Concurrency theory. proof-techniques for syncronous and asynchronous pi-calculus. Francesco Zappa Nardelli. INRIA Rocquencourt, MOSCOVA research team

Size: px
Start display at page:

Download "Concurrency theory. proof-techniques for syncronous and asynchronous pi-calculus. Francesco Zappa Nardelli. INRIA Rocquencourt, MOSCOVA research team"

Transcription

1 Concurrency theory proof-techniques for syncronous and asynchronous pi-calculus Francesco Zappa Nardelli INRIA Rocquencourt, MOSCOVA research team francesco.zappa together with Frank Valencia (INRIA Futurs) Catuscia alamidessi (INRIA Futurs) Roberto Amadio (S) MRI - Concurrency October 15, 2007

2 Summary of last episode The syntax and reduction semantics of pi-calculus. A general and intuitive contextual equivalence. Relationship between lts + bisimulation and contextual equivalence. with proofs for CCS 1

3 Summary of actions in pi-calculus LTS l kind fn(l) bn(l) n(l) x y free output {x, y} {x, y} (νy)x y bound output {x} {y} {x, y} x(y) input {x, y} {x, y} τ internal 2

4 Back on pi-calculus LTS x v. x v x(y). x(v) { v / y } x v Q x(v) Q Q τ Q l bn(l) fn(q) = l v n(l)! l Q l Q (νv) l (νv)! l x v x v (νv)x v Q x(v) Q v fn(q) (νv) (νv)x v Q τ (νv)( Q ) 3

5 Subtleties of pi-calculus LTS Exercise: derive a τ transition corresponding to this reduction: (νx)a x. a(y).q (νx)( Q{ x / y }) Exercise: each side condition in the definition of the LTS is needed to have the theorem Q iff τ Q Remove on side condition at a time and find counter-examples to this theorem. 4

6 Weak bisimulation is a sound proof technique for reduction barbed congruence rove that weak bisimulation is reduction closed. rove that weak bisimulation is barb preserving. rove that weak-bisimulation is a congruence....at the blackboard...at the blackboard...ahem, think twice... 5

7 On soundness of weak bisimilarity Exercise: Consider the terms (in a pi-calculus extended with +): = x v y(z) Q = x v.y(z) + y(z).x v 1. rove that Q Does Q? 2 1 Does this hold if we replace + by 1 2 = (νw)(w w(). 1 w(). 2 ) in Q? 2 Hint: define a context that equates the names x and y. 6

8 Bisimilarity is not a congruence In pi-calculus, bisimilarity (both strong and weak) is not preserved by input prefixes, that is contexts of the form C[ ] = x(y).. Question: how to recover the soundness of the bisimilarity with respect to the reduction barbed congruence? Two solutions: 1. close the reduction barbed congruence under all non input prefix contexts; 2. close the bisimilarity under substitution: let c Q ( is fully bisimilar with Q) if σ Qσ for all substitutions σ. Exercise: Show that c Q, where and Q are defined in the previous slide. 7

9 And completeness? Completeness of bisimulation with respect to barbed congruence 3 (closed under non-input prefixes, denoted ) holds in the strong case. In the weak case, we have that for = a x E xy Q = a y E xy where E xy =!x(z).y z!y(z).x z it holds that Q but Q for each context C[ ]. Completeness (for image-finite processes) holds if a name-matching operator is added to the language. 3 barbed congruence is a variant of reduction-closed barbed congruence in which closure under context is allowed only at the beginning of the bisimulation game. 8

10 How to prove... To show that two processes are bisimilar, it is enough to fo find a bisimulation relating them. Easy? Example: we want to show that (in the pi-calculus) bisimilarity is preserved by parallel composition. We naturally consider R = {( R, Q R) : Q} as a candidate bisimulation. But... 9

11 The candidate bisimulation 1. may be larger than at first envisaged; 2. may be infinite; example: to show that x(z).y z (νw)(x(z).w z w(v).y v ), we must consider: {(x(z).y z, (νw)(x(z).w z w(v).y v ))} {(y a, (νw)(w a w(v).y v )) : a arbitrary} {(y a, (νw)(0 y a )) : a arbitrary} {(0, (νw)(0 0))} 3. hard to guess; which is the smallest bisimulation relating!! and!? 4. awkward to describe and to work with... 10

12 Up-to proof techniques Idea: find classes of relations that: 1. are not themselves bisimulations; 2. can be automatically completed into bisimulations. Idea, explained: if we had such a class then to prove that two processes are bisimilar it would be enough to exhibit a relation in this class 4 that contains the two processes. Example: bisimulation up to (analogous to what we did with CCS). 4 Hopefully, it is easier to find such relation than to find the candidate bisimulation directly. 11

13 Bisimulation up to non-input context A symmetric relation R is a bisimulation up-to non-input context if whenever R Q and l then there exists a process Q such that Q = ˆl Q and there exist a non-input context C[ ] and processes and Q such that C[ ], Q C[Q ], and R Q. Exercise: rove that if R is a bisimulation up to non-input context, then {(C[ ], C[Q]) : R Q and C[ ] is a non-input context} is a bisimulation up to structural congruence. Exercise: rove that!!! (hint: show that the relation R = {(!!,! )} is a bisimulation up to non-input context). 12

14 Alternative LTS rules for replication It is often convenient to replace the rule:! l! l with the three rules: l x y 1 x(y) 2 (νy)x y 1 x(y) 2! l!! τ ( 1 2 )!! τ (νy)( 1 2 )! 13

15 Theorems about replication The equivalence!!! shows that duplication of a replicable resource has no behavioural effect. Consider now (νx)(!x(y).q) We may call!x(y).q a private resource of. Suppose 1 that 2. It holds ) ) ) (νx) ( 1 2!x(y).Q (νx) ( 1!x(y).Q (νx) ( 2!x(y).Q provided that 1 and 2 never read over x. 14

