non-linear structure formation beyond the Newtonian approximation: a post-friedmann approach

Size: px
Start display at page:

Download "non-linear structure formation beyond the Newtonian approximation: a post-friedmann approach"

Transcription

1 non-linear structure formation beyond the Newtonian approximation: a post-friedmann approach Marco Bruni, Institute of Cosmology and Gravitation University of Portsmouth, UK

2 Credits work with Irene Milillo (Rome, ICG), Daniele Bertacca (ICG, Cape Town) and Andrea Maselli (Rome), in progress MB, D. B. Thomas and D. Wands, Computing General Relativistic effects from Newto- nian N-body simulations: Frame dragging in the post- Friedmann approach, Physical Review D, in press, [arxiv: ] MB, J. C. Hidalgo, N. Meures, D. Wands, Non-Gaussian initial conditions in ΛCDM: Newtonian, relativistic and primordial contributions, Astrophysical Journal, in press, [arxiv:1307:1478] MB, R. Crittenden, K. Koyama, R. Maartens, C. Pitrou, D. Wands, Disentangling non- Gaussianity, bias and GR effects in the galaxy distribution, Physical Review D, 85, (R) (2012) [arxiv: ]

3 Standard ΛCDM Cosmology Recipe for modelling based on 3 main ingredients: 1. Homogeneous isotropic background, FLRW models 2. Relativistic Perturbations (e.g. CMB), good for large scales 3. Newtonian study of non-linear structure formation (N-body simulations or approx. techniques, e.g. 2LPT) at small scales on this basis, well supported by observations, the flat ΛCDM model has emerged as the Standard Concordance Model of cosmology.

4 picture credits: Daniel B. Thomas the universe at large scales

5

6 take home message it is important to consider relativistic effects in structure formations, even at small scales at large scales: matter power spectrum MB, Crittenden, Koyama, Maartens, Pitrou & Wands, Disentangling non-gaussianity, bias and GR effects in the galaxy distribution, arxiv: , PRD 85 (2012) see Bonvin & Durrer PRD 84 (2011) and Challinor & Lewis PRD 84 (2011)

7 Questions/Motivations Is the Newtonian approximation good enough to study non-linear structure formation? we are going to have more data: precision cosmology surveys and simulations covering large fraction of H-1 we also need accurate cosmology: not only we want accurate observations, we also need accurate theoretical predictions (Euclid target: 1% N-body simulations) We need to bridge the gap between small scale non-linear Newtonian approximation and large scale relativistic perturbation theory We need a relativistic framework ( dictionary ) to interprete N- body simulations [Chisari & Zaldarriaga (2011), Green & Wald (2012)]

8 post-friedmann approach current goals: develop a non-linear relativistic approximate framework, incorporating fully non-linear Newtonian theory at small scales and standard relativistic perturbations at large scales (~H -1 and beyond) extract leading order relativistic corrections from standard N-body simulations more accurate ΛCDM cosmology

9 Post-Newtonian cosmology post-newtonian: expansion in 1/c powers (more later) various attempts and studies: Tomita Prog. Theor. Phys. 79 (1988) and 85 (1991) Matarrese & Terranova, MN 283 (1996) Takada & Futamase, MN 306 (1999) Carbone & Matarrese, PRD 71 (2005) Hwang, Noh & Puetzfeld, JCAP 03 (2008) even in perturbation theory it is important to distinguish post-newtonian effects, e.g. in non-gaussianity and initial conditions. MB, J. C. Hidalgo, N. Meures, D. Wands, [arxiv: 1307:1478], cf. Bartolo et al. CQG 27 (2010) [arxiv: ]

10 post-n vs. post-f possible assumptions on the 1/c expansion: Newton: field is weak, appears only in g 00; small velocities post-newtonian: next order, in 1/c, add corrections to g 00 and gij post-minkowski (weak field): velocities can be large, time derivatives space derivative post-friedmann: something in between, using a FLRW background, Hubble flow is not slow but peculiar velocities are small tttttttttttttttttte ~r = H~r + a~v post-friedmann: we don t follow an iterative approach xt

11 metric and matter starting point: the 1-PN cosmological metric (Chandrasekhar 1965) we assume a Newtonian-Poisson gauge: Pi is solenoidal and hij is TT, at each order 2 scalar DoF in g00 and gij, 2 vector DoF in frame dragging potential Pi and 2 TT DoF in hij (not GW!)

12 metric and matter velocities, matter and the energy momentum tensor

13 metric and matter velocities, matter and the energy momentum tensor note: ρ is a non-perturbative quantity

14 Quiz Time! Which metric would you say is right in the Newtonian regime? Which terms would you retain?

15 Answer The question is not well posed: the answer depends on what you are interest in! equations of motion: passive approach, gravitational field is given (geodesics): particle or fluid motion: just U is relevant; photons: U and V (Bertschinger talk) field equations: active approach, matter tells space how to curve, curvature tells matter how to move self-consistent derivation of Newtonian equations from Einstein equations requires U, V and Pi (i.e. all leading order terms)

16 Newtonian ΛCDM, with a bonus insert leading order terms in E.M. conservation and Einstein equations subtract the background, getting usual Friedmann equations introduce usual density contrast by ρ=ρb(1+δ) from E.M. conservation: Continuity & Euler equations Poisson

17 Newtonian ΛCDM, with a bonus insert leading order terms in E.M. conservation and Einstein equations subtract the background, getting usual Friedmann equations introduce usual density contrast by ρ=ρb(1+δ) from E.M. conservation: Continuity & Euler equations cf. Bertschinger weak field lecture notes gr6.pdf Poisson

