1 Nisan-Wigderson pseudorandom generator

Size: px
Start display at page:

Download "1 Nisan-Wigderson pseudorandom generator"

Transcription

1 CSG399: Gems of Theoretical Computer Science. Lecture 3. Jan. 6, Instructor: Emanuele Viola Scribe: Dimitrios Kanoulas Nisan-Wigderson pseudorandom generator and design constuction Nisan-Wigderson pseudorandom generator Today we prove the Nisan-Wigderson pseudorandom generator theorem; we also present a design construction. If x {0, } s and S [s], we denote by x S the S bits of x indexed by S. Theorem (Nisan-Wigderson). Let f : {0, } l {0, } satisfy COR(f, size w) and w set n := w 3 (e.g., think w = l ω() ). Let S,..., S n be a design over universe of size s, where: S i = l, S i S j α and α = log n = log w. 3 Then the Nisan-Wigderson generator G : {0, } s {0, } n defined as fools circuits of size n with error n. G(x) = f(x S ) f(x S n ) Proof. Assume for the sake of contradiction that there exists a circuit c which breaks the generator: E x {0,} se[c(g(s))] E u e[c(u)] n, where u is uniformly distributed over {0, } n. By Yao s next-bit predictor Lemma we have: c : c c + O(), i n: Ex {0,} se[c (f(x S ) f(x S i )) + f(x S i )] n 2. rom c we will construct another circuit c that correlates with f, giving a contradiction. x [s] Si x Si igure : Input x We break the input x in two parts: x ([s] S i ) and x S i (igure ), and write: E x [s] Si [ Ex Si e[c (f(x S ) f(x S i )) + f(x S i )] ] n 2.

2 We now fix x [s] S i to a value that maximizes the above expectation, and for j < i we let f j (x S i S j ) be the function f(x S j ) where the bits of x outside of S i are fixed accordingly. or this fixing and notation we: Ex Si e[c (f (x S S i ) f i (x S i S i )) + f(x S i )] ( ) Note. Each f j O(α2 α ). is a function of α bits of x S i, and thus computable by a circuit of size Now we are going to exhibit the circuit c that correlates with f(x S i ). Given an input y {0, } l, we let x {0, } s be such that y = x S i, and the other bits of x are fixed as before, and c outputs: c(y) := c (f (x S S i ) f i (x S i S i )). Correlation: By our definition of c and ( ), we have E y e[ c(y) + f(y)] n 2 = (w 3 ) 2 = w 2 3 w. Size of c: We need to show that the size of circuit c is less than w. n = w /3 and α = log n, we have: n 2 Recalling that Size( c) c + size required to compute f i (x S S i ) f i (x S i S i ) c + O() + (i )O(α2 α ) n + O() + no(n log n) O(n 2 log n), O(w 2 3 log w 3 ) w. Thus, we have constructed a circuit of size at most w which has correlation at least /w with f. This contradicts our hypothesis and proves the theorem. We mention the following corollary, whose in particular part is Problem. Corollary 2. or every fixed ɛ > 0, there exists a constant c: if f : {0, } l {0, } is computable in time 2 O(l) and COR(f, size 2 ɛl ), then generator: G : {0, } c log n 2 ɛl {0, } n that fools circuits of size n with error /n and it is computable in time poly(n). In particular, P = BPP. Impagliazzo and Wigderson have strengthened the above result to hold under the weaker hypothesis that COR(f, size 2 ɛl ) <, as opposed to COR(f, size 2 ɛl ). In particular, 2 ɛl this leads to the following striking disjunction: Either SAT : {0, } l {0, } has circuits of size 2 l/00000 for arbitrarily large l, or P=BPP. Back from heaven, our goal now is to get an unconditional result. Specifically, we will construct a generator G : {0, } logo() n {0, } n that fools small circuits of fixed depth. We start with the design construction (which of course can be used in other contexts too). 2

