Real Analysis Math 125A, Fall 2012 Sample Final Questions. x 1+x y. x y x. 2 (1+x 2 )(1+y 2 ) x y

Size: px
Start display at page:

Download "Real Analysis Math 125A, Fall 2012 Sample Final Questions. x 1+x y. x y x. 2 (1+x 2 )(1+y 2 ) x y"

Transcription

1 . Define f : R R by Real Analysis Math 25A, Fall 202 Sample Final Questions f() = Show that f is continuous on R. Is f uniformly continuous on R? To simplify the inequalities a bit, we write 3 + = For,y R, we have f() f(y) = y + + y 2 +y 2 y + + y 2 +y 2. Using the inequality 2 y 2 +y 2, we get + y 2 +y 2 = y +y 2 2 y (+ 2 )(+y 2 ) [ ] + y y (+ 2 )(+y 2 ) [ ] y 2 y 2 (+ 2 )(+y 2 ) ( 2 +y + ) y It follows that y f() f(y) 2 y for all,y R. Therefore f is Lipschitz continuous on R, which implies that it is uniformly continuous (take δ = ǫ/2).

2 2. Does there eist a differentiable function f : R R such that f (0) = 0 but f () for all 0? No such function eists. We have f (0) = lim 0 [ f() f(0) The mean value theorem implies that for for every 0, there is some ξ strictly between 0 and (so ξ 0) such that ]. f() f(0) = f (ξ). Since limits preserve inequalities, it follows that [ ] f() f(0) lim, 0 so we cannot have f (0) = 0. 2

3 3. (a) Write out the Taylor polynomial P 2 () of order two at = 0 for the function +. and give an epression for the remainder R 2 () in Taylor s formula + = P2 ()+R 2 () < <. (b) Show that the limit eists and find its value. lim 0 [ ] +/2 + 2 (a) The function and its derivatives are given by f() = +, f(0) =, f () = 2 (+) /2, f (0) = 2, f () = 4 (+) 3/2, f (0) = 4, f () = 3 8 (+) 5/2. The Taylor polynomial and remainder are P 2 () = 2 k=0 where ξ is between 0 and, which gives k! f(k) (0) k, R 2 () = 3! f (ξ) 3, + = (+ξ) 5/2 3 (b) For this part, we only need the Taylor polynomial of order one, + = (+ξ) 3/2 2 where ξ is between 0 and. Since ξ 0 as 0, it follows that [ ] +/2 + lim = 0 8 lim ξ 0 (+ξ) 3/2 =

4 4. (a) Suppose f n : A R is uniformly continuous on A for every n N and f n f uniformly on A. Prove that f is uniformly continuous on A. (b) Does the result in (a) remain true if f n f pointwise instead of uniformly? (a) Let ǫ > 0. Since f n f converges uniformly on A there eists N N such that f n () f() < ǫ 3 for all A and n > N. Choose some n > N. Since f n is uniformly continuous, there eists δ > 0 such that f n () f n (y) < ǫ 3 for all,y A with y < δ. Then, for all,y A with y < δ, we have f() f(y) f() f n () + f n () f n (y) + f n (y) f() < ǫ, which implies that f is uniformly continuous on A. (b) The result does not remain true if f n f pointwise. For eample, consider f n : [0,] R defined by f n () = n. Then f n is uniformly continuous on [0,] because it is a continuous function on a compact interval, but f n f pointwise where { 0 if 0 <, f() = if =. The limit f is not even continuous on [0,]. 4

5 5. Define f n : [0, ) R by f n () = sin(n) +n. (a) Show that f n converges pointwise on [0, ) and find the pointwise limit f. (b) Show that f n f uniformly on [a, ) for every a > 0. (c) Show that f n does not converge uniformly to f on [0, ). (a) If > 0, then f n () +n 0 as n so f n () 0. Also, f n (0) = 0 for every n, so f n (0) 0. Thus, f n 0 pointwise on [0, ). (b) We have f n () +na < na for all a <, so given ǫ > 0 take N = /a and then f n () < ǫ for all n > N, meaning that f n 0 uniformly on [a, ). (c) If (f n ) converges uniformly on [0, ), then it must converge to the pointwise-limit 0. Let n = π/(2n). Then f n ( n ) = +π/2. Therefore, if 0 < ǫ 0 /(+π/2), there eists [0, ) such that f n () ǫ 0, which means that f n does not converge uniformly to 0 on [0, ). 5