18 Newtonian ΛCDM, with a bonus what do we get from the ij and 0i Einstein equations? zero Slip bonus Newtonian dynamics at leading order, with a bonus: the frame dragging potential Pi is not dynamical at this order, but cannot be set to zero: doing so would forces a constraint on Newtonian dynamics result entirely consistent with vector relativistic perturbation theory in a relativistic framework, gravitomagnetic effects cannot be set to zero even in the Newtonian regime, cf. Kofman & Pogosyan (1995), ApJ 442: magnetic Weyl tensor at leading order

19 Post-Friedmannian ΛCDM next to leading order: the 1-PF variables resummed scalar potentials resummed gravitational potential resummed Slip potential resummed vector frame dragging potential Chandrasekhar velocity:

20 Post-Friedmannian ΛCDM The 1-PF equations: scalar sector Continuity & Euler generalized Poisson: a non-linear wave eq. for ϕg non-dynamical Slip

21 Post-Friedmannian ΛCDM The 1-PF equations: vector and tensor sectors the frame dragging vector potential becomes dynamical at this order the TT metric tensor hij is not dynamical at this order, but it is instead determined by a non-linear constraint in terms of the scalar and vector potentials

22 linearized equations linearized equations: standard scalar and vector perturbation equations in the Poisson gauge cf. Ma & Bertschinger, ApJ (1994)

23 frame-dragging potential from N-body simulations first calculation of an intrinsically relativistic quantity in fully non-linear cosmology three runs of N-body simulations with particles and 160 h -1 Mpc (Gadget-2) publicly available Delauney Tessellation Field Estimator (DTFE) used to extract the velocity field. cf. Pueblas & Scoccimarro (2009) MB, D. B. Thomas and D. Wands, Physical Review D, in press, [arxiv: ]

24 Power Spectra

25 power spectra: sources linear and non-linear matter power spectra (vorticity)

26 scalar and vector potentials linear and non-linear scalar potential vector potential

27 ratio of the potentials

28 ratio of the potentials similar ratio than in second order perturbation theory but here the scalar potential (sources) is fully nonlinear: vector potential about 10 2 larger than in IIOPT cf. Lu, Ananda, Clarkson & Maartens (2009)

29 Initial conditions and non-g standard assumption on initial conditions in N-body simulations based on Poisson equation Poisson equation is linear, hence Gaussian initial conditions in the primordial curvature perturbation (=scalar potential) translate in a Gaussian density field incorrect at large scales, where relativistic corrections come in at second order. MB, Hidalgo, Meures, Wands, ApJ, in press, [arxiv:1307:1478], cf. Bartolo et al. CQG 27 (2010) [arxiv: ]

30 Summary Resummed PF equations include Newtonian and 1-PF non-linear terms together at leading Newtonian order in the dynamics, consistency of Einstein equations requires a non-zero gravito-magnetic vector potential PF framework provides a straightforward relativistic interpretation of Newtonian simulations: quantities are those of Newton-Poisson gauge linearised equations coincide with 1-order relativistic perturbation theory in Poisson gauge (probably OK up to II-order) 2 scalar potentials, become 1 in the Newtonian regime and in the linear regime, valid at horizon scales: slip non-zero in relativistic mildly non-linear (intermediate scales?) regime gravitomagnetic vector potential extracted from N-body sim.; need to work on observational consequences: effects on convergence/weak lensing E-modes probably negligible; B-modes? lensing of CMB photon polarization?

31 Outlook and work in progress gravitomagnetic vector potential extracted from N-body sim.; need to work on observational consequences: effects on convergence/weak lensing E-modes probably negligible; B-modes? lensing of CMB photon polarization? applications of Post Friedmann formalism in many directions: quantify Slip, linear/non-linear power spectrum, lensing, etc... need to apply approx. methods to solve eqs. (e.g. 2LP theory), then consider modifying N-body codes extension to parametrised non-linear post-f to complement existing linear post-f work

Issues in Non-Linear Cosmological Dynamics

Issues in Non-Linear Cosmological Dynamics Issues in Non-Linear Cosmological Dynamics Marco Bruni Institute of Cosmology and Gravitation University of Portsmouth NLCP Workshop - Kyoto - 22/05/09 Outline a couple of reminders on Newtonian cosmology

More information

Cosmological Nonlinear Density and Velocity Power Spectra. J. Hwang UFES Vitória November 11, 2015

Cosmological Nonlinear Density and Velocity Power Spectra. J. Hwang UFES Vitória November 11, 2015 Cosmological Nonlinear Density and Velocity Power Spectra J. Hwang UFES Vitória November 11, 2015 Perturbation method: Perturbation expansion All perturbation variables are small Weakly nonlinear Strong

More information

Cosmological Perturbation Theory in the Presence of Non-Linear Structures

Cosmological Perturbation Theory in the Presence of Non-Linear Structures Cosmological Perturbation Theory in the Presence of Non-Linear Structures Timothy Clifton Queen Mary University of London, UK GR Effects in Cosmological Large-Scale Structure Meeting, Sexten Center for

More information

Testing gravity on Large Scales

Testing gravity on Large Scales EPJ Web of Conferences 58, 02013 (2013) DOI: 10.1051/ epjconf/ 20135802013 C Owned by the authors, published by EDP Sciences, 2013 Testing gravity on Large Scales Alvise Raccanelli 1,2,a 1 Jet Propulsion

More information

Second-order gauge-invariant cosmological perturbation theory: --- Recent development and problems ---