16 Intermezzo: two applications of process languages rotocol verification using the Mobility Workbench ost-hoc specification of TC Demos 15

17 Asynchronous communication CCS and pi-calculus (and many others) are based on synchronized interaction, that is, the acts of sending a datum and receiving it coincide: a. a.q Q. In real-world distributed systems, sending a datum and receiving it are distinct acts: a. a.q a a.q Q. In an asynchronous world, the prefix. does not express temporal precedence. 16

18 Asynchronous interaction made easy Idea: the only term than can appear underneath an output prefix is 0. Intuition: an unguarded occurence of x y can be thought of as a datum y in an implicit communication medium tagged with x. Formally: x y x(z). { y / z }. We suppose that the communication medium has unbounded capacity and preserves no ordering among output particles. 17

19 Asynchronous pi-calculus Syntax: ::= 0 x(y). x y (νx)! The definitions of free and bound names, of structural congruence, and of the reduction relation are inherited from pi-calculus. 18

20 Examples Sequentialization of output actions is still possible: (νy, z)(x y y z z a R). Synchronous communication can be implemented by waiting for an acknoledgement: [ x y. ] = (νu)(x y, u u(). ) [ x(v).q ] = x(v, w).(w Q) for w Q Exercise: implement synchronous communication without relying on polyadic primitives. 19

21 Contextual equivalence and asynchronous pi-calculus It is natural to impose two constraints to the basic recipe: compare terms using only asynchronous contexts; restrict the observables to be co-names. To observe a process is to interact with it by performing a complementary action and reporting it: in asynchronous pi-calculus input actions cannot be observed. 20

22 A peculiarity of synchronous equivalences The terms =!x(z).x z Q = 0 are not reduction barbed congruent, but they are asynchronous reduction barbed congruent. Intuition: in an asynchronous world, if the medium is unbound, then buffers do not influence the computation. 21

23 A proof method Consider now the weak bisimilarity s built on top of the standard (early) LTS for pi-calculus. As asynchronous pi-calculus is a sub-calculus of pi-calculus, s is an equivalence for asynchronous pi-calculus terms. It holds s, that is the standard pi-calculus bisimilarity is a sound proof technique for. But!x(z).x z s 0. Question: can a labelled bisimilarity recover the natural contextual equivalence? 22

24 A problem and two solutions Transitions in an LTS should represent observable interactions a term can engage with a context: if x y then can interact with the context x(u).beep, where beep is activated if and only if the output action has been observed; if x(y) then in no way beep can be activated if and only if the input action has been observed! Solutions: 1. relax the matching condition for input actions in the bisimulation game; 2. modify the LTS so that it precisely identifies the interactions that a term can have with its environment. 23

25 Amadio, Castellani, Sangiorgi Idea: relax the matching condition for input actions. Let asynchronous bisimulation a be the largest symmetric relation such that whenever a Q it holds: 1. if l and l x(y) then there exists Q such that Q = ˆl Q and a Q ; 2. if x(y) then there exists Q such that Q x y = Q and a Q. Remark: is the outcome of the interaction of with the context x y. Clause 2. allows Q to interact with the same context, but does not force this interaction. 24

26 Honda, Tokoro x y x y 0 x(u). x(y) { y / u } 0 x(y) x y x y x y α y α (νy) (νy)x y (νy) α (νy) x y Q x(y) Q x (y) Q x(y) Q y fn(q) Q τ Q Q τ (νy)( Q ) α bn(α) fn(q) = α Q Q Q Q α Q α Q 25

27 Honda, Tokoro explained Ideas: modify the LTS so that it precisely identifies the interactions that a term can have with its environment; rely on a standard weak bisimulation. Amazing results: asynchrounous bisimilarity in ACS style, bisimilarity on top of HT LTS, and barbed congruence coincide. 5 5 ahem, modulo some technical details. 26

28 roperties of asynchronous bisimilarity in ACS style Bisimilarity is a congruence; it is preserved also by input prefix, while it is not in the synchronous case; bisimilarity is an equivalence relation (transitivity is non-trivial); bisimilarity is sound with respect to reduction barbed congruence; bisimilarity is complete with respect to barbed congruence. 6 6 for completeness the calculus must be equipped with a matching operator. 27

29 Some proofs about ACS bisimilarity... on asynchronous CCS Syntax: ::= 0 a. a (νa). Reduction semantics: a. a Q Q Q where is defined as: Q Q ( Q) R (Q R) (νa) Q (νa)( Q) if a fn(q) 28

30 Background: LTS and weak bisimilarity for asynchronous CCS a. a a a 0 a Q a Q Q τ Q Q l l Q l (νa) a fn(l) l (νa) symmetric rules omitted. Definition: Asynchronous weak bisimilarity, denoted, is the largest symmetric relation such that whenever Q and l, l {τ, a}, there exists Q such that Q = ˆl Q and Q ; a, there exists Q such that Q a = Q and Q. 29

31 Sketch of the proof of transitivity of Let R = {(, R) : Q R}. We show that R. Suppose that R R because Q R, and that a. The definition of ensures that there exists Q such that Q a = Q and Q. Since is a congruence and Q R, it holds that Q a R a. A simple corollary of the defintion of the bisimilarity ensures that there exists R R a = R and Q R. such that Then R R by construction of R. The other cases are standard. Remark the unusual use of the congruence of the bisimilarity. 30

32 Sketch of the proof of completeness We show that. Suppose that Q and that a. We must conclude that there exists Q such that Q a = Q and Q. Since is a congruence, it holds that a Q a. Since a, it holds that a τ. Since a Q a, the definition of ensures that there exists Q such that Q a = Q and Q, as desired. The other cases are analogous to the completeness proof in synchronous CCS. The difficulty of the completeness proof is to construct contexts that observe the actions of a process. The case a is straightforward because there is nothing to observe. 31