6 y Figure : Plot of the function f n () = sin(n)/(+n) on [0,] for n = 20 (green), n = 00 (red), and n = 500 (blue). Remark. The non-uniform convergence of the sequence near = 0 is illustrated in the figure. We can also write the proof in terms of the sup-norm. Let f a = sup f() [a, ) denote the sup-norm of f on [a, ). If a > 0, then f n a na 0 as n, so f n 0 uniformly on [a, ). If a = 0, then f n 0 +π/2 for every n N, so (f n ) does not converge uniformly to 0 on [0, ). 6

7 6. Suppose that f() = n= sinn n 3, g() = (a) Prove that f,g : R R are continuous. n= (b) Prove that f : R R is differentiable and f = g. cosn n 2. (a) Since sinn n 3 n 3, cosn n 2 n 2, n= n= n 3 < n 2 <, the Weierstrass M-test implies that both series converge uniformly(and absolutely) on R. Each term in the series is continuous, and the uniform limit of continuous functions is continuous, so f, g are continuous on R. (b) The series for g is the term-by-term derivative of the series for f. Since the series for g converges uniformly, the theorem for the differentiation of sequences implies that f is differentiable and f = g. 7

8 7. Let P = {2,3,5,7,,...} be the set of prime numbers. (a) Find the radius of convergence R of the power series f() = p = p P (b) Show that 0 f() 2 for all 0 <. (a) We write the series as f() = a n n n=2 where Then a n = { if n is prime, 0 if n isn t prime. a n n n for every n = 2,3,4,... Therefore, if < the series converges by comparison with the convergent geometric series n. Furthermore, if >, the terms in the series do not approach 0. So the radius of convergence of the series is R =. (b) As in (a), and using the sum of the geometric series, we have for 0 < that 0 p P p n = 2 n = 2, n=2 n=0 which proves the result. 8

9 8. Let (X,d) be a metric space. (a) Define the open ball B r () of radius r > 0 and center X. (b) Define an open set A X. (c) Show that the open ball B r () X is an open set. (a) The open ball is defined by B r () = {y X : d(,y) < r}. (b) A set A X is open if for every A there eists r > 0 such that B r () A. (c) Suppose that y B r (). We have to show that B r () contains an open ball B s (y) for some s > 0. Choose s = r d(,y) > 0. (Draw a picture!) If z B s (y), then by the triangle inequality d(,z) d(,y)+d(y,z) < d(,y)+s = r, meaning thatz B r (). Thus, B s (y) B r (), which proves theresult. 9

Real Analysis Math 125A, Fall 2012 Final Solutions

Real Analysis Math 125A, Fall 2012 Final Solutions Real Analysis Math 25A, Fall 202 Final Solutions. (a) Suppose that f : [0, ] R is continuous on the closed, bounded interval [0, ] and f() > 0 for every 0. Prove that the reciprocal function /f : [0, ]

More information

MA2223 Tutorial solutions Part 1. Metric spaces

MA2223 Tutorial solutions Part 1. Metric spaces MA2223 Tutorial solutions Part 1. Metric spaces T1 1. Show that the function d(,y) = y defines a metric on R. The given function is symmetric and non-negative with d(,y) = 0 if and only if = y. It remains

More information

Math 328 Course Notes

Math 328 Course Notes Math 328 Course Notes Ian Robertson March 3, 2006 3 Properties of C[0, 1]: Sup-norm and Completeness In this chapter we are going to examine the vector space of all continuous functions defined on the

More information

Math 5210, Definitions and Theorems on Metric Spaces

Math 5210, Definitions and Theorems on Metric Spaces Math 5210, Definitions and Theorems on Metric Spaces Let (X, d) be a metric space. We will use the following definitions (see Rudin, chap 2, particularly 2.18) 1. Let p X and r R, r > 0, The ball of radius

More information

Math 140A - Fall Final Exam

Math 140A - Fall Final Exam Math 140A - Fall 2014 - Final Exam Problem 1. Let {a n } n 1 be an increasing sequence of real numbers. (i) If {a n } has a bounded subsequence, show that {a n } is itself bounded. (ii) If {a n } has a

More information

Problem 3. Give an example of a sequence of continuous functions on a compact domain converging pointwise but not uniformly to a continuous function

Problem 3. Give an example of a sequence of continuous functions on a compact domain converging pointwise but not uniformly to a continuous function Problem 3. Give an example of a sequence of continuous functions on a compact domain converging pointwise but not uniformly to a continuous function Solution. If we does not need the pointwise limit of

More information

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n Econ 204 2011 Lecture 3 Outline 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n 1 Metric Spaces and Metrics Generalize distance and length notions

More information

Math 4317 : Real Analysis I Mid-Term Exam 1 25 September 2012

Math 4317 : Real Analysis I Mid-Term Exam 1 25 September 2012 Instructions: Answer all of the problems. Math 4317 : Real Analysis I Mid-Term Exam 1 25 September 2012 Definitions (2 points each) 1. State the definition of a metric space. A metric space (X, d) is set