3 Design Construction Now we will see how we can construct designs. Designs that are good enough for Corollary 2 can be found by an exhaustive brute-force procedure, in poly(n) time. We can construct more explicit designs using finite fields. We recall some basic facts about finite fields. act. ields of size 2 l can be constructed and operations over them can be performed in time poly(l). A polynomial of degree d over a field, i.e. P :, P (x) = d i=0 xi c i, has at most d roots over. Theorem 3. h power of 2, constant c, design S,..., S n such that n = 2 h, S i S j h, i j, S i = h c, the universe has size (set size) 2 = h 2c, and S i is computable in time poly(h). We are packing exponentially many sets whose pairwise intersection is a small power of the set size, over a universe roughly as large as the set size Proof. Pick a field of size h c, note x has size x = log h = c log log n. Our universe is. Given a string i {0, } log n = {0, } h, construct S i as follows: cloglogn cloglogn... igure 2: string i View i as the coefficients of a polynomial p i over. The degree of p i is The set S i will be the graph of the polynomial p i : S i := {(a, p i (a)) : a }, log n c log log n log n = h. cf. igure 3. Note S i = = h c, and we have n = {0, } h sets. To bound the intersection size, observe that S i S j is the number of roots of the polynomial (p i p j ). Since p i p j has degree less than h, we bound from above the intersection size by h, using act. inally, using again act, S i is computable in poly(h) time. 3

4 igure 3: Graph of polynomial roots of different polynomials igure 4: Bound on the intersection size Constant-depth circuits The depth of a circuit denotes the maximum distance from an input to an output gate (and recall circuits in these lectures have unbounded fan-in; our complexity measure is the number of wires). Remark 4. The depth in Nisan-Wigderson s proof increases by an absolute constant. Therefore, given f : {0, } l {0, } such that COR(f, size w and depth d), the Nisanw Wigderson construction gives a generator G : {0, } s {0, } n that fools circuits of size n and depth d O() with error /n. The complete proof of the next theorem will be given in next lectures. Theorem 5. The parity function on l bits, Parity(x,..., x l ) := x +...+x l mod 2, satisfies: COR(f, size w = 2 lɛ/d and depth d) /w, where ɛ is an absolute constant. 4

5 Now, Problem 2 asks you to put together the Nisan-Wigderson construction, the design construction from the previous section, and the above theorem, to obtain the following. Corollary 6 (Nisan). d, explicit generator G : {0, } logo(d) n {0, } n, that fools circuits of size n and depth d, with error /n. or an application of this corollary, see Problem 3. 5

THE COMPLEXITY OF CONSTRUCTING PSEUDORANDOM GENERATORS FROM HARD FUNCTIONS

THE COMPLEXITY OF CONSTRUCTING PSEUDORANDOM GENERATORS FROM HARD FUNCTIONS comput. complex. 13 (2004), 147 188 1016-3328/04/030147 42 DOI 10.1007/s00037-004-0187-1 c Birkhäuser Verlag, Basel 2004 computational complexity THE COMPLEXITY OF CONSTRUCTING PSEUDORANDOM GENERATORS

More information

Last time, we described a pseudorandom generator that stretched its truly random input by one. If f is ( 1 2

Last time, we described a pseudorandom generator that stretched its truly random input by one. If f is ( 1 2 CMPT 881: Pseudorandomness Prof. Valentine Kabanets Lecture 20: N W Pseudorandom Generator November 25, 2004 Scribe: Ladan A. Mahabadi 1 Introduction In this last lecture of the course, we ll discuss the

More information

CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds

CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds CSC 2429 Approaches to the P vs. NP Question and Related Complexity Questions Lecture 2: Switching Lemma, AC 0 Circuit Lower Bounds Lecturer: Toniann Pitassi Scribe: Robert Robere Winter 2014 1 Switching

More information

On Pseudorandomness w.r.t Deterministic Observers

On Pseudorandomness w.r.t Deterministic Observers On Pseudorandomness w.r.t Deterministic Observers Oded Goldreich Department of Computer Science Weizmann Institute of Science Rehovot, Israel. oded@wisdom.weizmann.ac.il Avi Wigderson The Hebrew University,

More information

1 Locally computable randomized encodings

1 Locally computable randomized encodings CSG399: Gems of Theoretical Computer Science Lectures 3-4 Feb 20-24, 2009 Instructor: Emanuele Viola Scribe: Eric Miles Cryptography in constant depth: II & III Locally computable randomized encodings