33 Some references Kohei Honda, Mario Tokoro: An Object Calculus for Asynchronous Communication. ECOO Kohei Honda, Mario Tokoro, On asynchronous communication semantics. Object- Based Concurrent Computing Gerard Boudol, Asynchrony and the pi-calculus. INRIA Research Report, Roberto Amadio, Ilaria Castellani, Davide Sangiorgi, On bisimulations for the asynchronous pi-calculus. Theor. Comput. Sci. 195(2),

Strong bisimilarity can be opened

Strong bisimilarity can be opened Strong bisimilarity can be opened Henning E. Andersen Hans Hüttel Karina N. Jensen June 7, 2002 Abstract We present an extension of the semantics of the π-calculus without match where strong bisimilarity

More information

Making the unobservable, unobservable

Making the unobservable, unobservable ICE 2008 Making the unobservable, unobservable Julian Rathke ecs, University of Southampton awe l Sobociński 1 ecs, University of Southampton Abstract Behavioural equivalences of various calculi for modelling

More information

Concurrency theory. name passing, contextual equivalences. Francesco Zappa Nardelli. INRIA Paris-Rocquencourt, MOSCOVA research team

Concurrency theory. name passing, contextual equivalences. Francesco Zappa Nardelli. INRIA Paris-Rocquencourt, MOSCOVA research team Concurrency theory name passing, contextual equivalences Francesco Zappa Nardelli INRIA Paris-Rocquencourt, MOSCOVA research team francesco.zappa nardelli@inria.fr together with Frank Valencia (INRIA Futurs)

More information

The π-calculus Semantics. Equivalence and Value-Passing. Infinite Sums 4/12/2004

The π-calculus Semantics. Equivalence and Value-Passing. Infinite Sums 4/12/2004 The π-calculus Semantics Overview ate and early semantics Bisimulation and congruence Variations of the calculus eferences obin Milner, Communicating and Mobil Systems Davide Sangiorgi and David Walker,

More information

Concurrent Processes and Reaction

Concurrent Processes and Reaction Concurrent Processes and Reaction Overview External and internal actions Observations Concurrent process expressions Structural congruence Reaction References Robin Milner, Communication and Concurrency

More information

Communication Errors in the π-calculus are Undecidable

Communication Errors in the π-calculus are Undecidable Communication Errors in the π-calculus are Undecidable Vasco T. Vasconcelos Department of Informatics Faculty of Sciences, University of Lisbon António Ravara Department of Mathematics Lisbon Institute

More information

Review of The π-calculus: A Theory of Mobile Processes

Review of The π-calculus: A Theory of Mobile Processes Review of The π-calculus: A Theory of Mobile Processes Riccardo Pucella Department of Computer Science Cornell University July 8, 2001 Introduction With the rise of computer networks in the past decades,

More information

A Behavioral Congruence for Concurrent Constraint Programming with Nondeterministic Choice

A Behavioral Congruence for Concurrent Constraint Programming with Nondeterministic Choice A Behavioral Congruence for Concurrent Constraint Programming with Nondeterministic Choice Luis Pino*, Filippo Bonchi** and Frank Valencia* (Presented by: Jorge A. Pe rez) *E quipe Come te, LIX, Laboratoire

More information

An introduction to process calculi: Calculus of Communicating Systems (CCS)

An introduction to process calculi: Calculus of Communicating Systems (CCS) An introduction to process calculi: Calculus of Communicating Systems (CCS) Lecture 2 of Modelli Matematici dei Processi Concorrenti Paweł Sobociński University of Southampton, UK Intro to process calculi:

More information

Models of Concurrency

Models of Concurrency Models of Concurrency GERARDO SCHNEIDER UPPSALA UNIVERSITY DEPARTMENT OF INFORMATION TECHNOLOGY UPPSALA, SWEDEN Thanks to Frank Valencia Models of Concurrency p.1/57 Concurrency is Everywhere Concurrent

More information

Equations, contractions, and unique solutions

Equations, contractions, and unique solutions Equations, contractions, and unique solutions Davide Sangiorgi To cite this version: Davide Sangiorgi. Equations, contractions, and unique solutions. POPL 2015 - Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT

More information

Trace Refinement of π-calculus Processes

Trace Refinement of π-calculus Processes Trace Refinement of pi-calculus Processes Trace Refinement of π-calculus Processes Manuel Gieseking manuel.gieseking@informatik.uni-oldenburg.de) Correct System Design, Carl von Ossietzky University of

More information

A Graph Rewriting Semantics for the Polyadic π-calculus

A Graph Rewriting Semantics for the Polyadic π-calculus A Graph Rewriting Semantics for the Polyadic π-calculus BARBARA KÖNIG Fakultät für Informatik, Technische Universität München Abstract We give a hypergraph rewriting semantics for the polyadic π-calculus,

More information

A Note on Scope and Infinite Behaviour in CCS-like Calculi p.1/32

A Note on Scope and Infinite Behaviour in CCS-like Calculi p.1/32 A Note on Scope and Infinite Behaviour in CCS-like Calculi GERARDO SCHNEIDER UPPSALA UNIVERSITY DEPARTMENT OF INFORMATION TECHNOLOGY UPPSALA, SWEDEN Joint work with Pablo Giambiagi and Frank Valencia A

More information

MAKING THE UNOBSERVABLE, UNOBSERVABLE.