More information

Problem Set 5: Solutions Math 201A: Fall 2016

Problem Set 5: Solutions Math 201A: Fall 2016 Problem Set 5: s Math 21A: Fall 216 Problem 1. Define f : [1, ) [1, ) by f(x) = x + 1/x. Show that f(x) f(y) < x y for all x, y [1, ) with x y, but f has no fixed point. Why doesn t this example contradict

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. Determine whether the following statements are true or false. Justify your answer (i.e., prove the claim, derive a contradiction or give a counter-example). (a) (10

More information

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1 Math 8B Solutions Charles Martin March 6, Homework Problems. Let (X i, d i ), i n, be finitely many metric spaces. Construct a metric on the product space X = X X n. Proof. Denote points in X as x = (x,

More information

SOME QUESTIONS FOR MATH 766, SPRING Question 1. Let C([0, 1]) be the set of all continuous functions on [0, 1] endowed with the norm

SOME QUESTIONS FOR MATH 766, SPRING Question 1. Let C([0, 1]) be the set of all continuous functions on [0, 1] endowed with the norm SOME QUESTIONS FOR MATH 766, SPRING 2016 SHUANGLIN SHAO Question 1. Let C([0, 1]) be the set of all continuous functions on [0, 1] endowed with the norm f C = sup f(x). 0 x 1 Prove that C([0, 1]) is a

More information

MATH 4200 HW: PROBLEM SET FOUR: METRIC SPACES

MATH 4200 HW: PROBLEM SET FOUR: METRIC SPACES MATH 4200 HW: PROBLEM SET FOUR: METRIC SPACES PETE L. CLARK 4. Metric Spaces (no more lulz) Directions: This week, please solve any seven problems. Next week, please solve seven more. Starred parts of

More information

Math 321 Final Examination April 1995 Notation used in this exam: N. (1) S N (f,x) = f(t)e int dt e inx.

Math 321 Final Examination April 1995 Notation used in this exam: N. (1) S N (f,x) = f(t)e int dt e inx. Math 321 Final Examination April 1995 Notation used in this exam: N 1 π (1) S N (f,x) = f(t)e int dt e inx. 2π n= N π (2) C(X, R) is the space of bounded real-valued functions on the metric space X, equipped

More information

Fourth Week: Lectures 10-12

Fourth Week: Lectures 10-12 Fourth Week: Lectures 10-12 Lecture 10 The fact that a power series p of positive radius of convergence defines a function inside its disc of convergence via substitution is something that we cannot ignore

More information

A Primer on Lipschitz Functions by Robert Dr. Bob Gardner Revised and Corrected, Fall 2013

A Primer on Lipschitz Functions by Robert Dr. Bob Gardner Revised and Corrected, Fall 2013 A Primer on Lipschitz Functions by Robert Dr. Bob Gardner Revised and Corrected, Fall 2013 Note. The purpose of these notes is to contrast the behavior of functions of a real variable and functions of

More information

Constructing Approximations to Functions

Constructing Approximations to Functions Constructing Approximations to Functions Given a function, f, if is often useful to it is often useful to approximate it by nicer functions. For example give a continuous function, f, it can be useful

More information

Metric Spaces Math 413 Honors Project

Metric Spaces Math 413 Honors Project Metric Spaces Math 413 Honors Project 1 Metric Spaces Definition 1.1 Let X be a set. A metric on X is a function d : X X R such that for all x, y, z X: i) d(x, y) = d(y, x); ii) d(x, y) = 0 if and only

More information

REVIEW OF ESSENTIAL MATH 346 TOPICS

REVIEW OF ESSENTIAL MATH 346 TOPICS REVIEW OF ESSENTIAL MATH 346 TOPICS 1. AXIOMATIC STRUCTURE OF R Doğan Çömez The real number system is a complete ordered field, i.e., it is a set R which is endowed with addition and multiplication operations

More information

Math 104: Homework 7 solutions

Math 104: Homework 7 solutions Math 04: Homework 7 solutions. (a) The derivative of f () = is f () = 2 which is unbounded as 0. Since f () is continuous on [0, ], it is uniformly continous on this interval by Theorem 9.2. Hence for

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x . Define f n, g n : [, ] R by f n (x) = Advanced Calculus Math 27B, Winter 25 Solutions: Final nx2 + n 2 x, g n(x) = n2 x 2 + n 2 x. 2 Show that the sequences (f n ), (g n ) converge pointwise on [, ],