Second-order gauge-invariant cosmological perturbation theory: --- Recent development and problems --- Second-order gauge-invariant cosmological perturbation theory: --- Recent development and problems --- Kouji Nakamura (NAOJ) with Masa-Katsu Fujimoto (NAOJ) References : K.N. Prog. Theor. Phys., 110 (2003),

More information

Post-Newtonian cosmology

Post-Newtonian cosmology Post-Newtonian cosmology Dirk Puetzfeld (Iowa State University) COSMO-05, Bonn 28 August - 1 September 2005 Motivation i. Is there a systematic framework which allows us to quantify general relativistic

More information

arxiv:astro-ph/ v1 29 Jan 1996

arxiv:astro-ph/ v1 29 Jan 1996 Lagrangian Dynamics of Collisionless Matter Sabino Matarrese 1 & David Terranova 1 1 Dipartimento di Fisica G. Galilei, Università di Padova, Italy arxiv:astro-ph/9601163v1 29 Jan 1996 Abstract. The non

More information

An introduction to gravitational waves. Enrico Barausse (Institut d'astrophysique de Paris/CNRS, France)

An introduction to gravitational waves. Enrico Barausse (Institut d'astrophysique de Paris/CNRS, France) An introduction to gravitational waves Enrico Barausse (Institut d'astrophysique de Paris/CNRS, France) Outline of lectures (1/2) The world's shortest introduction to General Relativity The linearized

More information

arxiv: v3 [astro-ph.co] 13 Jun 2015

arxiv: v3 [astro-ph.co] 13 Jun 2015 Mon. Not. R. Astron. Soc., 1 5 (214) Printed 16 June 215 (MN LATEX style file v2.2) Einstein s legacy in galaxy surveys Stefano Camera, 1,2 Roy Maartens 3,4 & Mário G. Santos 3,5,2 1 Jodrell Bank Centre

More information

Non-linear structure formation in modified gravity

Non-linear structure formation in modified gravity Non-linear structure formation in modified gravity Kazuya Koyama Institute of Cosmology and Gravitation, University of Portsmouth Cosmic acceleration Many independent data sets indicate the expansion of

More information

General Relativistic N-body Simulations of Cosmic Large-Scale Structure. Julian Adamek

General Relativistic N-body Simulations of Cosmic Large-Scale Structure. Julian Adamek General Relativistic N-body Simulations of Cosmic Large-Scale Structure Julian Adamek General Relativistic effects in cosmological large-scale structure, Sexten, 19. July 2018 Gravity The Newtonian limit

More information

4 Evolution of density perturbations

4 Evolution of density perturbations Spring term 2014: Dark Matter lecture 3/9 Torsten Bringmann (torsten.bringmann@fys.uio.no) reading: Weinberg, chapters 5-8 4 Evolution of density perturbations 4.1 Statistical description The cosmological

More information

CMB Tensor Anisotropies in Metric f (R) Gravity

CMB Tensor Anisotropies in Metric f (R) Gravity CMB Tensor Anisotropies in Metric f (R) Gravity Hassan Bourhrous,, Álvaro de la Cruz-Dombriz, and Peter Dunsby, Astrophysics, Cosmology and Gravity Centre (ACGC), University of Cape Town, 7701 Rondebosch,

More information

What can Cosmology tell us about Gravity? Levon Pogosian Simon Fraser University

What can Cosmology tell us about Gravity? Levon Pogosian Simon Fraser University What can Cosmology tell us about Gravity? Levon Pogosian Simon Fraser University Rob Crittenden ICG, Portsmouth Kazuya Koyama ICG, Portsmouth Simone Peirone U. Leiden Alessandra Silvestri U. Leiden Marco

More information

Mimetic dark matter. The mimetic DM is of gravitational origin. Consider a conformal transformation of the type:

Mimetic dark matter. The mimetic DM is of gravitational origin. Consider a conformal transformation of the type: Mimetic gravity Frederico Arroja FA, N. Bartolo, P. Karmakar and S. Matarrese, JCAP 1509 (2015) 051 [arxiv:1506.08575 [gr-qc]] and JCAP 1604 (2016) no.04, 042 [arxiv:1512.09374 [gr-qc]]; S. Ramazanov,

More information

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris Braneworlds: gravity & cosmology David Langlois APC & IAP, Paris Outline Introduction Extra dimensions and gravity Large (flat) extra dimensions Warped extra dimensions Homogeneous brane cosmology Brane

More information

Constraining Modified Gravity and Coupled Dark Energy with Future Observations Matteo Martinelli

Constraining Modified Gravity and Coupled Dark Energy with Future Observations Matteo Martinelli Coupled Dark University of Rome La Sapienza Roma, October 28th 2011 Outline 1 2 3 4 5 1 2 3 4 5 Accelerated Expansion Cosmological data agree with an accelerated expansion of the Universe d L [Mpc] 16000

More information

Constraints from Cosmological Data on Expansion and Growth of Structure in a Macroscopic Gravity Averaged Universe

Constraints from Cosmological Data on Expansion and Growth of Structure in a Macroscopic Gravity Averaged Universe Constraints from Cosmological Data on Expansion and Growth of Structure in a Macroscopic Gravity Averaged Universe Mustapha Ishak work with students: Tharake Wijenayake and Weikang Lin (arxiv:1503.05796,

More information

TESTING GRAVITY WITH COSMOLOGY

TESTING GRAVITY WITH COSMOLOGY 21 IV. TESTING GRAVITY WITH COSMOLOGY We now turn to the different ways with which cosmological observations can constrain modified gravity models. We have already seen that Solar System tests provide

