Complexity Theory Part Two

Size: px
Start display at page:

Download "Complexity Theory Part Two"

Transcription

1 Complexity Theory Part Two

2 Recap from Last Time

3 The Cobham-Edmonds Thesis A language L can be decided efficiently if there is a TM that decides it in polynomial time. Equivalently, L can be decided efficiently if it can be decided in time O(n k ) for some k N. Like Like the the Church-Turing thesis, this this is is not not a theorem! It's It's an an assumption about about the the nature of of efficient computation, and and it it is is somewhat controversial.

4 The Complexity Class P The complexity class P (for polynomial time) contains all problems that can be solved in polynomial time. Formally: P = { L There is a polynomial-time decider for L } Assuming the Cobham-Edmonds thesis, a language is in P if it can be decided efficiently.

5 Polynomial-Time Verifiers A polynomial-time verifier for L is a TM V such that V halts on all inputs. w L iff c Σ*. V accepts w, c. V's runtime is a polynomial in w (that is, V's runtime is O( w k ) for some integer k)

6 The Complexity Class NP The complexity class NP (nondeterministic polynomial time) contains all problems that can be verified in polynomial time. Formally: NP = { L There is a polynomial-time verifier for L } The name NP comes from another way of characterizing NP. If you introduce nondeterministic Turing machines and appropriately define polynomial time, then NP is the set of problems that an NTM can solve in polynomial time.

7 Theorem (Baker-Gill-Solovay): Any proof that purely relies on universality and self-reference cannot resolve P NP. Proof: Take CS154!

8 So how are we going to reason about P and NP?

9 Maximum Matching Given an undirected graph G, a matching in G is a set of edges such that no two edges share an endpoint. A maximum matching is a matching with the largest number of edges.

10 Maximum Matching Given an undirected graph G, a matching in G is a set of edges such that no two edges share an endpoint. A maximum matching is a matching with the largest number of edges.

11 Maximum Matching Given an undirected graph G, a matching in G is a set of edges such that no two edges share an endpoint. A maximum matching is a matching with the largest number of edges. A matching, matching, but but not not a a maximum maximum matching. matching.

12 Maximum Matching Given an undirected graph G, a matching in G is a set of edges such that no two edges share an endpoint. A maximum matching is a matching with the largest number of edges. A maximum maximum matching. matching.

13 Maximum Matching Given an undirected graph G, a matching in G is a set of edges such that no two edges share an endpoint. A maximum matching is a matching with the largest number of edges.

14 Maximum Matching Given an undirected graph G, a matching in G is a set of edges such that no two edges share an endpoint. A maximum matching is a matching with the largest number of edges.

15 Maximum Matching Jack Edmonds' paper Paths, Trees, and Flowers gives a polynomial-time algorithm for finding maximum matchings. (This is the same Edmonds as in Cobham- Edmonds Thesis. ) Using this fact, what other problems can we solve?

16 Domino Tiling

17 Domino Tiling

18 Domino Tiling

19 Domino Tiling

20 Domino Tiling

21 Domino Tiling

22 Solving Domino Tiling

23 Solving Domino Tiling

24 Solving Domino Tiling

25 Solving Domino Tiling

26 Solving Domino Tiling

27 Solving Domino Tiling

28 Solving Domino Tiling

29 Solving Domino Tiling

30 In Pseudocode boolean canplacedominos(grid G, int k) { } return hasmatching(gridtograph(g), k);

31 Intuition: Tiling a grid with dominoes can't be harder than solving maximum matching, because if we can solve maximum matching efficiently, we can solve domino tiling efficiently.

32 New Stuff!

33 Another Example

34 Reachability Consider the following problem: Given an directed graph G and nodes s and t in G, is there a path from s to t? It's known that this problem can be solved in polynomial time (use DFS or BFS). Given that we can solve the reachability problem in polynomial time, what other problems can we solve in polynomial time?

35 Converter Conundrums Suppose that you want to plug your laptop into a projector. Your laptop only has a VGA output, but the projector needs HDMI input. You have a box of connectors that convert various types of input into various types of output (for example, VGA to DVI, DVI to DisplayPort, etc.) Question: Can you plug your laptop into the projector?

36 Converter Conundrums Connectors RGB RGB to to USB USB VGA VGA to to DisplayPort DB13W3 DB13W3 to to CATV CATV DisplayPort to to RGB RGB DB13W3 DB13W3 to to HDMI HDMI DVI DVI to to DB13W3 DB13W3 S-Video S-Video to to DVI DVI FireWire FireWire to to SDI SDI VGA VGA to to RGB RGB DVI DVI to to DisplayPort USB USB to to S-Video S-Video SDI SDI to to HDMI HDMI

37 Converter Conundrums Connectors RGB RGB to to USB USB VGA VGA to to DisplayPort DB13W3 DB13W3 to to CATV CATV DisplayPort to to RGB RGB DB13W3 DB13W3 to to HDMI HDMI DVI DVI to to DB13W3 DB13W3 S-Video S-Video to to DVI DVI FireWire FireWire to to SDI SDI VGA VGA to to RGB RGB DVI DVI to to DisplayPort USB USB to to S-Video S-Video SDI SDI to to HDMI HDMI VGA RGB USB DisplayPort DB13W3 CATV HDMI X FireWire DVI S-Video SDI

38 Converter Conundrums VGA RGB USB DisplayPort DB13W3 CATV HDMI X DVI S-Video FireWire SDI

39 Converter Conundrums VGA RGB USB DisplayPort DB13W3 CATV HDMI X DVI S-Video FireWire SDI

40 Converter Conundrums VGA RGB USB DisplayPort DB13W3 CATV HDMI X DVI S-Video FireWire SDI

41 Converter Conundrums Connectors RGB RGB to to USB USB VGA VGA to to DisplayPort DB13W3 DB13W3 to to CATV CATV DisplayPort to to RGB RGB DB13W3 DB13W3 to to HDMI HDMI DVI DVI to to DB13W3 DB13W3 S-Video S-Video to to DVI DVI FireWire FireWire to to SDI SDI VGA VGA to to RGB RGB DVI DVI to to DisplayPort USB USB to to S-Video S-Video SDI SDI to to HDMI HDMI VGA RGB USB DisplayPort DB13W3 CATV HDMI X FireWire DVI S-Video SDI

42 In Pseudocode boolean canplugin(list<plug> plugs) { } return isreachable(plugstograph(plugs), VGA, HDMI);

43 Intuition: Finding a way to plug a computer into a projector can't be harder than determining reachability in a graph, since if we can determine reachability in a graph, we can find a way to plug a computer into a projector.