MAKING THE UNOBSERVABLE, UNOBSERVABLE. MAKING THE UNOBSERVABLE, UNOBSERVABLE. 3 PAPERS FROM THE LAST 365 DAYS AVAILABLE TO READ NOW ON YOUR COMPUTER PAWEL SOBOCINSKI AND JULIAN RATHKE GO TO www.ecs.soton.ac.uk/~ps/publications.php Plan of the

More information

Communicating and Mobile Systems

Communicating and Mobile Systems Communicating and Mobile Systems Overview:! Programming Model! Interactive Behavior! Labeled Transition System! Bisimulation! The π-calculus! Data Structures and λ-calculus encoding in the π-calculus References:!

More information

Bisimulation and coinduction in higher-order languages

Bisimulation and coinduction in higher-order languages Bisimulation and coinduction in higher-order languages Davide Sangiorgi Focus Team, University of Bologna/INRIA ICE, Florence, June 2013 Bisimulation Behavioural equality One of the most important contributions

More information

On the asynchronous nature of the asynchronous π-calculus

On the asynchronous nature of the asynchronous π-calculus On the asynchronous nature of the asynchronous π-calculus Romain Beauxis, Catuscia Palamidessi, and Frank D. Valencia INRIA Saclay and LIX, École Polytechnique Abstract. We address the question of what

More information

arxiv:cs/ v1 [cs.pl] 2 Sep 1998

arxiv:cs/ v1 [cs.pl] 2 Sep 1998 arxiv:cs/9809008v1 [cs.pl] 2 Sep 1998 Comparing the Expressive Power of the Synchronous and the Asynchronous π-calculus Catuscia Palamidessi DISI, Università di Genova, via Dodecaneso, 35, 16146 Genova,

More information

arxiv: v1 [cs.lo] 16 Apr 2018

arxiv: v1 [cs.lo] 16 Apr 2018 TREES FROM FUNCTIONS AS PROCESSES arxiv:1804.05797v1 [cs.lo] 16 Apr 2018 DAVIDE SANGIORGI AND XIAN XU Università di Bologna (Italy) and INRIA (France) East China University of Science and Technology (China)

More information

Distributed Processes and Location Failures (Extended Abstract)

Distributed Processes and Location Failures (Extended Abstract) Distributed Processes and Location Failures (Extended Abstract) James Riely and Matthew Hennessy Abstract Site failure is an essential aspect of distributed systems; nonetheless its effect on programming

More information

Formal Techniques for Software Engineering: CCS: A Calculus for Communicating Systems

Formal Techniques for Software Engineering: CCS: A Calculus for Communicating Systems Formal Techniques for Software Engineering: CCS: A Calculus for Communicating Systems Rocco De Nicola IMT Institute for Advanced Studies, Lucca rocco.denicola@imtlucca.it June 2013 Lesson 10 R. De Nicola

More information

Linear Forwarders. 1 Introduction. Philippa Gardner 1, Cosimo Laneve 2, and Lucian Wischik 2

Linear Forwarders. 1 Introduction. Philippa Gardner 1, Cosimo Laneve 2, and Lucian Wischik 2 Linear Forwarders Philippa Gardner 1, Cosimo Laneve 2, and Lucian Wischik 2 1 Imperial College, London. pg@doc.ic.ac.uk 2 University of Bologna, Italy. laneve@cs.unibo.it, lu@wischik.com Abstract. A linear

More information

Security Abstractions and Intruder Models

Security Abstractions and Intruder Models EXPRESS 2008 Expressiveness in Concurrency 15th int. workshop Security Abstractions and Intruder Models (Extended Abstract) Michele Bugliesi 1 and Riccardo Focardi 2 Dipartimento di Informatica Università

More information

Communication and Concurrency: CCS

Communication and Concurrency: CCS Communication and Concurrency: CCS R. Milner, A Calculus of Communicating Systems, 1980 cours SSDE Master 1 Why calculi? Prove properties on programs and languages Principle: tiny syntax, small semantics,

More information

Communication and Concurrency: CCS. R. Milner, A Calculus of Communicating Systems, 1980

Communication and Concurrency: CCS. R. Milner, A Calculus of Communicating Systems, 1980 Communication and Concurrency: CCS R. Milner, A Calculus of Communicating Systems, 1980 Why calculi? Prove properties on programs and languages Principle: tiny syntax, small semantics, to be handled on

More information

Deriving structural labelled transitions for mobile ambients

Deriving structural labelled transitions for mobile ambients Deriving structural labelled transitions for mobile ambients Julian Rathke and awe l Sobociński ECS, University of Southampton Abstract. We present a new labelled transition system (lts) for the ambient

More information

Formalising the π-calculus in Isabelle

Formalising the π-calculus in Isabelle Formalising the π-calculus in Isabelle Jesper Bengtson Department of Computer Systems University of Uppsala, Sweden 30th May 2006 Overview This talk will cover the following Motivation Why are we doing

More information

MPRI C-2-3: Concurrency (Part 1 of 4)

MPRI C-2-3: Concurrency (Part 1 of 4) From Computability to Concurrency Theory Calculus of Comunicating Systems CCS Verification and Specification. Expressiveness Solutions to Exercises. MPRI C-2-3: Concurrency (Part 1 of 4) Frank D. Valencia

More information

Observing Success in the Pi-Calculus

Observing Success in the Pi-Calculus Observing Success in the Pi-Calculus David Sabel and Manfred Schmidt-Schauß Goethe-University, Frankfurt am Main {sabel,schauss}@ki.cs.uni-frankfurt.de Abstract A contextual semantics defined in terms

More information

Dipartimento di Informatica Università degli Studi di Verona

Dipartimento di Informatica Università degli Studi di Verona Dipartimento di Informatica Università degli Studi di Verona Rapporto di ricerca Research report 40/2006 On the observational theory of the CPS-calculus Massimo Merro Corrado Biasi Dipartimento di Informatica

More information

Lecture 16: Computation Tree Logic (CTL)