More information

Galileon Cosmology ASTR448 final project. Yin Li December 2012

Galileon Cosmology ASTR448 final project. Yin Li December 2012 Galileon Cosmology ASTR448 final project Yin Li December 2012 Outline Theory Why modified gravity? Ostrogradski, Horndeski and scalar-tensor gravity; Galileon gravity as generalized DGP; Galileon in Minkowski

More information

CMB bispectrum. Takashi Hiramatsu. Collaboration with Ryo Saito (YITP), Atsushi Naruko (TITech), Misao Sasaki (YITP)

CMB bispectrum. Takashi Hiramatsu. Collaboration with Ryo Saito (YITP), Atsushi Naruko (TITech), Misao Sasaki (YITP) Workshop, 03 Aug 2016 @ Hirosaki Univ. CMB bispectrum Takashi Hiramatsu Yukawa Institute for Theoretical Physics (YITP) Kyoto University Collaboration with Ryo Saito (YITP), Atsushi Naruko (TITech), Misao

More information

Effective Field Theory approach for Dark Energy/ Modified Gravity. Bin HU BNU

Effective Field Theory approach for Dark Energy/ Modified Gravity. Bin HU BNU Effective Field Theory approach for Dark Energy/ Modified Gravity Bin HU BNU NAOC Nov. 2016 Outline 1. Evidence of late-time cosmic acceleration 2. Effective Field Theory approach for DE/MG 3. The structure

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

Constraints on the deviations from general relativity

Constraints on the deviations from general relativity 14/10/2010 Minneapolis Constraints on the deviations from general relativity From local to cosmological scales Jean-Philippe UZAN GR in a nutshell Underlying hypothesis Equivalence principle Universality

More information

Relativity, Gravitation, and Cosmology

Relativity, Gravitation, and Cosmology Relativity, Gravitation, and Cosmology A basic introduction TA-PEI CHENG University of Missouri St. Louis OXFORD UNIVERSITY PRESS Contents Parti RELATIVITY Metric Description of Spacetime 1 Introduction

More information

Dark Energy & General Relativity «Some theoretical thoughts»

Dark Energy & General Relativity «Some theoretical thoughts» IAS workshop 24/11/2008 Dark Energy & General Relativity «Some theoretical thoughts» Jean-Philippe UZAN Cosmological models Theoretical physics Principles Local law of nature Extrapolations Cosmology models

More information

Parameterizing. Modified Gravity. Models of Cosmic Acceleration. Wayne Hu Ann Arbor, May 2008

Parameterizing. Modified Gravity. Models of Cosmic Acceleration. Wayne Hu Ann Arbor, May 2008 Parameterizing Modified Gravity Models of Cosmic Acceleration Wayne Hu Ann Arbor, May 2008 Parameterizing Acceleration Cosmic acceleration, like the cosmological constant, can either be viewed as arising

More information

Dark Energy and Dark Matter Interaction. f (R) A Worked Example. Wayne Hu Florence, February 2009

Dark Energy and Dark Matter Interaction. f (R) A Worked Example. Wayne Hu Florence, February 2009 Dark Energy and Dark Matter Interaction f (R) A Worked Example Wayne Hu Florence, February 2009 Why Study f(r)? Cosmic acceleration, like the cosmological constant, can either be viewed as arising from

More information

A brain teaser: The anthropic principle! Last lecture I said Is cosmology a science given that we only have one Universe? Weak anthropic principle: "T

A brain teaser: The anthropic principle! Last lecture I said Is cosmology a science given that we only have one Universe? Weak anthropic principle: T Observational cosmology: The Friedman equations 1 Filipe B. Abdalla Kathleen Lonsdale Building G.22 http://zuserver2.star.ucl.ac.uk/~hiranya/phas3136/phas3136 A brain teaser: The anthropic principle! Last

More information

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 1 2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 2 Special Relativity (1905) A fundamental change in viewing the physical space and time, now unified

More information

Cosmological Tests of Gravity

Cosmological Tests of Gravity Cosmological Tests of Gravity Levon Pogosian Simon Fraser University, Canada VIA Lecture, 16 May, 2014 Workshop on Testing Gravity at SFU Harbour Centre January 15-17, 2015 Alternative theories of gravity

More information

Modified Gravity and Cosmology

Modified Gravity and Cosmology Modified Gravity and Cosmology Kazuya Koyama Institute of Cosmology and Gravitation, University of Portsmouth Cosmic acceleration Many independent data sets indicate the expansion of the Universe is accelerating

More information

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology Yi-Fu Cai June 18, 2013 in Hefei CYF, Chang, Chen, Easson & Qiu, 1304.6938 Two Standard Models Cosmology CMB: Cobe (1989), WMAP (2001),

More information

Inhomogeneous vacuum energy

Inhomogeneous vacuum energy IV Gravitation and Cosmology, Guadalajara, May 2012 Inhomogeneous vacuum energy David Wands Institute of Cosmology and Gravitation, University of Portsmouth DW, Josue De-Santiago & Yuting Wang, arxiv:1203.6776

More information

Experimental Tests and Alternative Theories of Gravity

Experimental Tests and Alternative Theories of Gravity Experimental Tests and Alternative Theories of Gravity Gonzalo J. Olmo Alba gonzalo.olmo@uv.es University of Valencia (Spain) & UW-Milwaukee Experimental Tests and Alternative Theories of Gravity p. 1/2

