Private quantum subsystems and error correction

Private quantum subsystems and error correction Private quantum subsystems and error correction Sarah Plosker Department of Mathematics and Computer Science Brandon University September 26, 2014 Outline 1 Classical Versus Quantum Setting Classical Setting

More information

Fidelity of Quantum Teleportation through Noisy Channels

Fidelity of Quantum Teleportation through Noisy Channels Fidelity of Quantum Teleportation through Noisy Channels Sangchul Oh, Soonchil Lee, and Hai-woong Lee Department of Physics, Korea Advanced Institute of Science and Technology, Daejon, 305-701, Korea (Dated:

More information

arxiv:quant-ph/ v2 17 Jun 1996

arxiv:quant-ph/ v2 17 Jun 1996 Separability Criterion for Density Matrices arxiv:quant-ph/9604005v2 17 Jun 1996 Asher Peres Department of Physics, Technion Israel Institute of Technology, 32000 Haifa, Israel Abstract A quantum system

More information

Detection of Eavesdropping in Quantum Key Distribution using Bell s Theorem and Error Rate Calculations

Detection of Eavesdropping in Quantum Key Distribution using Bell s Theorem and Error Rate Calculations Detection of Eavesdropping in Quantum Key Distribution using Bell s Theorem and Error Rate Calculations David Gaharia Joel Wibron under the direction of Prof. Mohamed Bourennane Quantum Information & Quantum

More information

Quantum Correlations and Bell Inequality Violation under Decoherence

Quantum Correlations and Bell Inequality Violation under Decoherence Quantum Correlations and Bell Inequality Violation under Decoherence Volkan Erol Computer Engineering Department, Okan University, Istanbul, 34959, Turkey E-mail: volkan.erol@gmail.com Abstract Quantum

More information

Maximal violation of Bell inequalities using continuous-variable measurements

Maximal violation of Bell inequalities using continuous-variable measurements Maximal violation of Bell inequalities using continuous-variable measurements Jérôme Wenger, Mohammad Hafezi, Frédéric Grosshans, Rosa Tualle-Brouri, and Philippe Grangier* Laboratoire Charles Fabry de

More information

A Holevo-type bound for a Hilbert Schmidt distance measure

A Holevo-type bound for a Hilbert Schmidt distance measure Journal of Quantum Information Science, 205, *,** Published Online **** 204 in SciRes. http://www.scirp.org/journal/**** http://dx.doi.org/0.4236/****.204.***** A Holevo-type bound for a Hilbert Schmidt

More information