More information

MATH 140B - HW 5 SOLUTIONS

MATH 140B - HW 5 SOLUTIONS MATH 140B - HW 5 SOLUTIONS Problem 1 (WR Ch 7 #8). If I (x) = { 0 (x 0), 1 (x > 0), if {x n } is a sequence of distinct points of (a,b), and if c n converges, prove that the series f (x) = c n I (x x n

More information

Notes on uniform convergence

Notes on uniform convergence Notes on uniform convergence Erik Wahlén erik.wahlen@math.lu.se January 17, 2012 1 Numerical sequences We begin by recalling some properties of numerical sequences. By a numerical sequence we simply mean

More information

Introductory Analysis I Fall 2014 Homework #9 Due: Wednesday, November 19

Introductory Analysis I Fall 2014 Homework #9 Due: Wednesday, November 19 Introductory Analysis I Fall 204 Homework #9 Due: Wednesday, November 9 Here is an easy one, to serve as warmup Assume M is a compact metric space and N is a metric space Assume that f n : M N for each

More information

Lecture 3. Econ August 12

Lecture 3. Econ August 12 Lecture 3 Econ 2001 2015 August 12 Lecture 3 Outline 1 Metric and Metric Spaces 2 Norm and Normed Spaces 3 Sequences and Subsequences 4 Convergence 5 Monotone and Bounded Sequences Announcements: - Friday

More information

9. Series representation for analytic functions

9. Series representation for analytic functions 9. Series representation for analytic functions 9.. Power series. Definition: A power series is the formal expression S(z) := c n (z a) n, a, c i, i =,,, fixed, z C. () The n.th partial sum S n (z) is

More information

Solutions to Problem Sheet for Week 11

Solutions to Problem Sheet for Week 11 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week MATH9: Differential Calculus (Advanced) Semester, 7 Web Page: sydney.edu.au/science/maths/u/ug/jm/math9/

More information

Continuous functions that are nowhere differentiable

Continuous functions that are nowhere differentiable Continuous functions that are nowhere differentiable S. Kesavan The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai - 600113. e-mail: kesh @imsc.res.in Abstract It is shown that the existence

More information

Math 320-2: Midterm 2 Practice Solutions Northwestern University, Winter 2015

Math 320-2: Midterm 2 Practice Solutions Northwestern University, Winter 2015 Math 30-: Midterm Practice Solutions Northwestern University, Winter 015 1. Give an example of each of the following. No justification is needed. (a) A metric on R with respect to which R is bounded. (b)

More information

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set Analysis Finite and Infinite Sets Definition. An initial segment is {n N n n 0 }. Definition. A finite set can be put into one-to-one correspondence with an initial segment. The empty set is also considered

More information

g 2 (x) (1/3)M 1 = (1/3)(2/3)M.

g 2 (x) (1/3)M 1 = (1/3)(2/3)M. COMPACTNESS If C R n is closed and bounded, then by B-W it is sequentially compact: any sequence of points in C has a subsequence converging to a point in C Conversely, any sequentially compact C R n is

More information

Metric Spaces and Topology

Metric Spaces and Topology Chapter 2 Metric Spaces and Topology From an engineering perspective, the most important way to construct a topology on a set is to define the topology in terms of a metric on the set. This approach underlies

More information

Metric Spaces Math 413 Honors Project

Metric Spaces Math 413 Honors Project Metric Spaces Math 413 Honors Project 1 Metric Spaces Definition 1.1 Let X be a set. A metric on X is a function d : X X R such that for all x, y, z X: i) d(x, y) = d(y, x); ii) d(x, y) = 0 if and only

More information

Math LM (24543) Lectures 02

Math LM (24543) Lectures 02 Math 32300 LM (24543) Lectures 02 Ethan Akin Office: NAC 6/287 Phone: 650-5136 Email: ethanakin@earthlink.net Spring, 2018 Contents Continuity, Ross Chapter 3 Uniform Continuity and Compactness Connectedness

More information

7: FOURIER SERIES STEVEN HEILMAN

7: FOURIER SERIES STEVEN HEILMAN 7: FOURIER SERIES STEVE HEILMA Contents 1. Review 1 2. Introduction 1 3. Periodic Functions 2 4. Inner Products on Periodic Functions 3 5. Trigonometric Polynomials 5 6. Periodic Convolutions 7 7. Fourier

More information

Week 5 Lectures 13-15

Week 5 Lectures 13-15 Week 5 Lectures 13-15 Lecture 13 Definition 29 Let Y be a subset X. A subset A Y is open in Y if there exists an open set U in X such that A = U Y. It is not difficult to show that the collection of all

More information

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES INTRODUCTION TO REAL ANALYSIS II MATH 433 BLECHER NOTES. As in earlier classnotes. As in earlier classnotes (Fourier series) 3. Fourier series (continued) (NOTE: UNDERGRADS IN THE CLASS ARE NOT RESPONSIBLE

More information

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University February 7, 2007 2 Contents 1 Metric Spaces 1 1.1 Basic definitions...........................