More information

The impact of relativistic effects on cosmological parameter estimation

The impact of relativistic effects on cosmological parameter estimation The impact of relativistic effects on cosmological parameter estimation arxiv:1710.02477 (PRD) with David Alonso and Pedro Ferreira Christiane S. Lorenz University of Oxford Rencontres de Moriond, La Thuile,

More information

General Relativity and Cosmology Mock exam

General Relativity and Cosmology Mock exam Physikalisches Institut Mock Exam Universität Bonn 29. June 2011 Theoretische Physik SS 2011 General Relativity and Cosmology Mock exam Priv. Doz. Dr. S. Förste Exercise 1: Overview Give short answers

More information

The Effects of Inhomogeneities on the Universe Today. Antonio Riotto INFN, Padova

The Effects of Inhomogeneities on the Universe Today. Antonio Riotto INFN, Padova The Effects of Inhomogeneities on the Universe Today Antonio Riotto INFN, Padova Frascati, November the 19th 2004 Plan of the talk Short introduction to Inflation Short introduction to cosmological perturbations

More information

Origins and observations of primordial non-gaussianity. Kazuya Koyama

Origins and observations of primordial non-gaussianity. Kazuya Koyama Origins and observations of primordial non-gaussianity Kazuya Koyama University of Portsmouth Primordial curvature perturbations Komatsu et.al. 008 Proved by CMB anisotropies nearly scale invariant ns

More information

Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION. Wolfgang Rindler. Professor of Physics The University of Texas at Dallas

Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION. Wolfgang Rindler. Professor of Physics The University of Texas at Dallas Relativity SPECIAL, GENERAL, AND COSMOLOGICAL SECOND EDITION Wolfgang Rindler Professor of Physics The University of Texas at Dallas OXPORD UNIVERSITY PRESS Contents Introduction l 1 From absolute space

More information

Quantum corpuscular corrections to the Newtonian potential

Quantum corpuscular corrections to the Newtonian potential Quantum corpuscular corrections to the Newtonian potential Based on arxiv:1702.05918, to appear in PRD Andrea Giugno Arnold Sommerfeld Center, Ludwig Maximilians Universität, Theresienstraße 37, 80333,

More information

Consistent Parameterization of Modified Gravity

Consistent Parameterization of Modified Gravity arxiv 1107.0491 Consistent Parameterization of Modified Gravity Tessa Baker Oxford University Outline The Parameterized Post-Friedmann form. An alternative construction for modified gravity. Hidden assumptions

More information

Oddities of the Universe

Oddities of the Universe Oddities of the Universe Koushik Dutta Theory Division, Saha Institute Physics Department, IISER, Kolkata 4th November, 2016 1 Outline - Basics of General Relativity - Expanding FRW Universe - Problems

More information

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118 ii Contents Preface xiii 1 Foundations of Newtonian gravity 1 1.1 Newtonian gravity 2 1.2 Equations of Newtonian gravity 3 1.3 Newtonian field equation 7 1.4 Equations of hydrodynamics 9 1.4.1 Motion of

More information

COLA with scale dependent growth: applications to modified gravity and massive neutrinos

COLA with scale dependent growth: applications to modified gravity and massive neutrinos COLA with scale dependent growth: applications to modified gravity and massive neutrinos Kazuya Koyama Institute of Cosmology and Gravitation, University of Portsmouth Curvature Psaltis Living Rev. Relativity

More information

Physical Cosmology 12/5/2017

Physical Cosmology 12/5/2017 Physical Cosmology 12/5/2017 Alessandro Melchiorri alessandro.melchiorri@roma1.infn.it slides can be found here: oberon.roma1.infn.it/alessandro/cosmo2017 Structure Formation Until now we have assumed

More information

Second Order CMB Perturbations

Second Order CMB Perturbations Second Order CMB Perturbations Looking At Times Before Recombination September 2012 Evolution of the Universe Second Order CMB Perturbations 1/ 23 Observations before recombination Use weakly coupled particles

More information

Primordial perturbations from inflation. David Langlois (APC, Paris)

Primordial perturbations from inflation. David Langlois (APC, Paris) Primordial perturbations from inflation David Langlois (APC, Paris) Cosmological evolution Homogeneous and isotropic Universe Einstein s equations Friedmann equations The Universe in the Past The energy

More information

Cosmology: An Introduction. Eung Jin Chun

Cosmology: An Introduction. Eung Jin Chun Cosmology: An Introduction Eung Jin Chun Cosmology Hot Big Bang + Inflation. Theory of the evolution of the Universe described by General relativity (spacetime) Thermodynamics, Particle/nuclear physics

More information

Introduction to (homogeneous) cosmology. Martin Kunz Université de Genève

Introduction to (homogeneous) cosmology. Martin Kunz Université de Genève Introduction to (homogeneous) cosmology Martin Kunz Université de Genève global outline funny fluids fundamental notions, the FLRW universe metric, scale factor, redshift, distances Einstein eqn s, evolution

More information

Non-singular quantum cosmology and scale invariant perturbations

Non-singular quantum cosmology and scale invariant perturbations th AMT Toulouse November 6, 2007 Patrick Peter Non-singular quantum cosmology and scale invariant perturbations Institut d Astrophysique de Paris GRεCO AMT - Toulouse - 6th November 2007 based upon Tensor

More information

Observational evidence and cosmological constant. Kazuya Koyama University of Portsmouth

Observational evidence and cosmological constant. Kazuya Koyama University of Portsmouth Observational evidence and cosmological constant Kazuya Koyama University of Portsmouth Basic assumptions (1) Isotropy and homogeneity Isotropy CMB fluctuation ESA Planck T 5 10 T Homogeneity galaxy distribution