More information

1 Lecture 6-7, Scribe: Willy Quach

1 Lecture 6-7, Scribe: Willy Quach Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola 1 Lecture 6-7, Scribe: Willy Quach In these lectures, we introduce k-wise indistinguishability and link this notion to the approximate

More information

Lecture 4: LMN Learning (Part 2)

Lecture 4: LMN Learning (Part 2) CS 294-114 Fine-Grained Compleity and Algorithms Sept 8, 2015 Lecture 4: LMN Learning (Part 2) Instructor: Russell Impagliazzo Scribe: Preetum Nakkiran 1 Overview Continuing from last lecture, we will

More information

Notes for Lecture 11

Notes for Lecture 11 Stanford University CS254: Computational Complexity Notes 11 Luca Trevisan 2/11/2014 Notes for Lecture 11 Circuit Lower Bounds for Parity Using Polynomials In this lecture we prove a lower bound on the

More information

6.895 Randomness and Computation March 19, Lecture Last Lecture: Boosting Weak Learners Into Strong Learners

6.895 Randomness and Computation March 19, Lecture Last Lecture: Boosting Weak Learners Into Strong Learners 6.895 Randomness and Computation March 9, 2008 Lecture 3 Lecturer: Ronitt Rubinfeld Scribe: Edwin Chen Overview. Last Lecture: Boosting Weak Learners Into Strong Learners In the last two lectures, we showed

More information

CS294: Pseudorandomness and Combinatorial Constructions September 13, Notes for Lecture 5

CS294: Pseudorandomness and Combinatorial Constructions September 13, Notes for Lecture 5 UC Berkeley Handout N5 CS94: Pseudorandomness and Combinatorial Constructions September 3, 005 Professor Luca Trevisan Scribe: Gatis Midrijanis Notes for Lecture 5 In the few lectures we are going to look

More information

Lecture 21: P vs BPP 2

Lecture 21: P vs BPP 2 Advanced Complexity Theory Spring 206 Prof. Dana Moshkovitz Lecture 2: P vs BPP 2 Overview In the previous lecture, we began our discussion of pseudorandomness. We presented the Blum- Micali definition

More information

CS151 Complexity Theory. Lecture 9 May 1, 2017

CS151 Complexity Theory. Lecture 9 May 1, 2017 CS151 Complexity Theory Lecture 9 Hardness vs. randomness We have shown: If one-way permutations exist then BPP δ>0 TIME(2 nδ ) ( EXP simulation is better than brute force, but just barely stronger assumptions

More information

15-855: Intensive Intro to Complexity Theory Spring Lecture 16: Nisan s PRG for small space

15-855: Intensive Intro to Complexity Theory Spring Lecture 16: Nisan s PRG for small space 15-855: Intensive Intro to Complexity Theory Spring 2009 Lecture 16: Nisan s PRG for small space For the next few lectures we will study derandomization. In algorithms classes one often sees clever randomized

More information

Lecture 7: Pseudo Random Generators

Lecture 7: Pseudo Random Generators Introduction to ryptography 02/06/2018 Lecture 7: Pseudo Random Generators Instructor: Vipul Goyal Scribe: Eipe Koshy 1 Introduction Randomness is very important in modern computational systems. For example,

More information

Theory of Computer Science to Msc Students, Spring Lecture 2

Theory of Computer Science to Msc Students, Spring Lecture 2 Theory of Computer Science to Msc Students, Spring 2007 Lecture 2 Lecturer: Dorit Aharonov Scribe: Bar Shalem and Amitai Gilad Revised: Shahar Dobzinski, March 2007 1 BPP and NP The theory of computer

More information

Lecture 7: ɛ-biased and almost k-wise independent spaces

Lecture 7: ɛ-biased and almost k-wise independent spaces Lecture 7: ɛ-biased and almost k-wise independent spaces Topics in Complexity Theory and Pseudorandomness (pring 203) Rutgers University wastik Kopparty cribes: Ben Lund, Tim Naumovitz Today we will see

More information

Lecture 3: AC 0, the switching lemma

Lecture 3: AC 0, the switching lemma Lecture 3: AC 0, the switching lemma Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: Meng Li, Abdul Basit 1 Pseudorandom sets We start by proving