Lecture 16: Computation Tree Logic (CTL) Lecture 16: Computation Tree Logic (CTL) 1 Programme for the upcoming lectures Introducing CTL Basic Algorithms for CTL CTL and Fairness; computing strongly connected components Basic Decision Diagrams

More information

Name-passing calculi: from fusions to preorders and types

Name-passing calculi: from fusions to preorders and types Author manuscript, published in "LICS - 28th Annual ACM/IEEE Symposium on Logic in Computer Science - 2013 (2013) 378-387" DOI : 10.1109/LICS.2013.44 Name-passing calculi: from fusions to preorders and

More information

Notes on Monoids and Automata

Notes on Monoids and Automata Notes on Monoids and Automata Uday S. Reddy November 9, 1994 In this article, I define a semantics for Algol programs with Reynolds s syntactic control of interference?;? in terms of comonoids in coherent

More information

The Buffered π-calculus: A Model for Concurrent Languages

The Buffered π-calculus: A Model for Concurrent Languages The Buffered π-calculus: A Model for Concurrent Languages Xiaojie Deng 1, Yu Zhang 2, Yuxin Deng 1, and Farong Zhong 3 1 BASICS, Department of Computer Science and Engineering, Shanghai Jiao Tong University,

More information

Compositional Event Structure Semantics for the Internal π-calculus

Compositional Event Structure Semantics for the Internal π-calculus Compositional Event Structure Semantics for the Internal π-calculus Silvia Crafa 1 Daniele Varacca 2 Nobuko Yoshida 3 1 Università di Padova 2 PPS - Université Paris 7 & CNRS 3 Imperial College London

More information

On Böhm Trees and Lévy-Longo Trees in π-calculus

On Böhm Trees and Lévy-Longo Trees in π-calculus On Böhm Trees and Lévy-Longo Trees in π-calculus Xian Xu East China University of Science and Technology (from ongoing work with Davide Sangiorgi) April, 1 Subject Encodings from to λ-calculus (sequential

More information

Semantics and Verification

Semantics and Verification Semantics and Verification Lecture 2 informal introduction to CCS syntax of CCS semantics of CCS 1 / 12 Sequential Fragment Parallelism and Renaming CCS Basics (Sequential Fragment) Nil (or 0) process

More information

Semantic Equivalences and the. Verification of Infinite-State Systems 1 c 2004 Richard Mayr

Semantic Equivalences and the. Verification of Infinite-State Systems 1 c 2004 Richard Mayr Semantic Equivalences and the Verification of Infinite-State Systems Richard Mayr Department of Computer Science Albert-Ludwigs-University Freiburg Germany Verification of Infinite-State Systems 1 c 2004

More information

The State Explosion Problem

The State Explosion Problem The State Explosion Problem Martin Kot August 16, 2003 1 Introduction One from main approaches to checking correctness of a concurrent system are state space methods. They are suitable for automatic analysis

More information

The Expressivity of Universal Timed CCP: Undecidability of Monadic FLTL and Closure Operators for Security

The Expressivity of Universal Timed CCP: Undecidability of Monadic FLTL and Closure Operators for Security The Expressivity of Universal Timed CCP: Undecidability of Monadic FLTL and Closure Operators for Security Carlos Olarte and Frank D. Valencia INRIA /CNRS and LIX, Ecole Polytechnique Motivation Concurrent

More information

Alternating-Time Temporal Logic

Alternating-Time Temporal Logic Alternating-Time Temporal Logic R.Alur, T.Henzinger, O.Kupferman Rafael H. Bordini School of Informatics PUCRS R.Bordini@pucrs.br Logic Club 5th of September, 2013 ATL All the material in this presentation

More information

Separation of synchronous and asynchronous communication via testing

Separation of synchronous and asynchronous communication via testing Separation of synchronous and asynchronous communication via testing D. Cacciagrano Dipartimento di Matematica e Informatica, Università degli Studi di Camerino, Camerino, Italy F. Corradini Dipartimento

More information

A π-calculus with preorders

A π-calculus with preorders A π-calculus with preorders Daniel Hirschkoff, Jean-Marie Madiot, Davide Sangiorgi École Normale Supérieure de Lyon Università di Bologna PACE kick-off meeting, 2013-04-23 Jean-Marie Madiot (Lyon, Bologna)

More information

CS522 - Programming Language Semantics

CS522 - Programming Language Semantics 1 CS522 - Programming Language Semantics Simply Typed Lambda Calculus Grigore Roşu Department of Computer Science University of Illinois at Urbana-Champaign 2 We now discuss a non-trivial extension of

More information

Deducing Interactions in Partially Unspecified Biological Systems

Deducing Interactions in Partially Unspecified Biological Systems Deducing Interactions in Partially Unspecified Biological Systems P. Baldan 1 A. Bracciali 2 L. Brodo 3 R. Bruni 2 1 Università di Padova 2 Università di Pisa 3 Università di Sassari Algebraic Biology

More information

Business Process Management

Business Process Management Business Process Management Theory: The Pi-Calculus Frank Puhlmann Business Process Technology Group Hasso Plattner Institut Potsdam, Germany 1 What happens here? We discuss the application of a general

More information

A Weak Bisimulation for Weighted Automata

A Weak Bisimulation for Weighted Automata Weak Bisimulation for Weighted utomata Peter Kemper College of William and Mary Weighted utomata and Semirings here focus on commutative & idempotent semirings Weak Bisimulation Composition operators Congruence

More information

A semantic framework for open processes

A semantic framework for open processes Theoretical Computer Science 389 (2007) 446 483 www.elsevier.com/locate/tcs A semantic framework for open processes P. Baldan a, A. Bracciali b,, R. Bruni b a Dipartimento di Matematica Pura e Applicata,