44 bool solveproblema(string input) { return solveproblemb(transform(input)); } Intuition: Problem A can't be harder than problem B, because solving problem B lets us solve problem A.

45 bool solveproblema(string input) { return solveproblemb(transform(input)); } If A and B are problems where it's possible to solve problem A using the strategy shown above *, we write A p B. We say that A is polynomial-time reducible to B. * Assuming that transform * runs in polynomial time.

46 Polynomial-Time Reductions If A p B and B P, then A P. If L 1 P L 2 and L 2 NP, then L 1 NP. P

47 Polynomial-Time Reductions If A p B and B P, then A P. If L 1 P L 2 and L 2 NP, then L 1 NP. P

48 Polynomial-Time Reductions If A p B and B P, then A P. If L 1 P L 2 and L 2 NP, then L 1 NP. P

49 Polynomial-Time Reductions If A p B and B P, then A P. If A p B and B NP, then A NP. P

50 Polynomial-Time Reductions If A p B and B P, then A P. If A p B and B NP, then A NP. P NP

51 Polynomial-Time Reductions If A p B and B P, then A P. If A p B and B NP, then A NP. P NP

52 Polynomial-Time Reductions If A p B and B P, then A P. If A p B and B NP, then A NP. P NP

53 This ₚ relation lets us rank the relative difficulties of problems in P and NP. What else can we do with it?

54 Time-Out for Announcements!

55 Please evaluate this course on Axess. Your feedback makes a difference.

56 Problem Set Nine Problem Set Nine is due this Wednesday at the start of class. No late submissions can be accepted. This is university policy sorry! This problem set is much shorter than the other ones we ve given out so far this quarter. Check the course website for the final office hours timetable for the week.

57 Final Exam Logistics Our final exam is this Friday from 3:30PM 6:30PM. Rooms are divvied up by last (family) name: Abb Kan: Go to Bishop Auditorium. Kar Zuc: Go to Cemex Auditorium. Exam is cumulative and all topics from the lectures and problem sets are fair game. The exam focus is roughly 50/50 between discrete math topics (PS1 PS5) and computability/complexity topics (PS6 PS9). As with the midterms, the exam is closed-book, closedcomputer, and limited-note. You can bring a single, double-sided, sheet of notes with you to the exam.

58 Preparing for the Exam Up on the course website, you ll find three sets of extra practice problems (EPP9 EPP11), with solutions, and four practice final exams, with solutions. Feel free to ask questions about them on Piazza or in office hours. Thursday office hours are a great place to ask questions! Need more practice on a particular topic? Let us know! Folks on Piazza have asked for more practice with Myhill- Nerode and CFG design, and we re working on putting together some more practice problems along those lines. Stay tuned!

59 Your Questions

60 Regarding CS tracks, are there any references out there that help describe the CS tracks in greater detail and how each apply to industry today? This This is is a a great great question question and and I I don t don t have have a a good good answer answer for for you. you. I ll I ll ask ask around around and and see see if if I I can can come come up up with with anything. anything. If If so, so, I ll I ll share share it it on on Wednesday. Wednesday. If If not, not, I ll I ll ask ask around around about about making making one! one!

61 Keith! as someone struggles in CS/STEM, your constant encouragement and belief in us makes a world of difference. Any advice for the future when things get hard On entry to this quarter, I ve had 7,265 total students in the courses I ve On entry to this quarter, I ve had 7,265 total students in the courses I ve taught. I ve seen a lot of people struggle. I ve met people for whom the taught. I ve seen a lot of people struggle. I ve met people for whom the material didn t click as quickly as they d like. I ve chatted with folks who were material didn t click as quickly as they d like. I ve chatted with folks who were worried about whether they could keep up. But I have never, not once, met worried about whether they could keep up. But I have never, not once, met someone I legitimately thought could not learn this material. someone I legitimately thought could not learn this material. Learning is uncomfortable it requires you to face the harsh reality that Learning is uncomfortable it requires you to face the harsh reality that there are things that you don t understand as well as you think you do. It there are things that you don t understand as well as you think you do. It requires repetition and practice and can be frustrating. But the rewards are requires repetition and practice and can be frustrating. But the rewards are immense. Take a look back on what you ve accomplished in this quarter. Where immense. Take a look back on what you ve accomplished in this quarter. Where did you start? And where are you now? It s easy to lose sight of that in the did you start? And where are you now? It s easy to lose sight of that in the daily/weekly/monthly grind, but it s so refreshing when you see it. daily/weekly/monthly grind, but it s so refreshing when you see it. And you re always welcome to come talk to me even if you aren t in CS103! I And you re always welcome to come talk to me even if you aren t in CS103! I love hearing what people are up to! love hearing what people are up to!

62 How do you think the mindset of computer science thinking extend to life? (How CS affects one's outlook of life compared to non-stem disciplines?) I ll I ll take take this this one one in in class class because because I I was was silly silly and and didn t didn t budget budget enough enough time time to to write write up up an an answer answer before before coming coming to to class. class.