More information

Bounded uniformly continuous functions

Bounded uniformly continuous functions Bounded uniformly continuous functions Objectives. To study the basic properties of the C -algebra of the bounded uniformly continuous functions on some metric space. Requirements. Basic concepts of analysis:

More information

Review of Power Series

Review of Power Series Review of Power Series MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Introduction In addition to the techniques we have studied so far, we may use power

More information

Differentiating Series of Functions

Differentiating Series of Functions Differentiating Series of Functions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 30, 017 Outline 1 Differentiating Series Differentiating

More information

MATH 31BH Homework 1 Solutions

MATH 31BH Homework 1 Solutions MATH 3BH Homework Solutions January 0, 04 Problem.5. (a) (x, y)-plane in R 3 is closed and not open. To see that this plane is not open, notice that any ball around the origin (0, 0, 0) will contain points

More information

Supplement. The Extended Complex Plane

Supplement. The Extended Complex Plane The Extended Complex Plane 1 Supplement. The Extended Complex Plane Note. In section I.6, The Extended Plane and Its Spherical Representation, we introduced the extended complex plane, C = C { }. We defined

More information

Logical Connectives and Quantifiers

Logical Connectives and Quantifiers Chapter 1 Logical Connectives and Quantifiers 1.1 Logical Connectives 1.2 Quantifiers 1.3 Techniques of Proof: I 1.4 Techniques of Proof: II Theorem 1. Let f be a continuous function. If 1 f(x)dx 0, then

More information

Some Background Material

Some Background Material Chapter 1 Some Background Material In the first chapter, we present a quick review of elementary - but important - material as a way of dipping our toes in the water. This chapter also introduces important

More information

FRACTAL GEOMETRY, DYNAMICAL SYSTEMS AND CHAOS

FRACTAL GEOMETRY, DYNAMICAL SYSTEMS AND CHAOS FRACTAL GEOMETRY, DYNAMICAL SYSTEMS AND CHAOS MIDTERM SOLUTIONS. Let f : R R be the map on the line generated by the function f(x) = x 3. Find all the fixed points of f and determine the type of their

More information

MATH 5640: Fourier Series

MATH 5640: Fourier Series MATH 564: Fourier Series Hung Phan, UMass Lowell September, 8 Power Series A power series in the variable x is a series of the form a + a x + a x + = where the coefficients a, a,... are real or complex

More information

Measure and Integration: Solutions of CW2

Measure and Integration: Solutions of CW2 Measure and Integration: s of CW2 Fall 206 [G. Holzegel] December 9, 206 Problem of Sheet 5 a) Left (f n ) and (g n ) be sequences of integrable functions with f n (x) f (x) and g n (x) g (x) for almost

More information

MATH 202B - Problem Set 5

MATH 202B - Problem Set 5 MATH 202B - Problem Set 5 Walid Krichene (23265217) March 6, 2013 (5.1) Show that there exists a continuous function F : [0, 1] R which is monotonic on no interval of positive length. proof We know there

More information

Assignment-10. (Due 11/21) Solution: Any continuous function on a compact set is uniformly continuous.

Assignment-10. (Due 11/21) Solution: Any continuous function on a compact set is uniformly continuous. Assignment-1 (Due 11/21) 1. Consider the sequence of functions f n (x) = x n on [, 1]. (a) Show that each function f n is uniformly continuous on [, 1]. Solution: Any continuous function on a compact set

More information

Contents. Preface xi. vii

Contents. Preface xi. vii Preface xi 1. Real Numbers and Monotone Sequences 1 1.1 Introduction; Real numbers 1 1.2 Increasing sequences 3 1.3 Limit of an increasing sequence 4 1.4 Example: the number e 5 1.5 Example: the harmonic

More information

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1

Problem set 5, Real Analysis I, Spring, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, 1 x (log 1/ x ) 2 dx 1 Problem set 5, Real Analysis I, Spring, 25. (5) Consider the function on R defined by f(x) { x (log / x ) 2 if x /2, otherwise. (a) Verify that f is integrable. Solution: Compute since f is even, R f /2

More information

Analysis II: Basic knowledge of real analysis: Part V, Power Series, Differentiation, and Taylor Series

Analysis II: Basic knowledge of real analysis: Part V, Power Series, Differentiation, and Taylor Series .... Analysis II: Basic knowledge of real analysis: Part V, Power Series, Differentiation, and Taylor Series Kenichi Maruno Department of Mathematics, The University of Texas - Pan American March 4, 20