More information

Lecture 10: Learning DNF, AC 0, Juntas. 1 Learning DNF in Almost Polynomial Time

Lecture 10: Learning DNF, AC 0, Juntas. 1 Learning DNF in Almost Polynomial Time Analysis of Boolean Functions (CMU 8-859S, Spring 2007) Lecture 0: Learning DNF, AC 0, Juntas Feb 5, 2007 Lecturer: Ryan O Donnell Scribe: Elaine Shi Learning DNF in Almost Polynomial Time From previous

More information

Finite fields, randomness and complexity. Swastik Kopparty Rutgers University

Finite fields, randomness and complexity. Swastik Kopparty Rutgers University Finite fields, randomness and complexity Swastik Kopparty Rutgers University This talk Three great problems: Polynomial factorization Epsilon-biased sets Function uncorrelated with low-degree polynomials

More information

1 Randomized Computation

1 Randomized Computation CS 6743 Lecture 17 1 Fall 2007 1 Randomized Computation Why is randomness useful? Imagine you have a stack of bank notes, with very few counterfeit ones. You want to choose a genuine bank note to pay at

More information

Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/21/2010

Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/21/2010 Stanford University CS254: Computational Complexity Handout 8 Luca Trevisan 4/2/200 Counting Problems Today we describe counting problems and the class #P that they define, and we show that every counting

More information

: On the P vs. BPP problem. 18/12/16 Lecture 10

: On the P vs. BPP problem. 18/12/16 Lecture 10 03684155: On the P vs. BPP problem. 18/12/16 Lecture 10 Natural proofs Amnon Ta-Shma and Dean Doron 1 Natural proofs The ultimate goal we have is separating classes (or proving they are equal if they are).

More information

Lecture 3: Randomness in Computation

Lecture 3: Randomness in Computation Great Ideas in Theoretical Computer Science Summer 2013 Lecture 3: Randomness in Computation Lecturer: Kurt Mehlhorn & He Sun Randomness is one of basic resources and appears everywhere. In computer science,

More information

Norms, XOR lemmas, and lower bounds for GF(2) polynomials and multiparty protocols

Norms, XOR lemmas, and lower bounds for GF(2) polynomials and multiparty protocols Norms, XOR lemmas, and lower bounds for GF(2) polynomials and multiparty protocols Emanuele Viola, IAS (Work partially done during postdoc at Harvard) Joint work with Avi Wigderson June 2007 Basic questions

More information

Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets

Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets Meta-Algorithms vs. Circuit Lower Bounds Valentine Kabanets Tokyo Institute of Technology & Simon Fraser University Understanding Efficiency Better understanding of Efficient Computation Good Algorithms

More information

Circuits. Lecture 11 Uniform Circuit Complexity

Circuits. Lecture 11 Uniform Circuit Complexity Circuits Lecture 11 Uniform Circuit Complexity 1 Recall 2 Recall Non-uniform complexity 2 Recall Non-uniform complexity P/1 Decidable 2 Recall Non-uniform complexity P/1 Decidable NP P/log NP = P 2 Recall

More information

On the Randomness Complexity of. Efficient Sampling. Bella Dubrov

On the Randomness Complexity of. Efficient Sampling. Bella Dubrov On the Randomness Complexity of Efficient Sampling Bella Dubrov On the Randomness Complexity of Efficient Sampling Research Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

More information

CSC 5170: Theory of Computational Complexity Lecture 5 The Chinese University of Hong Kong 8 February 2010

CSC 5170: Theory of Computational Complexity Lecture 5 The Chinese University of Hong Kong 8 February 2010 CSC 5170: Theory of Computational Complexity Lecture 5 The Chinese University of Hong Kong 8 February 2010 So far our notion of realistic computation has been completely deterministic: The Turing Machine

More information

Polynomial Identity Testing and Circuit Lower Bounds

Polynomial Identity Testing and Circuit Lower Bounds Polynomial Identity Testing and Circuit Lower Bounds Robert Špalek, CWI based on papers by Nisan & Wigderson, 1994 Kabanets & Impagliazzo, 2003 1 Randomised algorithms For some problems (polynomial identity