63 Back to CS103!

64 NP-Hardness and NP-Completeness

65 Question: What makes a problem hard to solve?

66 Intuition: If A ₚ B, then problem B is at least as hard * as problem A. * for some definition of at least as hard as.

67 Intuition: To show that some problem is hard, show that lots of other problems reduce to it.

68 NP-Hardness A language L is called NP-hard if for every A NP, we have A P L. A language in L is called NP-complete iff L is NP-hard and L NP. The class NPC is the set of NP-complete problems. NP P

69 NP-Hardness A language L is called NP-hard if for every A NP, we have A P L. A language in L is called NP-complete iff L is NP-hard and L NP. The class NPC is the set of NP-complete problems. NP NP-Hard P

70 NP-Hardness A language L is called NP-hard if for every A NP, we have A P L. A language in L is called NP-complete iff L is NP-hard and L NP. The class NPC is the set of NP-complete problems. NP NP-Hard P

71 NP-Hardness A language L is called NP-hard if for every A NP, we have A P L. Intuitively: L has has to to be be at at least least as as hard as every problem in NP, since an an algorithm for for L can can be be used used to to decide all all problems in in NP. NP. A language in L is hard called as NP-complete every problem iff L is in NP-hard NP, since and L NP. The class NPC is the set of NP-complete problems. NP NP-Hard P

72 NP-Hardness A language L is called NP-hard if for every A NP, we have A P L. A language in L is called NP-complete iff L is NP-hard and L NP. The class NPC is the set of NP-complete problems. NP NP-Hard P

73 NP-Hardness A language L is called NP-hard if for every A NP, we have A P L. A language in L is called NP-complete iff L What's What's is NP-hard in in here? here? and L NP. The class NPC is the set of NP-complete problems. NP NP-Hard P

74 NP-Hardness A language L is called NP-hard if for every A NP, we have A P L. A language in L is called NP-complete if L is NP-hard and L NP. The class NPC is the set of NP-complete problems. NP NP-Hard P

75 NP-Hardness A language L is called NP-hard if for every A NP, we have A P L. A language in L is called NP-complete if L is NP-hard and L NP. The class NPC is the set of NP-complete problems. NP NP-Hard NPC P

76 The Tantalizing Truth Theorem: If any NP-complete language is in P, then P = NP. Proof: Suppose that L is NP-complete and L P. Now consider any arbitrary NP problem X. Since L is NP-complete, we know that X p L. Since L P and X p L, we see that X P. Since our choice of X was arbitrary, this means that NP P, so P = NP.

77 The Tantalizing Truth Theorem: If any NP-complete language is in P, then P = NP. Proof: Suppose that L is NP-complete and L P. Now consider any arbitrary NP problem X. Since L is NP-complete, we know that X p L. Since L P and X p L, we see that X P. Since our choice of X was arbitrary, this means that NP P, so P = NP. NPC NP P

78 The Tantalizing Truth Theorem: If any NP-complete language is in P, then P = NP. Proof: Suppose that L is NP-complete and L P. Now consider any arbitrary NP problem X. Since L is NP-complete, we know that X p L. Since L P and X p L, we see that X P. Since our choice of X was arbitrary, this means that NP P, so P = NP. NPC NP P

79 The Tantalizing Truth Theorem: If any NP-complete language is in P, then P = NP. Proof: Suppose that L is NP-complete and L P. Now consider any arbitrary NP problem X. Since L is NP-complete, we know that X p L. Since L P and X p L, we see that X P. Since our choice of X was arbitrary, this means that NP P, so P = NP. NPC NP P

80 The Tantalizing Truth Theorem: If any NP-complete language is in P, then P = NP. Proof: Suppose that L is NP-complete and L P. Now consider any arbitrary NP problem X. Since L is NP-complete, we know that X p L. Since L P and X p L, we see that X P. Since our choice of X was arbitrary, this means that NP P, so P = NP. P = NP

81 The Tantalizing Truth Theorem: If any NP-complete language is in P, then P = NP. Proof: Suppose that L is NP-complete and L P. Now consider any arbitrary NP problem A. Since L is NP-complete, we know that A p L. Since L P and A p L, we see that A P. Since our choice of A was arbitrary, this means that NP P, so P = NP. P = NP

82 The Tantalizing Truth Theorem: If any NP-complete language is not in P, then P NP. Proof: Suppose that L is an NP-complete language not in P. Since L is NP-complete, we know that L NP. Therefore, we know that L NP and L P, so P NP. NP P NPC

83 How do we even know NP-complete problems exist in the first place?

84 Satisfiability A propositional logic formula φ is called satisfiable if there is some assignment to its variables that makes it evaluate to true. p q is satisfiable. p p is unsatisfiable. p (q q) is satisfiable. An assignment of true and false to the variables of φ that makes it evaluate to true is called a satisfying assignment.

85 SAT The boolean satisfiability problem (SAT) is the following: Formally: Given a propositional logic formula φ, is φ satisfiable? SAT = { φ φ is a satisfiable PL formula }

86 Theorem (Cook-Levin): SAT is NP-complete. Proof Idea: Given a polymomial-time verifier V for an arbitrary NP language L, for any string w you can construct a polynomially-sized formula φ(w) that says there is a certificate c where V accepts w, c. This formula is satisfiable if and only if w L, so deciding whether the formula is satisfiable decides whether w is in L. Proof: Take CS154!

87 Why All This Matters Resolving P NP is equivalent to just figuring out how hard SAT is. If SAT P, then P = NP. If SAT P, then P NP. We've turned a huge, abstract, theoretical problem about solving problems versus checking solutions into the concrete task of seeing how hard one problem is. You can get a sense for how little we know about algorithms and computation given that we can't yet answer this question!

88 Why All This Matters You will almost certainly encounter NP-hard problems in practice they're everywhere! If a problem is NP-hard, then there is no known algorithm for that problem that is efficient on all inputs, always gives back the right answer, and runs deterministically. Useful intuition: If you need to solve an NP-hard problem, you will either need to settle for an approximate answer, an answer that's likely but not necessarily right, or have to work on really small inputs.