More information

Problem Set 1: Solutions Math 201A: Fall Problem 1. Let (X, d) be a metric space. (a) Prove the reverse triangle inequality: for every x, y, z X

Problem Set 1: Solutions Math 201A: Fall Problem 1. Let (X, d) be a metric space. (a) Prove the reverse triangle inequality: for every x, y, z X Problem Set 1: s Math 201A: Fall 2016 Problem 1. Let (X, d) be a metric space. (a) Prove the reverse triangle inequality: for every x, y, z X d(x, y) d(x, z) d(z, y). (b) Prove that if x n x and y n y

More information

Preliminary Exam 2016 Solutions to Morning Exam

Preliminary Exam 2016 Solutions to Morning Exam Preliminary Exam 16 Solutions to Morning Exam Part I. Solve four of the following five problems. Problem 1. Find the volume of the ice cream cone defined by the inequalities x + y + z 1 and x + y z /3

More information

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n Solve the following 6 problems. 1. Prove that if series n=1 a nx n converges for all x such that x < 1, then the series n=1 a n xn 1 x converges as well if x < 1. n For x < 1, x n 0 as n, so there exists

More information

Chapter 2. Metric Spaces. 2.1 Metric Spaces

Chapter 2. Metric Spaces. 2.1 Metric Spaces Chapter 2 Metric Spaces ddddddddddddddddddddddddd ddddddd dd ddd A metric space is a mathematical object in which the distance between two points is meaningful. Metric spaces constitute an important class

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. (a) (10 points) State the formal definition of a Cauchy sequence of real numbers. A sequence, {a n } n N, of real numbers, is Cauchy if and only if for every ɛ > 0,

More information

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall. .1 Limits of Sequences. CHAPTER.1.0. a) True. If converges, then there is an M > 0 such that M. Choose by Archimedes an N N such that N > M/ε. Then n N implies /n M/n M/N < ε. b) False. = n does not converge,

More information

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions f() 8 6 4 8 6-3 - - 3 4 5 6 f().9.8.7.6.5.4.3.. -4-3 - - 3 f() 7 6 5 4 3-3 - - Calculus Problem Sheet Prof Paul Sutcliffe. By applying the vertical line test, or otherwise, determine whether each of the

More information

THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES

THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES PHILIP GADDY Abstract. Throughout the course of this paper, we will first prove the Stone- Weierstrass Theroem, after providing some initial

More information

Contents Ordered Fields... 2 Ordered sets and fields... 2 Construction of the Reals 1: Dedekind Cuts... 2 Metric Spaces... 3

Contents Ordered Fields... 2 Ordered sets and fields... 2 Construction of the Reals 1: Dedekind Cuts... 2 Metric Spaces... 3 Analysis Math Notes Study Guide Real Analysis Contents Ordered Fields 2 Ordered sets and fields 2 Construction of the Reals 1: Dedekind Cuts 2 Metric Spaces 3 Metric Spaces 3 Definitions 4 Separability

More information

Problem List MATH 5143 Fall, 2013

Problem List MATH 5143 Fall, 2013 Problem List MATH 5143 Fall, 2013 On any problem you may use the result of any previous problem (even if you were not able to do it) and any information given in class up to the moment the problem was

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Solutions to Problem Set 5 for , Fall 2007

Solutions to Problem Set 5 for , Fall 2007 Solutions to Problem Set 5 for 18.101, Fall 2007 1 Exercise 1 Solution For the counterexample, let us consider M = (0, + ) and let us take V = on M. x Let W be the vector field on M that is identically

More information

Continuous Functions on Metric Spaces

Continuous Functions on Metric Spaces Continuous Functions on Metric Spaces Math 201A, Fall 2016 1 Continuous functions Definition 1. Let (X, d X ) and (Y, d Y ) be metric spaces. A function f : X Y is continuous at a X if for every ɛ > 0

More information

This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus II.

This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus II. MTH 142 Practice Exam Chapters 9-11 Calculus II With Analytic Geometry Fall 2011 - University of Rhode Island This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus

More information

Lecture 5: Rules of Differentiation. First Order Derivatives

Lecture 5: Rules of Differentiation. First Order Derivatives Lecture 5: Rules of Differentiation First order derivatives Higher order derivatives Partial differentiation Higher order partials Differentials Derivatives of implicit functions Generalized implicit function

More information

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by L p Functions Given a measure space (, µ) and a real number p [, ), recall that the L p -norm of a measurable function f : R is defined by f p = ( ) /p f p dµ Note that the L p -norm of a function f may