More information

A Semantic Framework for Open Processes

A Semantic Framework for Open Processes A Semantic Framework for Open Processes P. Baldan (1), A. Bracciali (2), R. Bruni (2) (1) Dipartimento di Matematica Pura e Applicata, Università di Padova (Italy) baldan@math.unipd.it (2) Dipartimento

More information

Deducing Interactions in Partially Unspecified Biological Systems

Deducing Interactions in Partially Unspecified Biological Systems Deducing Interactions in Partially Unspecified Biological Systems P. Baldan 1 A. Bracciali 2 L. Brodo 3 R. Bruni 2 1 Università di Padova 2 Università di Pisa 3 Università di Sassari Algebraic Biology

More information

Design of Distributed Systems Melinda Tóth, Zoltán Horváth

Design of Distributed Systems Melinda Tóth, Zoltán Horváth Design of Distributed Systems Melinda Tóth, Zoltán Horváth Design of Distributed Systems Melinda Tóth, Zoltán Horváth Publication date 2014 Copyright 2014 Melinda Tóth, Zoltán Horváth Supported by TÁMOP-412A/1-11/1-2011-0052

More information

On Expressiveness and Behavioural Theory of Attribute-based Communication

On Expressiveness and Behavioural Theory of Attribute-based Communication On Expressiveness and Behavioural Theory of Attribute-based Communication Rocco De Nicola Joint work with Y. A. Alrahman and M. Loreti Final Meeting CINA Civitanova Marche January 2016 Contents 1 Introduction

More information

Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication

Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication Henry DeYoung 1, Luís Caires 2, Frank Pfenning 1, and Bernardo Toninho 1,2 1 Computer Science Department, Carnegie Mellon University

More information

Mobile Processes in Bigraphs. Ole Høgh Jensen. October 2006

Mobile Processes in Bigraphs. Ole Høgh Jensen. October 2006 Mobile Processes in Bigraphs Ole Høgh Jensen October 2006 Abstract Bigraphical reactive systems (BRSs) are a formalism for modelling mobile computation. A bigraph consists of two combined mathematical

More information

Deadlock verification of a DPS coordination strategy and its alternative model in pi-calculus

Deadlock verification of a DPS coordination strategy and its alternative model in pi-calculus 154 Int. J. Intelligent Information and Database Systems, Vol. 6, No. 2, 2012 Deadlock verification of a DPS coordination strategy and its alternative model in pi-calculus Pablo D. Robles-Granda, Elham

More information

TRINITY COLLEGE DUBLIN. First-Order Reasoning for Higher-Order Concurrency

TRINITY COLLEGE DUBLIN. First-Order Reasoning for Higher-Order Concurrency TRINITY COLLEGE DUBLIN COLÁISTE NA TRÍONÓIDE, BAILE ÁTHA CLIATH First-Order Reasoning for Higher-Order Concurrency Vasileios Koutavas Matthew Hennessy Computer Science Department Technical Report TCS-CS-YYYY-NN

More information

Correspondence between Kripke Structures and Labeled Transition Systems for Model Minimization

Correspondence between Kripke Structures and Labeled Transition Systems for Model Minimization Correspondence between Kripke Structures and Labeled Transition Systems for Model Minimization Rob Schoren Abstract This document is mainly an extension of the work of Michel Reniers and Tim Willemse,

More information

Approximation Metrics for Discrete and Continuous Systems

Approximation Metrics for Discrete and Continuous Systems University of Pennsylvania ScholarlyCommons Departmental Papers (CIS) Department of Computer & Information Science May 2007 Approximation Metrics for Discrete Continuous Systems Antoine Girard University

More information

A linear account of session types in the pi calculus

A linear account of session types in the pi calculus A linear account of session types in the pi calculus Marco Giunti 1 and Vasco T. Vasconcelos 2 1 Iuav University, Venice 2 LaSIGE, Faculty of Sciences, University of Lisbon Abstract. We present a reconstruction

More information

A Semantics for Propositions as Sessions

A Semantics for Propositions as Sessions A Semantics for Propositions as Sessions Sam Lindley and J. Garrett Morris The University of Edinburgh {Sam.Lindley,Garrett.Morris}@ed.ac.uk Abstract. Session types provide a static guarantee that concurrent

More information

On the specification of modal systems: a comparison of three frameworks

On the specification of modal systems: a comparison of three frameworks On the specification of modal systems: a comparison of three frameworks Luca Aceto a, Ignacio Fábregas b, David de Frutos-Escrig b, Anna Ingólfsdóttir a, Miguel Palomino b a ICE-TCS, School of Computer

More information

Communicating Parallel Processes. Stephen Brookes

Communicating Parallel Processes. Stephen Brookes Communicating Parallel Processes Stephen Brookes Carnegie Mellon University Deconstructing CSP 1 CSP sequential processes input and output as primitives named parallel composition synchronized communication

More information

Rigid Families for CCS and the π-calculus

Rigid Families for CCS and the π-calculus Rigid Families for CCS and the π-calculus Ioana Domnina Cristescu, Jean Krivine, and Daniele Varacca 1 Laboratoire PPS - Université Paris Diderot {ioana.cristescu,jean.krivine}@pps.univ-paris-diderot.fr

More information

Interpreting the Full λ-calculus in the π-calculus

Interpreting the Full λ-calculus in the π-calculus Interpreting the Full λ-calculus in the π-calculus Xiaojuan Cai Joint work with Yuxi Fu BASICS Lab October 12, 2009 Motivation The λ-calculus: sequential model; The π-calculus: concurrent model A deep

More information

Syntax and Semantics of Propositional Linear Temporal Logic

Syntax and Semantics of Propositional Linear Temporal Logic Syntax and Semantics of Propositional Linear Temporal Logic 1 Defining Logics L, M, = L - the language of the logic M - a class of models = - satisfaction relation M M, ϕ L: M = ϕ is read as M satisfies