89 Sample NP-Hard Problems Computational biology: Given a set of genomes, what is the most probable evolutionary tree that would give rise to those genomes? (Maximum parsimony problem) Game theory: Given an arbitrary perfect-information, finite, twoplayer game, who wins? (Generalized geography problem) Operations research: Given a set of jobs and workers who can perform those tasks in parallel, can you complete all the jobs within some time bound? (Job scheduling problem) Machine learning: Given a set of data, find the simplest way of modeling the statistical patterns in that data (Bayesian network inference problem) Medicine: Given a group of people who need kidneys and a group of kidney donors, find the maximum number of people who can end up with kidneys (Cycle cover problem) Systems: Given a set of processes and a number of processors, find the optimal way to assign those tasks so that they complete as soon as possible (Processor scheduling problem)

90 Coda: What if P NP is resolved?

91 Intermediate Problems With few exceptions, every problem we've discovered in NP has either definitely been proven to be in P, or definitely been proven to be NP-complete. A problem that's NP, not in P, but not NP-complete is called NP-intermediate. Theorem (Ladner): There are NP-intermediate problems if and only if P NP. NP P NPC

92 What if P NP?

93 A Good Read: A Personal View of Average-Case Complexity by Russell Impagliazzo

94 What if P = NP?

95 And a Dismal Third Option

96 Next Time The Big Picture Where to Go from Here A Final Your Questions Parting Words!

Complexity Theory Part Two

Complexity Theory Part Two Complexity Theory Part Two Recap from Last Time The Cobham-Edmonds Thesis A language L can be decided efficiently if there is a TM that decides it in polynomial time. Equivalently, L can be decided efficiently

More information

Complexity Theory Part Two

Complexity Theory Part Two Complexity Theory Part Two Recap from Last Time The Complexity Class P The complexity class P (for polynomial time) contains all problems that can be solved in polynomial time. Formally: P = { L There

More information

Complexity Theory Part Two

Complexity Theory Part Two Complexity Theory Part Two Recap from Last Time The Cobham-Edmonds Thesis A language L can be decided eficiently if there is a TM that decides it in polynomial time. Equivalently, L can be decided eficiently

More information

NP-Completeness Part One

NP-Completeness Part One NP-Completeness Part One Recap from Last Time The Limits of Efficient Computation P NP R P and NP Refresher The class P consists of all problems decidable in polynomial time. The class NP consists of all

More information

NP-Completeness Part I

NP-Completeness Part I NP-Completeness Part I Outline for Today Recap from Last Time Welcome back from break! Let's make sure we're all on the same page here. Polynomial-Time Reducibility Connecting problems together. NP-Completeness

More information

NP-Completeness Part One

NP-Completeness Part One NP-Completeness Part One Recap from Last Time The Limits of Efficient Computation P NP R P and NP Rresher The class P consists of all problems cidable in polynomial time. The class NP consists of all problems

More information

NP-Completeness Part One

NP-Completeness Part One NP-Completeness Part One Recap from Last Time Regular Languages CFLs R RE All Languages Regular Languages CFLs R RE All Languages Regular Languages CFLs Efficiently Decidable Languages R Undecidable Languages

More information

Complexity Theory Part One

Complexity Theory Part One Complexity Theory Part One Complexity Theory It may be that since one is customarily concerned with existence, [ ] finiteness, and so forth, one is not inclined to take seriously the question of the existence

More information

NP-Completeness Part One

NP-Completeness Part One NP-Completeness Part One Recap from Last Time The Limits of Efficient Computation P NP R P and NP Rresher The class P consists of all problems solvable in terministic polynomial time. The class NP consists

More information

NP-Completeness Part II

NP-Completeness Part II NP-Completeness Part II Please evaluate this course on Axess. Your comments really do make a difference. Announcements Problem Set 8 due tomorrow at 12:50PM sharp with one late day. Problem Set 9 out,

More information

NP-Completeness Part II

NP-Completeness Part II NP-Completeness Part II Outline for Today Recap from Last Time What is NP-completeness again, anyway? 3SAT A simple, canonical NP-complete problem. Independent Sets Discovering a new NP-complete problem.

More information

Recap from Last Time

Recap from Last Time P and NP Recap from Last Time The Limits of Decidability In computability theory, we ask the question What problems can be solved by a computer? In complexity theory, we ask the question What problems

More information

Recap from Last Time

Recap from Last Time NP-Completeness Recap from Last Time Analyzing NTMs When discussing deterministic TMs, the notion of time complexity is (reasonably) straightforward. Recall: One way of thinking about nondeterminism is

More information

Complexity Theory Part II

Complexity Theory Part II Complexity Theory Part II Time Complexity The time complexity of a TM M is a function denoting the worst-case number of steps M takes on any input of length n. By convention, n denotes the length of the

More information

Friday Four Square! Today at 4:15PM, Outside Gates

Friday Four Square! Today at 4:15PM, Outside Gates P and NP Friday Four Square! Today at 4:15PM, Outside Gates Recap from Last Time Regular Languages DCFLs CFLs Efficiently Decidable Languages R Undecidable Languages Time Complexity A step of a Turing

More information

Congratulations you're done with CS103 problem sets! Please evaluate this course on Axess!

Congratulations you're done with CS103 problem sets! Please evaluate this course on Axess! The Big Picture Announcements Problem Set 9 due right now. We'll release solutions right now. Congratulations you're done with CS103 problem sets! Please evaluate this course on Axess! Your feedback really

More information

Complexity Theory Part I

Complexity Theory Part I Complexity Theory Part I Outline for Today Recap from Last Time Reviewing Verifiers Nondeterministic Turing Machines What does nondeterminism mean in the context of TMs? And just how powerful are NTMs?

More information

Announcements. Friday Four Square! Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Did you lose a phone in my office?