More information

PRGs for space-bounded computation: INW, Nisan

PRGs for space-bounded computation: INW, Nisan 0368-4283: Space-Bounded Computation 15/5/2018 Lecture 9 PRGs for space-bounded computation: INW, Nisan Amnon Ta-Shma and Dean Doron 1 PRGs Definition 1. Let C be a collection of functions C : Σ n {0,

More information

Lecture 23: Alternation vs. Counting

Lecture 23: Alternation vs. Counting CS 710: Complexity Theory 4/13/010 Lecture 3: Alternation vs. Counting Instructor: Dieter van Melkebeek Scribe: Jeff Kinne & Mushfeq Khan We introduced counting complexity classes in the previous lecture

More information

6.842 Randomness and Computation April 2, Lecture 14

6.842 Randomness and Computation April 2, Lecture 14 6.84 Randomness and Computation April, 0 Lecture 4 Lecturer: Ronitt Rubinfeld Scribe: Aaron Sidford Review In the last class we saw an algorithm to learn a function where very little of the Fourier coeffecient

More information

Majority is incompressible by AC 0 [p] circuits

Majority is incompressible by AC 0 [p] circuits Majority is incompressible by AC 0 [p] circuits Igor Carboni Oliveira Columbia University Joint work with Rahul Santhanam (Univ. Edinburgh) 1 Part 1 Background, Examples, and Motivation 2 Basic Definitions

More information

Lecture 8 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak;

Lecture 8 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak; Topics in Theoretical Computer Science April 18, 2016 Lecturer: Ola Svensson Lecture 8 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Notes for Lecture 25

Notes for Lecture 25 U.C. Berkeley CS278: Computational Complexity Handout N25 ofessor Luca Trevisan 12/1/2004 Notes for Lecture 25 Circuit Lower Bounds for Parity Using Polynomials In this lecture we prove a lower bound on

More information

Lecture 13: Private Key Encryption

Lecture 13: Private Key Encryption COM S 687 Introduction to Cryptography October 05, 2006 Instructor: Rafael Pass Lecture 13: Private Key Encryption Scribe: Ashwin Machanavajjhala Till this point in the course we have learnt how to define

More information

Pseudorandom Bits for Constant Depth Circuits with Few Arbitrary Symmetric Gates

Pseudorandom Bits for Constant Depth Circuits with Few Arbitrary Symmetric Gates Pseudorandom Bits for Constant Depth Circuits with Few Arbitrary Symmetric Gates Emanuele Viola Division of Engineering and Applied Sciences Harvard University Cambridge, MA 02138 viola@eecs.harvard.edu

More information

Introduction. 1 Partially supported by a grant from The John Templeton Foundation

Introduction. 1 Partially supported by a grant from The John Templeton Foundation Nisan-Wigderson generators in proof systems with forms of interpolation Ján Pich 1 Faculty of Mathematics and Physics Charles University in Prague March, 2010 We prove that the Nisan-Wigderson generators

More information

Notes for Lecture 18

Notes for Lecture 18 U.C. Berkeley Handout N18 CS294: Pseudorandomness and Combinatorial Constructions November 1, 2005 Professor Luca Trevisan Scribe: Constantinos Daskalakis Notes for Lecture 18 1 Basic Definitions In the

More information

Indistinguishability and Pseudo-Randomness

Indistinguishability and Pseudo-Randomness Chapter 3 Indistinguishability and Pseudo-Randomness Recall that one main drawback of the One-time pad encryption scheme and its simple encryption operation Enc k (m) = m k is that the key k needs to be

More information

Certifying polynomials for AC 0 [ ] circuits, with applications

Certifying polynomials for AC 0 [ ] circuits, with applications Certifying polynomials for AC 0 [ ] circuits, with applications Swastik Kopparty Srikanth Srinivasan Abstract In this paper, we introduce and develop the method of certifying polynomials for proving AC

More information

6.842 Randomness and Computation Lecture 5

6.842 Randomness and Computation Lecture 5 6.842 Randomness and Computation 2012-02-22 Lecture 5 Lecturer: Ronitt Rubinfeld Scribe: Michael Forbes 1 Overview Today we will define the notion of a pairwise independent hash function, and discuss its