More information

Secrecy and Group Creation

Secrecy and Group Creation Secrecy and Group Creation Luca Cardelli 1 Giorgio Ghelli 2 Andrew D. Gordon 1 Abstract We add an operation of group creation to the typed π-calculus, where a group is a type for channels. Creation of

More information

Introduction to mcrl2

Introduction to mcrl2 Introduction to mcrl2 Luís S. Barbosa DI-CCTC Universidade do Minho Braga, Portugal May, 2011 mcrl2: A toolset for process algebra mcrl2 provides: a generic process algebra, based on Acp (Bergstra & Klop,

More information

Proving Completeness for Nested Sequent Calculi 1

Proving Completeness for Nested Sequent Calculi 1 Proving Completeness for Nested Sequent Calculi 1 Melvin Fitting abstract. Proving the completeness of classical propositional logic by using maximal consistent sets is perhaps the most common method there

More information

Structure Preserving Bisimilarity,

Structure Preserving Bisimilarity, Structure Preserving Bisimilarity, Supporting an Operational Petri Net Semantics of CCSP Rob van Glabbeek NICTA, Sydney, Australia University of New South Wales, Sydney, Australia September 2015 Milner:

More information

Expressing Security Properties Using Selective Interleaving Functions

Expressing Security Properties Using Selective Interleaving Functions Expressing Security Properties Using Selective Interleaving Functions Joseph Halpern and Sabina Petride August 8, 2008 Abstract McLean s notion of Selective Interleaving Functions (SIFs) is perhaps the

More information

Time values are often denoted as positive real numbers including zero. We dene symbols to present the events of processes. Denition 2.2 l Let A be an

Time values are often denoted as positive real numbers including zero. We dene symbols to present the events of processes. Denition 2.2 l Let A be an A rocess Algebra for Optimization for arallel rograms Ichiro Satoh Department of Information Sciences, Ochanomizu University 2-1-1 Otsuka Bunkyo-ku Tokyo 112-8610 Japan Tel: +81-3-5978-5388 Fax: +81-3-5978-5390

More information

On the coinductive nature of centralizers

On the coinductive nature of centralizers On the coinductive nature of centralizers Charles Grellois INRIA & University of Bologna Séminaire du LIFO Jan 16, 2017 Charles Grellois (INRIA & Bologna) On the coinductive nature of centralizers Jan

More information

Trace semantics: towards a unification of parallel paradigms Stephen Brookes. Department of Computer Science Carnegie Mellon University

Trace semantics: towards a unification of parallel paradigms Stephen Brookes. Department of Computer Science Carnegie Mellon University Trace semantics: towards a unification of parallel paradigms Stephen Brookes Department of Computer Science Carnegie Mellon University MFCSIT 2002 1 PARALLEL PARADIGMS State-based Shared-memory global

More information

Part 1: Propositional Logic

Part 1: Propositional Logic Part 1: Propositional Logic Literature (also for first-order logic) Schöning: Logik für Informatiker, Spektrum Fitting: First-Order Logic and Automated Theorem Proving, Springer 1 Last time 1.1 Syntax

More information

Equivalence of dynamical systems by bisimulation

Equivalence of dynamical systems by bisimulation Equivalence of dynamical systems by bisimulation Arjan van der Schaft Department of Applied Mathematics, University of Twente P.O. Box 217, 75 AE Enschede, The Netherlands Phone +31-53-4893449, Fax +31-53-48938

More information

Complete Partial Orders, PCF, and Control

Complete Partial Orders, PCF, and Control Complete Partial Orders, PCF, and Control Andrew R. Plummer TIE Report Draft January 2010 Abstract We develop the theory of directed complete partial orders and complete partial orders. We review the syntax

More information

The Logical Meeting Point of Multiset Rewriting and Process Algebra

The Logical Meeting Point of Multiset Rewriting and Process Algebra MFPS 20 @ MU May 25, 2004 The Logical Meeting Point of Multiset Rewriting and Process Algebra Iliano ervesato iliano@itd.nrl.navy.mil ITT Industries, inc @ NRL Washington, D http://theory.stanford.edu/~iliano

More information

Session Types Revisited

Session Types Revisited Session Types Revisited Ornela Dardha a, Elena Giachino b, Davide Sangiorgi b a School of Computing Science, University of Glasgow, United Kingdom b INRIA Focus Team / DISI, University of Bologna, Italy

More information

Propositional and Predicate Logic - V

Propositional and Predicate Logic - V Propositional and Predicate Logic - V Petr Gregor KTIML MFF UK WS 2016/2017 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2016/2017 1 / 21 Formal proof systems Hilbert s calculus

More information

Bicubical Directed Type Theory

Bicubical Directed Type Theory Bicubical Directed Type Theory Matthew Weaver General Examination May 7th, 2018 Advised by Andrew Appel and Dan Licata Bicubical Directed Type Theory Bicubical directed type theory is a constructive model

More information

First-order resolution for CTL

First-order resolution for CTL First-order resolution for Lan Zhang, Ullrich Hustadt and Clare Dixon Department of Computer Science, University of Liverpool Liverpool, L69 3BX, UK {Lan.Zhang, U.Hustadt, CLDixon}@liverpool.ac.uk Abstract

More information

Communication Problems in the 7r-Calculus. M. R. F. Benevides* F. Prottit

Communication Problems in the 7r-Calculus. M. R. F. Benevides* F. Prottit Communication Problems in the 7r-Calculus M. R. F. Benevides* F. Prottit Abstract In this paper we deal with the notions of deadlock, starvation, and communication errors in the asynchronous polyadic 7f-calculus.