More information

O O 4.4 PECULIAR VELOCITIES. Hubble law. The second observer will attribute to the particle the velocity

O O 4.4 PECULIAR VELOCITIES. Hubble law. The second observer will attribute to the particle the velocity 4.4 PECULIAR VELOCITIES (peculiar in the sense of not associated to the Hubble flow rather than odd) The expansion of the Universe also stretches the de Broglie wavelength of freely moving massive particles

More information

Physics 133: Extragalactic Astronomy ad Cosmology

Physics 133: Extragalactic Astronomy ad Cosmology Physics 133: Extragalactic Astronomy ad Cosmology Lecture 4; January 15 2014 Previously The dominant force on the scale of the Universe is gravity Gravity is accurately described by the theory of general

More information

Big Bounce and Inflation from Spin and Torsion Nikodem Popławski

Big Bounce and Inflation from Spin and Torsion Nikodem Popławski Big Bounce and Inflation from Spin and Torsion Nikodem Popławski Colloquium, Department of Physics Queens College, City University of New York, Queens, NY, USA November 12, 2018 Cosmic Microwave Background

More information

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

A5682: Introduction to Cosmology Course Notes. 2. General Relativity 2. General Relativity Reading: Chapter 3 (sections 3.1 and 3.2) Special Relativity Postulates of theory: 1. There is no state of absolute rest. 2. The speed of light in vacuum is constant, independent

More information

with EFTCAMB: The Hořava gravity case

with EFTCAMB: The Hořava gravity case Testing dark energy and modified gravity models with EFTCAMB: The Hořava gravity case Noemi Frusciante UPMC-CNRS, Institut d Astrophysique de Paris, Paris ERC-NIRG project no.307934 Based on NF, M. Raveri,

More information

Cosmology Winter School 5/12/2011! Jean-Philippe UZAN!

Cosmology Winter School 5/12/2011! Jean-Philippe UZAN! Cosmology Winter School 5/12/2011! Lecture 1:! Cosmological models! Jean-Philippe UZAN! Cosmological models! We work in the framework of general relativity so that the Universe is described by a spacetime

More information

Inflationary model building, reconstructing parameters and observational limits

Inflationary model building, reconstructing parameters and observational limits Inflationary model building, reconstructing parameters and observational limits Sayantan Choudhury Physics and Applied Mathematics Unit Indian Statistical Institute, Kolkata Date: 30/09/2014 Contact: sayanphysicsisi@gmail.com

More information

with Matter and Radiation By: Michael Solway

with Matter and Radiation By: Michael Solway Interactions of Dark Energy with Matter and Radiation By: Michael Solway Advisor: Professor Mike Berger What is Dark Energy? Dark energy is the energy needed to explain the observed accelerated expansion

More information

Martin Kunz. University of Sussex. in collaborations with: Domenico Sapone and Luca Amendola

Martin Kunz. University of Sussex. in collaborations with: Domenico Sapone and Luca Amendola some dark things energy you would like prefer to know not to about orknow the about dark energy modified the dark but gravity? never energywill Martin Kunz University of Sussex in collaborations with:

More information

Gravitational wave memory and gauge invariance. David Garfinkle Solvay workshop, Brussels May 18, 2018

Gravitational wave memory and gauge invariance. David Garfinkle Solvay workshop, Brussels May 18, 2018 Gravitational wave memory and gauge invariance David Garfinkle Solvay workshop, Brussels May 18, 2018 Talk outline Gravitational wave memory Gauge invariance in perturbation theory Perturbative and gauge

More information

Covariant Equations of Motion of Extended Bodies with Mass and Spin Multipoles

Covariant Equations of Motion of Extended Bodies with Mass and Spin Multipoles Covariant Equations of Motion of Extended Bodies with Mass and Spin Multipoles Sergei Kopeikin University of Missouri-Columbia 1 Content of lecture: Motivations Statement of the problem Notable issues

More information

Cosmological and astrophysical applications of vector-tensor theories

Cosmological and astrophysical applications of vector-tensor theories Cosmological and astrophysical applications of vector-tensor theories Shinji Tsujikawa (Tokyo University of Science) Collaboration with A.De Felice, L.Heisenberg, R.Kase, M.Minamitsuji, S.Mukohyama, S.

More information

Advantages and unexpected shortcomings of extended theories of gravity

Advantages and unexpected shortcomings of extended theories of gravity Institute of Theoretical Physics, Heidelberg June 17 2015 Advantages and unexpected shortcomings of extended theories of gravity Álvaro de la Cruz-Dombriz Collaborators: J. Beltrán, V. Busti, P. K. S.

More information

NEWTONIAN COSMOLOGY. Figure 2.1: All observers see galaxies expanding with the same Hubble law. v A = H 0 r A (2.1)

NEWTONIAN COSMOLOGY. Figure 2.1: All observers see galaxies expanding with the same Hubble law. v A = H 0 r A (2.1) M. Pettini: Introduction to Cosmology Lecture 2 NEWTONIAN COSMOLOGY The equations that describe the time evolution of an expanding universe which is homogeneous and isotropic can be deduced from Newtonian

More information

Non-linear structure formation in modified gravity models

Non-linear structure formation in modified gravity models Non-linear structure formation in modified gravity models Kazuya Koyama Institute of Cosmology and Gravitation, University of Portsmouth Curvature Assuming GR Psaltis Living Rev. Relativity 11 (2008),