More information

Linear Analysis Lecture 5

Linear Analysis Lecture 5 Linear Analysis Lecture 5 Inner Products and V Let dim V < with inner product,. Choose a basis B and let v, w V have coordinates in F n given by x 1. x n and y 1. y n, respectively. Let A F n n be the

More information

WORKSHEET FOR THE PRELIMINARY EXAMINATION-REAL ANALYSIS (SEQUENCES OF FUNCTIONS, SERIES OF FUNCTIONS & POWER SERIES)

WORKSHEET FOR THE PRELIMINARY EXAMINATION-REAL ANALYSIS (SEQUENCES OF FUNCTIONS, SERIES OF FUNCTIONS & POWER SERIES) WORKSHEET FOR THE PRELIMINARY EXAMINATION-REAL ANALYSIS (SEQUENCES OF FUNCTIONS, SERIES OF FUNCTIONS & POWER SERIES) INSTRUCTOR: CEZAR LUPU Problem. Decide which of the following sequences of functions

More information

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6 Matthew Straughn Math 402 Homework 6 Homework 6 (p. 452) 14.3.3, 14.3.4, 14.3.5, 14.3.8 (p. 455) 14.4.3* (p. 458) 14.5.3 (p. 460) 14.6.1 (p. 472) 14.7.2* Lemma 1. If (f (n) ) converges uniformly to some

More information

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N Applied Analysis prelim July 15, 216, with solutions Solve 4 of the problems 1-5 and 2 of the problems 6-8. We will only grade the first 4 problems attempted from1-5 and the first 2 attempted from problems

More information

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions

Calculus Problem Sheet Prof Paul Sutcliffe. 2. State the domain and range of each of the following functions f( 8 6 4 8 6-3 - - 3 4 5 6 f(.9.8.7.6.5.4.3.. -4-3 - - 3 f( 7 6 5 4 3-3 - - Calculus Problem Sheet Prof Paul Sutcliffe. By applying the vertical line test, or otherwise, determine whether each of the following

More information

Chapter II. Metric Spaces and the Topology of C

Chapter II. Metric Spaces and the Topology of C II.1. Definitions and Examples of Metric Spaces 1 Chapter II. Metric Spaces and the Topology of C Note. In this chapter we study, in a general setting, a space (really, just a set) in which we can measure

More information

THE INVERSE FUNCTION THEOREM

THE INVERSE FUNCTION THEOREM THE INVERSE FUNCTION THEOREM W. PATRICK HOOPER The implicit function theorem is the following result: Theorem 1. Let f be a C 1 function from a neighborhood of a point a R n into R n. Suppose A = Df(a)

More information

Summer Jump-Start Program for Analysis, 2012 Song-Ying Li

Summer Jump-Start Program for Analysis, 2012 Song-Ying Li Summer Jump-Start Program for Analysis, 01 Song-Ying Li 1 Lecture 6: Uniformly continuity and sequence of functions 1.1 Uniform Continuity Definition 1.1 Let (X, d 1 ) and (Y, d ) are metric spaces and

More information

Bootcamp. Christoph Thiele. Summer As in the case of separability we have the following two observations: Lemma 1 Finite sets are compact.

Bootcamp. Christoph Thiele. Summer As in the case of separability we have the following two observations: Lemma 1 Finite sets are compact. Bootcamp Christoph Thiele Summer 212.1 Compactness Definition 1 A metric space is called compact, if every cover of the space has a finite subcover. As in the case of separability we have the following

More information

MASTERS EXAMINATION IN MATHEMATICS SOLUTIONS

MASTERS EXAMINATION IN MATHEMATICS SOLUTIONS MASTERS EXAMINATION IN MATHEMATICS PURE MATHEMATICS OPTION SPRING 010 SOLUTIONS Algebra A1. Let F be a finite field. Prove that F [x] contains infinitely many prime ideals. Solution: The ring F [x] of

More information

2.4 The Extreme Value Theorem and Some of its Consequences

2.4 The Extreme Value Theorem and Some of its Consequences 2.4 The Extreme Value Theorem and Some of its Consequences The Extreme Value Theorem deals with the question of when we can be sure that for a given function f, (1) the values f (x) don t get too big or

More information

McGill University Math 354: Honors Analysis 3

McGill University Math 354: Honors Analysis 3 Practice problems McGill University Math 354: Honors Analysis 3 not for credit Problem 1. Determine whether the family of F = {f n } functions f n (x) = x n is uniformly equicontinuous. 1st Solution: The

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

COMPLETE METRIC SPACES AND THE CONTRACTION MAPPING THEOREM

COMPLETE METRIC SPACES AND THE CONTRACTION MAPPING THEOREM COMPLETE METRIC SPACES AND THE CONTRACTION MAPPING THEOREM A metric space (M, d) is a set M with a metric d(x, y), x, y M that has the properties d(x, y) = d(y, x), x, y M d(x, y) d(x, z) + d(z, y), x,