Announcements. Friday Four Square! Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Did you lose a phone in my office? N P NP Completeness Announcements Friday Four Square! Today at 4:15PM, outside Gates. Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Explore P, NP, and their connection. Did

More information

NP-Completeness Part II

NP-Completeness Part II NP-Completeness Part II Recap from Last Time NP-Hardness A language L is called NP-hard iff for every L' NP, we have L' P L. A language in L is called NP-complete iff L is NP-hard and L NP. The class NPC

More information

Congratulations you're done with CS103 problem sets! Please evaluate this course on Axess!

Congratulations you're done with CS103 problem sets! Please evaluate this course on Axess! The Big Picture Announcements Problem Set 9 due right now. We'll release solutions right after lecture. Congratulations you're done with CS103 problem sets! Practice final exam is Monday, December 8 from

More information

Congratulations you're done with CS103 problem sets! Please evaluate this course on Axess!

Congratulations you're done with CS103 problem sets! Please evaluate this course on Axess! The Big Picture Announcements Problem Set 9 due right now. We'll release solutions right after lecture. Congratulations you're done with CS103 problem sets! Please evaluate this course on Axess! Your feedback

More information

Complexity Theory Part I

Complexity Theory Part I Complexity Theory Part I Problem Problem Set Set 77 due due right right now now using using a late late period period The Limits of Computability EQ TM EQ TM co-re R RE L D ADD L D HALT A TM HALT A TM

More information

CMSC 441: Algorithms. NP Completeness

CMSC 441: Algorithms. NP Completeness CMSC 441: Algorithms NP Completeness Intractable & Tractable Problems Intractable problems: As they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Standard

More information

CS103 Handout 22 Fall 2012 November 30, 2012 Problem Set 9

CS103 Handout 22 Fall 2012 November 30, 2012 Problem Set 9 CS103 Handout 22 Fall 2012 November 30, 2012 Problem Set 9 In this final problem set of the quarter, you will explore the limits of what can be computed efficiently. What problems do we believe are computationally

More information

Announcements. Using a 72-hour extension, due Monday at 11:30AM.

Announcements. Using a 72-hour extension, due Monday at 11:30AM. The Big Picture Announcements Problem Set 9 due right now. Using a 72-hour extension, due Monday at 11:30AM. On-time Problem Set 8's graded, should be returned at the end of lecture. Final exam review

More information

Announcements. Final exam review session tomorrow in Gates 104 from 2:15PM 4:15PM Final Friday Four Square of the quarter!

Announcements. Final exam review session tomorrow in Gates 104 from 2:15PM 4:15PM Final Friday Four Square of the quarter! The Big Picture Problem Problem Set Set 99 due due in in the the box box up up front. front. Congrats Congrats on on finishing finishing the the last last problem problem set set of of the the quarter!

More information

Outline for Today. Binary Relations. Equivalence Relations. Partial Orders. Quick Midterm Review

Outline for Today. Binary Relations. Equivalence Relations. Partial Orders. Quick Midterm Review Binary Relations Outline for Today Binary Relations Studying connections between objects from a different perspective. Equivalence Relations Relations that break objects into groups. Partial Orders Relations

More information

Topics in Complexity

Topics in Complexity Topics in Complexity Please evaluate this course on Axess! Your feedback really does make a difference. Applied Complexity Theory Complexity theory has enormous practical relevance across various domains

More information

NP-Completeness. Until now we have been designing algorithms for specific problems

NP-Completeness. Until now we have been designing algorithms for specific problems NP-Completeness 1 Introduction Until now we have been designing algorithms for specific problems We have seen running times O(log n), O(n), O(n log n), O(n 2 ), O(n 3 )... We have also discussed lower

More information

Lecture 22: PSPACE

Lecture 22: PSPACE 6.045 Lecture 22: PSPACE 1 VOTE VOTE VOTE For your favorite course on automata and complexity Please complete the online subject evaluation for 6.045 2 Final Exam Information Who: You On What: Everything

More information

Topics in Complexity Theory

Topics in Complexity Theory Topics in Complexity Theory Announcements Final exam this Friday from 12:15PM-3:15PM Please let us know immediately after lecture if you want to take the final at an alternate time and haven't yet told

More information

Announcements. Problem Set 7 graded; will be returned at end of lecture. Unclaimed problem sets and midterms moved!

Announcements. Problem Set 7 graded; will be returned at end of lecture. Unclaimed problem sets and midterms moved! N P NP Announcements Problem Set 7 graded; will be returned at end of lecture. Unclaimed problem sets and midterms moved! Now in cabinets in the Gates open area near the drop-off box. The Complexity Class

More information

CS5371 Theory of Computation. Lecture 19: Complexity IV (More on NP, NP-Complete)

CS5371 Theory of Computation. Lecture 19: Complexity IV (More on NP, NP-Complete) CS5371 Theory of Computation Lecture 19: Complexity IV (More on NP, NP-Complete) Objectives More discussion on the class NP Cook-Levin Theorem The Class NP revisited Recall that NP is the class of language

More information

Nonregular Languages

Nonregular Languages Nonregular Languages Recap from Last Time Theorem: The following are all equivalent: L is a regular language. There is a DFA D such that L( D) = L. There is an NFA N such that L( N) = L. There is a regular

More information

(Note that these points are to give a relative sense of the weights on the final exam and have no bearing on extra credit points)

(Note that these points are to give a relative sense of the weights on the final exam and have no bearing on extra credit points) CS103 Handout 24 Fall 2012 December 3, 2012 Extra Credit: Practice CS103 Final Exam This practice exam is worth 5 extra credit points. We will not give points based on whether or not your answers are correct,

More information

Essential facts about NP-completeness:

Essential facts about NP-completeness: CMPSCI611: NP Completeness Lecture 17 Essential facts about NP-completeness: Any NP-complete problem can be solved by a simple, but exponentially slow algorithm. We don t have polynomial-time solutions

More information

Finite Automata Part One

Finite Automata Part One Finite Automata Part One Computability Theory What problems can we solve with a computer? What problems can we solve with a computer? What kind of computer? Computers are Messy http://www.intel.com/design/intarch/prodbref/27273.htm