More information

Cosmic Acceleration from Modified Gravity: f (R) A Worked Example. Wayne Hu

Cosmic Acceleration from Modified Gravity: f (R) A Worked Example. Wayne Hu Cosmic Acceleration from Modified Gravity: f (R) A Worked Example Wayne Hu Aspen, January 2009 Outline f(r) Basics and Background Linear Theory Predictions N-body Simulations and the Chameleon Collaborators:

More information

Gravitational Waves modes in Extended Teleparallel Gravity

Gravitational Waves modes in Extended Teleparallel Gravity Gravitational Waves modes in Extended Teleparallel Gravity Salvatore Capozziello based on H. Abedi & S. Capozziello EPJC78(2018)474 Plan of the talk Ø Gravitational waves in General Relativity Ø Extended

More information

CMB Polarization in Einstein-Aether Theory

CMB Polarization in Einstein-Aether Theory CMB Polarization in Einstein-Aether Theory Masahiro Nakashima (The Univ. of Tokyo, RESCEU) With Tsutomu Kobayashi (RESCEU) COSMO/CosPa 2010 Introduction Two Big Mysteries of Cosmology Dark Energy & Dark

More information

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY

The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY The ultimate measurement of the CMB temperature anisotropy field UNVEILING THE CMB SKY PARAMETRIC MODEL 16 spectra in total C(θ) = CMB theoretical spectra plus physically motivated templates for the

More information

4. MiSaTaQuWa force for radiation reaction

4. MiSaTaQuWa force for radiation reaction 4. MiSaTaQuWa force for radiation reaction [ ] g = πgt G 8 g = g ( 0 ) + h M>>μ v/c can be large + h ( ) M + BH μ Energy-momentum of a point particle 4 μ ν δ ( x z( τ)) μ dz T ( x) = μ dτ z z z = -g dτ

More information

Linear and non-linear effects in structure formation

Linear and non-linear effects in structure formation UNIVERSITA DEGLI STUDI DI ROMA TOR VERGATA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI DOTTORATO DI RICERCA IN FISICA Linear and non-linear effects in structure formation Irene Milillo Docente Tutor:

More information

CMB Anisotropies Episode II :

CMB Anisotropies Episode II : CMB Anisotropies Episode II : Attack of the C l ones Approximation Methods & Cosmological Parameter Dependencies By Andy Friedman Astronomy 200, Harvard University, Spring 2003 Outline Elucidating the

More information

Inflation and the origin of structure in the Universe

Inflation and the origin of structure in the Universe Phi in the Sky, Porto 0 th July 004 Inflation and the origin of structure in the Universe David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! motivation! the Primordial

More information

School Observational Cosmology Angra Terceira Açores 3 rd June Juan García-Bellido Física Teórica UAM Madrid, Spain

School Observational Cosmology Angra Terceira Açores 3 rd June Juan García-Bellido Física Teórica UAM Madrid, Spain School Observational Cosmology Angra Terceira Açores 3 rd June 2014 Juan García-Bellido Física Teórica UAM Madrid, Spain Outline Lecture 1 Shortcomings of the Hot Big Bang The Inflationary Paradigm Homogeneous

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology João G. Rosa joao.rosa@ua.pt http://gravitation.web.ua.pt/cosmo LECTURE 2 - Newtonian cosmology I As a first approach to the Hot Big Bang model, in this lecture we will consider

More information

Esra Russell New York University Abu Dhabi Collaboration with C. Battal-Kilinc & O. Pashaev EWASS 2015, Tenerife, Spain, 22 June 2015

Esra Russell New York University Abu Dhabi Collaboration with C. Battal-Kilinc & O. Pashaev EWASS 2015, Tenerife, Spain, 22 June 2015 Esra Russell New York University Abu Dhabi Collaboration with C. Battal-Kilinc & O. Pashaev EWASS 2015, Tenerife, Spain, 22 June 2015 1 Primordial Gaussian Perturbations Recipe: Gaussian Perturbations

More information

Chapter 4. COSMOLOGICAL PERTURBATION THEORY

Chapter 4. COSMOLOGICAL PERTURBATION THEORY Chapter 4. COSMOLOGICAL PERTURBATION THEORY 4.1. NEWTONIAN PERTURBATION THEORY Newtonian gravity is an adequate description on small scales (< H 1 ) and for non-relativistic matter (CDM + baryons after

More information

A873: Cosmology Course Notes. II. General Relativity

A873: Cosmology Course Notes. II. General Relativity II. General Relativity Suggested Readings on this Section (All Optional) For a quick mathematical introduction to GR, try Chapter 1 of Peacock. For a brilliant historical treatment of relativity (special

More information

Healthy theories beyond Horndeski

Healthy theories beyond Horndeski Healthy theories beyond Horndeski Jérôme Gleyzes, IPhT CEA Saclay with D. Langlois, F. Piazza and F. Vernizzi, arxiv:1404.6495, arxiv:1408.1952 ITP Heidelberg 26/11/14 Introduction to Horndeski Going safely

More information

General Relativity (2nd part)

General Relativity (2nd part) General Relativity (2nd part) Electromagnetism Remember Maxwell equations Conservation Electromagnetism Can collect E and B in a tensor given by And the charge density Can be constructed from and current

More information

Savvas Nesseris. IFT/UAM-CSIC, Madrid, Spain

Savvas Nesseris. IFT/UAM-CSIC, Madrid, Spain Savvas Nesseris IFT/UAM-CSIC, Madrid, Spain What are the GWs (history, description) Formalism in GR (linearization, gauges, emission) Detection techniques (interferometry, LIGO) Recent observations (BH-BH,