More information

Functions as processes: termination and the

Functions as processes: termination and the Functions as processes: termination and the λµ µ-calculus Matteo Cimini 1, Claudio Sacerdoti Coen 2, and Davide Sangiorgi 2,3 1 School of Computer Science, Reykjavik University, Iceland 2 Department of

More information

Model Theory of Modal Logic Lecture 5. Valentin Goranko Technical University of Denmark

Model Theory of Modal Logic Lecture 5. Valentin Goranko Technical University of Denmark Model Theory of Modal Logic Lecture 5 Valentin Goranko Technical University of Denmark Third Indian School on Logic and its Applications Hyderabad, January 29, 2010 Model Theory of Modal Logic Lecture

More information

On the Expressive Power of Global and Local Priority in Process Calculi

On the Expressive Power of Global and Local Priority in Process Calculi On the Expressive Power of Global and Local Priority in Process Calculi Cristian Versari Nadia Busi Roberto Gorrieri Università di Bologna, Dipartimento di Scienze dell Informazione Mura Anteo Zamboni

More information

Petri nets. s 1 s 2. s 3 s 4. directed arcs.

Petri nets. s 1 s 2. s 3 s 4. directed arcs. Petri nets Petri nets Petri nets are a basic model of parallel and distributed systems (named after Carl Adam Petri). The basic idea is to describe state changes in a system with transitions. @ @R s 1

More information

On Compensation Primitives as Adaptable Processes

On Compensation Primitives as Adaptable Processes On Compensation Primitives as Adaptable Processes Jovana Dedeić University of Novi Sad Jovanka Pantović (Novi Sad) and Jorge A. Pérez (Groningen) LAP 2015 - Dubrovnik, September 24, 2015 Outline 1 Context

More information

Timed Automata. Semantics, Algorithms and Tools. Zhou Huaiyang

Timed Automata. Semantics, Algorithms and Tools. Zhou Huaiyang Timed Automata Semantics, Algorithms and Tools Zhou Huaiyang Agenda } Introduction } Timed Automata } Formal Syntax } Operational Semantics } Verification Problems } Symbolic Semantics & Verification }

More information

Contextual equivalence

Contextual equivalence Techniques 16/22 ACS L16, lecture 2 4/10 Contextual equivalence Two phrases of a programming language are ( Morris style ) contextually equivalent ( = ctx ) if occurrences of the first phrase in any program

More information

Decidable Subsets of CCS

Decidable Subsets of CCS Decidable Subsets of CCS based on the paper with the same title by Christensen, Hirshfeld and Moller from 1994 Sven Dziadek Abstract Process algebra is a very interesting framework for describing and analyzing

More information

CS632 Notes on Relational Query Languages I

CS632 Notes on Relational Query Languages I CS632 Notes on Relational Query Languages I A. Demers 6 Feb 2003 1 Introduction Here we define relations, and introduce our notational conventions, which are taken almost directly from [AD93]. We begin

More information

Techniques. Contextual equivalence

Techniques. Contextual equivalence Techniques 16/22 Contextual equivalence Two phrases of a programming language are ( Morris style ) contextually equivalent ( = ctx )if occurrences of the first phrase in any program can be replaced by

More information

Logic: Propositional Logic (Part I)

Logic: Propositional Logic (Part I) Logic: Propositional Logic (Part I) Alessandro Artale Free University of Bozen-Bolzano Faculty of Computer Science http://www.inf.unibz.it/ artale Descrete Mathematics and Logic BSc course Thanks to Prof.

More information

Efficient Computation of Program Equivalence for Confluent Concurrent Constraint Programming

Efficient Computation of Program Equivalence for Confluent Concurrent Constraint Programming Efficient Computation of Program Equivalence for Confluent Concurrent Constraint Programming Luis F. Pino INRIA/DGA and LIX École Polytechnique 91128 Palaiseau, France luis.pino@lix.polytechnique.fr Filippo

More information

Self-assembling Trees

Self-assembling Trees SOS 2006 Self-assembling Trees Vincent Danos 1, Équipe PPS, CNRS & Université Paris VII Jean Krivine 2, INRIA Rocquencourt & Université Paris VI Fabien Tarissan 3 Équipe PPS, CNRS & Université Paris VII

More information

The Calculus of Communicating Systems

The Calculus of Communicating Systems The Calculus of Communicating Systems Wolfgang Schreiner Research Institute for Symbolic Computation (RISC-Linz) Johannes Kepler University, A-4040 Linz, Austria Wolfgang.Schreiner@risc.uni-linz.ac.at

More information

BRICS. Decoding Choice Encodings. Basic Research in Computer Science BRICS RS Nestmann & Pierce: Decoding Choice Encodings

BRICS. Decoding Choice Encodings. Basic Research in Computer Science BRICS RS Nestmann & Pierce: Decoding Choice Encodings BRICS Basic Research in Computer Science BRICS RS-99-42 Nestmann & Pierce: Decoding Choice Encodings Decoding Choice Encodings Uwe Nestmann Benjamin C. Pierce BRICS Report Series RS-99-42 ISSN 0909-0878

More information

A Propositional Dynamic Logic for Instantial Neighborhood Semantics

A Propositional Dynamic Logic for Instantial Neighborhood Semantics A Propositional Dynamic Logic for Instantial Neighborhood Semantics Johan van Benthem, Nick Bezhanishvili, Sebastian Enqvist Abstract We propose a new perspective on logics of computation by combining

More information

Imperial College of Science, Technology and Medicine Department of Computing. A Study of Bisimulation Theory for Session Types. Dimitrios Kouzapas

Imperial College of Science, Technology and Medicine Department of Computing. A Study of Bisimulation Theory for Session Types. Dimitrios Kouzapas Imperial College of Science, Technology and Medicine Department of Computing A Study of Bisimulation Theory for Session Types Dimitrios Kouzapas Submitted in part fulfilment of the requirements for the

More information