More information

6.080 / Great Ideas in Theoretical Computer Science Spring 2008

6.080 / Great Ideas in Theoretical Computer Science Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: NP-Completeness I Date: 11/13/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: NP-Completeness I Date: 11/13/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: NP-Completeness I Date: 11/13/18 20.1 Introduction Definition 20.1.1 We say that an algorithm runs in polynomial time if its running

More information

1 Computational problems

1 Computational problems 80240233: Computational Complexity Lecture 1 ITCS, Tsinghua Univesity, Fall 2007 9 October 2007 Instructor: Andrej Bogdanov Notes by: Andrej Bogdanov The aim of computational complexity theory is to study

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Announcements Problem Set 9 due right now. Final exam this Monday, Hewlett 200 from 12:15PM- 3:15PM Please let us know immediately after lecture if you want to take the final at

More information

Undecidability and Rice s Theorem. Lecture 26, December 3 CS 374, Fall 2015

Undecidability and Rice s Theorem. Lecture 26, December 3 CS 374, Fall 2015 Undecidability and Rice s Theorem Lecture 26, December 3 CS 374, Fall 2015 UNDECIDABLE EXP NP P R E RECURSIVE Recap: Universal TM U We saw a TM U such that L(U) = { (z,w) M z accepts w} Thus, U is a stored-program

More information

Decidability and Undecidability

Decidability and Undecidability Decidability and Undecidability Major Ideas from Last Time Every TM can be converted into a string representation of itself. The encoding of M is denoted M. The universal Turing machine U TM accepts an

More information

6-1 Computational Complexity

6-1 Computational Complexity 6-1 Computational Complexity 6. Computational Complexity Computational models Turing Machines Time complexity Non-determinism, witnesses, and short proofs. Complexity classes: P, NP, conp Polynomial-time

More information

Finite Automata Part One

Finite Automata Part One Finite Automata Part One Computability Theory What problems can we solve with a computer? What kind of computer? Computers are Messy http://www.intel.com/design/intarch/prodbref/27273.htm We need a simpler

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 25 Last time Class NP Today Polynomial-time reductions Adam Smith; Sofya Raskhodnikova 4/18/2016 L25.1 The classes P and NP P is the class of languages decidable

More information

P vs. NP. Data Structures and Algorithms CSE AU 1

P vs. NP. Data Structures and Algorithms CSE AU 1 P vs. NP Data Structures and Algorithms CSE 373-18AU 1 Goals for today Define P, NP, and NP-complete Explain the P vs. NP problem -why it s the biggest open problem in CS. -And what to do when a problem

More information

Practice Second Midterm Exam I

Practice Second Midterm Exam I CS103 Handout 33 Fall 2018 November 2, 2018 Practice Second Midterm Exam I This exam is closed-book and closed-computer. You may have a double-sided, 8.5 11 sheet of notes with you when you take this exam.

More information

A Note on Turing Machine Design

A Note on Turing Machine Design CS103 Handout 17 Fall 2013 November 11, 2013 Problem Set 7 This problem explores Turing machines, nondeterministic computation, properties of the RE and R languages, and the limits of RE and R languages.

More information

Practice Second Midterm Exam III

Practice Second Midterm Exam III CS103 Handout 35 Fall 2018 November 2, 2018 Practice Second Midterm Exam III This exam is closed-book and closed-computer. You may have a double-sided, 8.5 11 sheet of notes with you when you take this

More information

Course Staff. Textbook

Course Staff. Textbook Course Staff CS311H: Discrete Mathematics Intro and Propositional Logic Instructor: Işıl Dillig Instructor: Prof. Işıl Dillig TAs: Jacob Van Geffen, Varun Adiga, Akshay Gupta Class meets every Monday,

More information

CS 154 Introduction to Automata and Complexity Theory

CS 154 Introduction to Automata and Complexity Theory CS 154 Introduction to Automata and Complexity Theory cs154.stanford.edu 1 INSTRUCTORS & TAs Ryan Williams Cody Murray Lera Nikolaenko Sunny Rajan 2 Textbook 3 Homework / Problem Sets Homework will be

More information

Lecture Notes Each circuit agrees with M on inputs of length equal to its index, i.e. n, x {0, 1} n, C n (x) = M(x).

Lecture Notes Each circuit agrees with M on inputs of length equal to its index, i.e. n, x {0, 1} n, C n (x) = M(x). CS 221: Computational Complexity Prof. Salil Vadhan Lecture Notes 4 February 3, 2010 Scribe: Jonathan Pines 1 Agenda P-/NP- Completeness NP-intermediate problems NP vs. co-np L, NL 2 Recap Last time, we

More information

6.045: Automata, Computability, and Complexity (GITCS) Class 15 Nancy Lynch

6.045: Automata, Computability, and Complexity (GITCS) Class 15 Nancy Lynch 6.045: Automata, Computability, and Complexity (GITCS) Class 15 Nancy Lynch Today: More Complexity Theory Polynomial-time reducibility, NP-completeness, and the Satisfiability (SAT) problem Topics: Introduction

More information

Outline for Today. Revisiting our first lecture with our new techniques! How do we know when two sets have the same size?