More information

Beyond Einstein: gravitational waves from extended gravities

Beyond Einstein: gravitational waves from extended gravities Beyond Einstein: gravitational waves from extended gravities Salvatore Capozziello Università di Napoli Federico II and INFN sez. di Napoli in collaboration with Mariafelicia De Laurentis Institute for

More information

A Framework for. Modified Gravity. Models of Cosmic Acceleration. Wayne Hu EFI, November 2008

A Framework for. Modified Gravity. Models of Cosmic Acceleration. Wayne Hu EFI, November 2008 A Framework for Modified Gravity Models of Cosmic Acceleration Wayne Hu EFI, November 2008 Candidates for Acceleration Cosmological constant (cold dark matter) model ΛCDM is the standard model of cosmology

More information

Cosmological parameters of modified gravity

Cosmological parameters of modified gravity Cosmological parameters of modified gravity Levon Pogosian Simon Fraser University Burnaby, BC, Canada In collaborations with R. Crittenden, A. Hojjati, K. Koyama, A. Silvestri, G.-B. Zhao Two questions

More information

VU lecture Introduction to Particle Physics. Thomas Gajdosik, FI & VU. Big Bang (model)

VU lecture Introduction to Particle Physics. Thomas Gajdosik, FI & VU. Big Bang (model) Big Bang (model) What can be seen / measured? basically only light _ (and a few particles: e ±, p, p, ν x ) in different wave lengths: microwave to γ-rays in different intensities (measured in magnitudes)

More information

GENERAL RELATIVISTIC DESCRIPTION OF OBSERVED GALAXY POWER SPECTRUM

GENERAL RELATIVISTIC DESCRIPTION OF OBSERVED GALAXY POWER SPECTRUM GENERAL RELATIVISTIC DESCRIPTION OF OBSERVED GALAXY POWER SPECTRUM JAIYUL YOO INSTITUTE for THEORETICAL PHYSICS, UNIVERSITY of ZÜRICH Michigan Center for Theoretical Physics, May, 14, 2011 1 CONTENTS I.

More information

PERTURBATIONS IN LOOP QUANTUM COSMOLOGY

PERTURBATIONS IN LOOP QUANTUM COSMOLOGY PERTURBATIONS IN LOOP QUANTUM COSMOLOGY William Nelson Pennsylvania State University Work with: Abhay Astekar and Ivan Agullo (see Ivan s ILQG talk, 29 th March ) AUTHOR, W. NELSON (PENN. STATE) PERTURBATIONS

More information

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 We are directly observing the history of the universe as we look deeply into the sky. JUN 30, 2016 ZZXianyu (CMSA) 2 At ~10 4 yrs the universe becomes

More information

Beyond N-formalism. Resceu, University of Tokyo. Yuichi Takamizu 29th Aug, 高知

Beyond N-formalism. Resceu, University of Tokyo. Yuichi Takamizu 29th Aug, 高知 Beyond N-formalism Resceu, University of Tokyo Yuichi Takamizu 29th Aug, 2010 @ 高知 Collaborator: Shinji Mukohyama (IPMU,U of Tokyo), Misao Sasaki & Yoshiharu Tanaka (YITP,Kyoto U) Ref: JCAP06 019 (2010)

More information

Cosmology and the origin of structure

Cosmology and the origin of structure 1 Cosmology and the origin of structure ocy I: The universe observed ocy II: Perturbations ocy III: Inflation Primordial perturbations CB: a snapshot of the universe 38, AB correlations on scales 38, light

More information

Position-dependent Power Spectrum

Position-dependent Power Spectrum Position-dependent Power Spectrum ~Attacking an old, but unsolved, problem with a new method~ Eiichiro Komatsu (Max Planck Institute for Astrophysics) New Directions in Theoretical Physics 2, the Higgs

More information

5.5 Energy-momentum tensor

5.5 Energy-momentum tensor 5.5 Energy-momentum tensor components of stress tensor force area of cross section normal to cross section 5 Special Relativity provides relation between the forces and the cross sections these are exerted

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

arxiv: v2 [astro-ph.co] 17 Jul 2013

arxiv: v2 [astro-ph.co] 17 Jul 2013 The Poisson equation at second order in relativistic cosmology J. C. Hidalgo 1 Adam J. Christopherson 3 and Karim A. Malik 4 1 Institute of Cosmology and Gravitation University of Portsmouth Portsmouth

More information

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 El Universo en Expansion Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 5 billion years (you are here) Space is Homogeneous and Isotropic General Relativity An Expanding Universe

More information

Modified gravity. Kazuya Koyama ICG, University of Portsmouth

Modified gravity. Kazuya Koyama ICG, University of Portsmouth Modified gravity Kazuya Koyama ICG, University of Portsmouth Cosmic acceleration Cosmic acceleration Big surprise in cosmology Simplest best fit model LCDM 4D general relativity + cosmological const. H

More information

Backreaction as an explanation for Dark Energy?

Backreaction as an explanation for Dark Energy? Backreaction as an explanation for Dark Energy? with some remarks on cosmological perturbation theory James M. Bardeen University of Washington The Very Early Universe 5 Years On Cambridge, December 17,

More information

Curved spacetime tells matter how to move

Curved spacetime tells matter how to move Curved spacetime tells matter how to move Continuous matter, stress energy tensor Perfect fluid: T 1st law of Thermodynamics Relativistic Euler equation Compare with Newton =( c 2 + + p)u u /c 2 + pg j

More information