More information

Solutions to Homework #3, Math 116

Solutions to Homework #3, Math 116 Solutions to Homework #, Math 6 Keziah Cook and Michael McElroy November 5, Problem Goroff) In each of the following cases, determine the supremum of f over its domain D. If there are points x D for which

More information

ANALYSIS WORKSHEET II: METRIC SPACES

ANALYSIS WORKSHEET II: METRIC SPACES ANALYSIS WORKSHEET II: METRIC SPACES Definition 1. A metric space (X, d) is a space X of objects (called points), together with a distance function or metric d : X X [0, ), which associates to each pair

More information

Outline of Fourier Series: Math 201B

Outline of Fourier Series: Math 201B Outline of Fourier Series: Math 201B February 24, 2011 1 Functions and convolutions 1.1 Periodic functions Periodic functions. Let = R/(2πZ) denote the circle, or onedimensional torus. A function f : C

More information

Introduction to Functional Analysis

Introduction to Functional Analysis Introduction to Functional Analysis Carnegie Mellon University, 21-640, Spring 2014 Acknowledgements These notes are based on the lecture course given by Irene Fonseca but may differ from the exact lecture

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Complex Analysis Slide 9: Power Series

Complex Analysis Slide 9: Power Series Complex Analysis Slide 9: Power Series MA201 Mathematics III Department of Mathematics IIT Guwahati August 2015 Complex Analysis Slide 9: Power Series 1 / 37 Learning Outcome of this Lecture We learn Sequence

More information

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series:

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series: Math Rahman Week 0.8-0.0 Taylor Series Suppose the function f has the following power series: fx) c 0 + c x a) + c x a) + c 3 x a) 3 + c n x a) n. ) Can we figure out what the coefficients are? Yes, yes

More information

Mid Term-1 : Practice problems

Mid Term-1 : Practice problems Mid Term-1 : Practice problems These problems are meant only to provide practice; they do not necessarily reflect the difficulty level of the problems in the exam. The actual exam problems are likely to

More information

SOLUTIONS TO SOME PROBLEMS

SOLUTIONS TO SOME PROBLEMS 23 FUNCTIONAL ANALYSIS Spring 23 SOLUTIONS TO SOME PROBLEMS Warning:These solutions may contain errors!! PREPARED BY SULEYMAN ULUSOY PROBLEM 1. Prove that a necessary and sufficient condition that the

More information

A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions

A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions 1 Distance Reading [SB], Ch. 29.4, p. 811-816 A metric space is a set S with a given distance (or metric) function d(x, y) which satisfies the conditions (a) Positive definiteness d(x, y) 0, d(x, y) =

More information

Exam 2 extra practice problems

Exam 2 extra practice problems Exam 2 extra practice problems (1) If (X, d) is connected and f : X R is a continuous function such that f(x) = 1 for all x X, show that f must be constant. Solution: Since f(x) = 1 for every x X, either

More information

Convergence for periodic Fourier series

Convergence for periodic Fourier series Chapter 8 Convergence for periodic Fourier series We are now in a position to address the Fourier series hypothesis that functions can realized as the infinite sum of trigonometric functions discussed

More information

B553 Lecture 1: Calculus Review

B553 Lecture 1: Calculus Review B553 Lecture 1: Calculus Review Kris Hauser January 10, 2012 This course requires a familiarity with basic calculus, some multivariate calculus, linear algebra, and some basic notions of metric topology.

More information

Sobolev spaces. May 18

Sobolev spaces. May 18 Sobolev spaces May 18 2015 1 Weak derivatives The purpose of these notes is to give a very basic introduction to Sobolev spaces. More extensive treatments can e.g. be found in the classical references

More information

Summer Jump-Start Program for Analysis, 2012 Song-Ying Li. 1 Lecture 7: Equicontinuity and Series of functions

Summer Jump-Start Program for Analysis, 2012 Song-Ying Li. 1 Lecture 7: Equicontinuity and Series of functions Summer Jump-Start Program for Analysis, 0 Song-Ying Li Lecture 7: Equicontinuity and Series of functions. Equicontinuity Definition. Let (X, d) be a metric space, K X and K is a compact subset of X. C(K)

More information

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books. Applied Analysis APPM 44: Final exam 1:3pm 4:pm, Dec. 14, 29. Closed books. Problem 1: 2p Set I = [, 1]. Prove that there is a continuous function u on I such that 1 ux 1 x sin ut 2 dt = cosx, x I. Define

More information