Outline for Today. Revisiting our first lecture with our new techniques! How do we know when two sets have the same size? Cardinality Outline for Today Recap from Last Time Equal Cardinalities How do we know when two sets have the same size? Ranking Cardinalities Revisiting our first lecture with our new techniques! When

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

conp, Oracles, Space Complexity

conp, Oracles, Space Complexity conp, Oracles, Space Complexity 1 What s next? A few possibilities CS161 Design and Analysis of Algorithms CS254 Complexity Theory (next year) CS354 Topics in Circuit Complexity For your favorite course

More information

CSE 311: Foundations of Computing I. Lecture 1: Propositional Logic

CSE 311: Foundations of Computing I. Lecture 1: Propositional Logic CSE 311: Foundations of Computing I Lecture 1: Propositional Logic About CSE 311 Some Perspective Computer Science and Engineering Programming CSE 14x Theory Hardware CSE 311 About the Course We will study

More information

Turing Machines Part II

Turing Machines Part II Turing Machines Part II Problem Set Set Five Five due due in in the the box box up up front front using using a late late day. day. Hello Hello Condensed Slide Slide Readers! Readers! This This lecture

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 26 Computational Intractability Polynomial Time Reductions Sofya Raskhodnikova S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.1 What algorithms are

More information

Lecture 23: More PSPACE-Complete, Randomized Complexity

Lecture 23: More PSPACE-Complete, Randomized Complexity 6.045 Lecture 23: More PSPACE-Complete, Randomized Complexity 1 Final Exam Information Who: You On What: Everything through PSPACE (today) With What: One sheet (double-sided) of notes are allowed When:

More information

Computability Theory

Computability Theory CS:4330 Theory of Computation Spring 2018 Computability Theory P versus NP and NP-Completeness Haniel Barbosa Readings for this lecture Chapter 7 of [Sipser 1996], 3rd edition. Section 7.4. The P versus

More information

Mathematical Induction Part Two

Mathematical Induction Part Two Mathematical Induction Part Two Recap from Last Time Let P be some predicate. The principle of mathematical induction states that if If it starts true and it stays P(0) is true true and k ℕ. (P(k) P(k+1))

More information

COP 4531 Complexity & Analysis of Data Structures & Algorithms

COP 4531 Complexity & Analysis of Data Structures & Algorithms COP 4531 Complexity & Analysis of Data Structures & Algorithms Lecture 18 Reductions and NP-completeness Thanks to Kevin Wayne and the text authors who contributed to these slides Classify Problems According

More information

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013 Chapter 2 Reductions and NP CS 573: Algorithms, Fall 2013 August 29, 2013 2.1 Reductions Continued 2.1.1 The Satisfiability Problem SAT 2.1.1.1 Propositional Formulas Definition 2.1.1. Consider a set of

More information

NP-Completeness and Boolean Satisfiability

NP-Completeness and Boolean Satisfiability NP-Completeness and Boolean Satisfiability Mridul Aanjaneya Stanford University August 14, 2012 Mridul Aanjaneya Automata Theory 1/ 49 Time-Bounded Turing Machines A Turing Machine that, given an input

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CSE 5311 Lecture 25 NP Completeness Junzhou Huang, Ph.D. Department of Computer Science and Engineering CSE5311 Design and Analysis of Algorithms 1 NP-Completeness Some

More information

SAT, NP, NP-Completeness

SAT, NP, NP-Completeness CS 473: Algorithms, Spring 2018 SAT, NP, NP-Completeness Lecture 22 April 13, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 57 Part I Reductions Continued Ruta (UIUC)

More information

NP-Completeness Review

NP-Completeness Review CS124 NP-Completeness Review Where We Are Headed Up to this point, we have generally assumed that if we were given a problem, we could find a way to solve it. Unfortunately, as most of you know, there

More information

CSE 105 Theory of Computation

CSE 105 Theory of Computation CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Today s Agenda P and NP (7.2, 7.3) Next class: Review Reminders and announcements: CAPE & TA evals are open: Please

More information

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem.

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem. 1 More on NP In this set of lecture notes, we examine the class NP in more detail. We give a characterization of NP which justifies the guess and verify paradigm, and study the complexity of solving search

More information

CS103 Handout 08 Spring 2012 April 20, 2012 Problem Set 3

CS103 Handout 08 Spring 2012 April 20, 2012 Problem Set 3 CS103 Handout 08 Spring 2012 April 20, 2012 Problem Set 3 This third problem set explores graphs, relations, functions, cardinalities, and the pigeonhole principle. This should be a great way to get a

More information

Overview, cont. Overview, cont. Logistics. Optional Reference #1. Optional Reference #2. Workload and Grading

Overview, cont. Overview, cont. Logistics. Optional Reference #1. Optional Reference #2. Workload and Grading Course staff CS389L: Automated Logical Reasoning Lecture 1: ntroduction and Review of Basics şıl Dillig nstructor: şil Dillig E-mail: isil@cs.utexas.edu Office hours: Thursday after class until 6:30 pm

More information

Turing Machines Part Two

Turing Machines Part Two Turing Machines Part Two Recap from Last Time Our First Turing Machine q acc a start q 0 q 1 a This This is is the the Turing Turing machine s machine s finiteisttiteiconntont. finiteisttiteiconntont.

More information

CS154, Lecture 17: conp, Oracles again, Space Complexity

CS154, Lecture 17: conp, Oracles again, Space Complexity CS154, Lecture 17: conp, Oracles again, Space Complexity Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode: Guess string

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 7.2, 7.3 Distinguish between polynomial and exponential DTIME Define nondeterministic

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Fall 2016 http://cseweb.ucsd.edu/classes/fa16/cse105-abc/ Logistics HW7 due tonight Thursday's class: REVIEW Final exam on Thursday Dec 8, 8am-11am, LEDDN AUD Note card allowed

More information

1 PSPACE-Completeness

1 PSPACE-Completeness CS 6743 Lecture 14 1 Fall 2007 1 PSPACE-Completeness Recall the NP-complete problem SAT: Is a given Boolean formula φ(x 1,..., x n ) satisfiable? The same question can be stated equivalently as: Is the

More information

Lecture 4 : Quest for Structure in Counting Problems

Lecture 4 : Quest for Structure in Counting Problems CS6840: Advanced Complexity Theory Jan 10, 2012 Lecture 4 : Quest for Structure in Counting Problems Lecturer: Jayalal Sarma M.N. Scribe: Dinesh K. Theme: Between P and PSPACE. Lecture Plan:Counting problems

More information

Complexity Theory Part One

Complexity Theory Part One Complexity Theory Part One It may be that since one is customarily concerned with existence, [ ] finiteness, and so forth, one is not inclined to take seriously the question of the existence of a better-than-finite

More information

1 More finite deterministic automata

1 More finite deterministic automata CS 125 Section #6 Finite automata October 18, 2016 1 More finite deterministic automata Exercise. Consider the following game with two players: Repeatedly flip a coin. On heads, player 1 gets a point.

More information

Algorithms Design & Analysis. Approximation Algorithm

Algorithms Design & Analysis. Approximation Algorithm Algorithms Design & Analysis Approximation Algorithm Recap External memory model Merge sort Distribution sort 2 Today s Topics Hard problem Approximation algorithms Metric traveling salesman problem A

More information

15.1 Proof of the Cook-Levin Theorem: SAT is NP-complete

15.1 Proof of the Cook-Levin Theorem: SAT is NP-complete CS125 Lecture 15 Fall 2016 15.1 Proof of the Cook-Levin Theorem: SAT is NP-complete Already know SAT NP, so only need to show SAT is NP-hard. Let L be any language in NP. Let M be a NTM that decides L

More information

Notes on Complexity Theory Last updated: December, Lecture 2

Notes on Complexity Theory Last updated: December, Lecture 2 Notes on Complexity Theory Last updated: December, 2011 Jonathan Katz Lecture 2 1 Review The running time of a Turing machine M on input x is the number of steps M takes before it halts. Machine M is said

More information

Lecture 14 - P v.s. NP 1

Lecture 14 - P v.s. NP 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanford.edu) February 27, 2018 Lecture 14 - P v.s. NP 1 In this lecture we start Unit 3 on NP-hardness and approximation

More information

CS 301. Lecture 17 Church Turing thesis. Stephen Checkoway. March 19, 2018

CS 301. Lecture 17 Church Turing thesis. Stephen Checkoway. March 19, 2018 CS 301 Lecture 17 Church Turing thesis Stephen Checkoway March 19, 2018 1 / 17 An abridged modern history of formalizing algorithms An algorithm is a finite, unambiguous sequence of steps for solving a

More information

1.1 Administrative Stuff

1.1 Administrative Stuff 601.433 / 601.633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Introduction, Karatsuba/Strassen Date: 9/4/18 1.1 Administrative Stuff Welcome to Algorithms! In this class you will learn the

More information

CS173 Lecture B, September 10, 2015

CS173 Lecture B, September 10, 2015 CS173 Lecture B, September 10, 2015 Tandy Warnow September 11, 2015 CS 173, Lecture B September 10, 2015 Tandy Warnow Examlet Today Four problems: One induction proof One problem on simplifying a logical

More information

Exam Computability and Complexity

Exam Computability and Complexity Total number of points:... Number of extra sheets of paper:... Exam Computability and Complexity by Jiri Srba, January 2009 Student s full name CPR number Study number Before you start, fill in the three

More information

CSC 5170: Theory of Computational Complexity Lecture 4 The Chinese University of Hong Kong 1 February 2010

CSC 5170: Theory of Computational Complexity Lecture 4 The Chinese University of Hong Kong 1 February 2010 CSC 5170: Theory of Computational Complexity Lecture 4 The Chinese University of Hong Kong 1 February 2010 Computational complexity studies the amount of resources necessary to perform given computations.

More information

CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT

CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT Definition: A language B is NP-complete if: 1. B NP 2. Every A in NP is poly-time reducible to B That is, A P B When this is true, we say B is NP-hard On

More information

Lecture 20: conp and Friends, Oracles in Complexity Theory

Lecture 20: conp and Friends, Oracles in Complexity Theory 6.045 Lecture 20: conp and Friends, Oracles in Complexity Theory 1 Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode:

More information

Complexity and NP-completeness

Complexity and NP-completeness Lecture 17 Complexity and NP-completeness Supplemental reading in CLRS: Chapter 34 As an engineer or computer scientist, it is important not only to be able to solve problems, but also to know which problems

More information

6.080 / Great Ideas in Theoretical Computer Science Spring 2008

6.080 / Great Ideas in Theoretical Computer Science Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

CSE 135: Introduction to Theory of Computation NP-completeness

CSE 135: Introduction to Theory of Computation NP-completeness CSE 135: Introduction to Theory of Computation NP-completeness Sungjin Im University of California, Merced 04-15-2014 Significance of the question if P? NP Perhaps you have heard of (some of) the following

More information

Math 31 Lesson Plan. Day 2: Sets; Binary Operations. Elizabeth Gillaspy. September 23, 2011

Math 31 Lesson Plan. Day 2: Sets; Binary Operations. Elizabeth Gillaspy. September 23, 2011 Math 31 Lesson Plan Day 2: Sets; Binary Operations Elizabeth Gillaspy September 23, 2011 Supplies needed: 30 worksheets. Scratch paper? Sign in sheet Goals for myself: Tell them what you re going to tell

More information

CS 583: Algorithms. NP Completeness Ch 34. Intractability

CS 583: Algorithms. NP Completeness Ch 34. Intractability CS 583: Algorithms NP Completeness Ch 34 Intractability Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Standard working

More information

DRAFT. Diagonalization. Chapter 4

DRAFT. Diagonalization. Chapter 4 Chapter 4 Diagonalization..the relativized P =?NP question has a positive answer for some oracles and a negative answer for other oracles. We feel that this is further evidence of the difficulty of the

More information

Checkpoint Questions Due Monday, October 1 at 2:15 PM Remaining Questions Due Friday, October 5 at 2:15 PM

Checkpoint Questions Due Monday, October 1 at 2:15 PM Remaining Questions Due Friday, October 5 at 2:15 PM CS103 Handout 03 Fall 2012 September 28, 2012 Problem Set 1 This first problem set is designed to help you gain a familiarity with set theory and basic proof techniques. By the time you're done, you should

More information