More information

Harmonic Analysis of Boolean Functions

Harmonic Analysis of Boolean Functions Harmonic Analysis of Boolean Functions Lectures: MW 10:05-11:25 in MC 103 Office Hours: MC 328, by appointment (hatami@cs.mcgill.ca). Evaluation: Assignments: 60 % Presenting a paper at the end of the

More information

Lecture 5: Pseudo-Random Generators and Pseudo-Random Functions

Lecture 5: Pseudo-Random Generators and Pseudo-Random Functions CS 276 Cryptography Sept 22, 2014 Lecture 5: Pseudo-Random Generators and Pseudo-Random Functions Instructor: Sanjam Garg Scribe: Peihan Miao 1 PRG (Pseudo-Random Generator) extension In this section we

More information

CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010

CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010 CSC 5170: Theory of Computational Complexity Lecture 9 The Chinese University of Hong Kong 15 March 2010 We now embark on a study of computational classes that are more general than NP. As these classes

More information

2 Natural Proofs: a barrier for proving circuit lower bounds

2 Natural Proofs: a barrier for proving circuit lower bounds Topics in Theoretical Computer Science April 4, 2016 Lecturer: Ola Svensson Lecture 6 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

1 Introduction The relation between randomized computations with one-sided error and randomized computations with two-sided error is one of the most i

1 Introduction The relation between randomized computations with one-sided error and randomized computations with two-sided error is one of the most i Improved derandomization of BPP using a hitting set generator Oded Goldreich Department of Computer Science Weizmann Institute of Science Rehovot, Israel. oded@wisdom.weizmann.ac.il Avi Wigderson Institute

More information

Lecture 22: Derandomization Implies Circuit Lower Bounds

Lecture 22: Derandomization Implies Circuit Lower Bounds Advanced Complexity Theory Spring 2016 Lecture 22: Derandomization Implies Circuit Lower Bounds Prof. Dana Moshkovitz 1 Overview In the last lecture we saw a proof presented by Madhu Sudan that E SIZE(2

More information

Lecture 9 - One Way Permutations

Lecture 9 - One Way Permutations Lecture 9 - One Way Permutations Boaz Barak October 17, 2007 From time immemorial, humanity has gotten frequent, often cruel, reminders that many things are easier to do than to reverse. Leonid Levin Quick

More information

Randomness and Computation March 13, Lecture 3

Randomness and Computation March 13, Lecture 3 0368.4163 Randomness and Computation March 13, 2009 Lecture 3 Lecturer: Ronitt Rubinfeld Scribe: Roza Pogalnikova and Yaron Orenstein Announcements Homework 1 is released, due 25/03. Lecture Plan 1. Do

More information

Lecture 4: Elementary Quantum Algorithms

Lecture 4: Elementary Quantum Algorithms CS 880: Quantum Information Processing 9/13/010 Lecture 4: Elementary Quantum Algorithms Instructor: Dieter van Melkebeek Scribe: Kenneth Rudinger This lecture introduces several simple quantum algorithms.

More information

CS151 Complexity Theory. Lecture 14 May 17, 2017

CS151 Complexity Theory. Lecture 14 May 17, 2017 CS151 Complexity Theory Lecture 14 May 17, 2017 IP = PSPACE Theorem: (Shamir) IP = PSPACE Note: IP PSPACE enumerate all possible interactions, explicitly calculate acceptance probability interaction extremely

More information

complexity distributions

complexity distributions The of complexity distributions Emanuele Viola Northeastern University March 2012 Local functions (a.k.a. Junta, NC 0 ) f : {0,1}n {0,1} d-local : output depends on d input bits Input x d f Fact: Parity(x)

More information

BOUNDED-DEPTH CIRCUITS CANNOT SAMPLE GOOD CODES

BOUNDED-DEPTH CIRCUITS CANNOT SAMPLE GOOD CODES BOUNDED-DEPTH CIRCUITS CANNOT SAMPLE GOOD CODES Shachar Lovett and Emanuele Viola February 8, 2012 Abstract. We study a variant of the classical circuit-lower-bound problems: proving lower bounds for sampling

More information

Hardness Amplification Proofs Require Majority

Hardness Amplification Proofs Require Majority Hardness Amplification Proofs Require Majority Ronen Shaltiel Emanuele Viola April 28, 2010 Abstract Hardness amplification is the fundamental task of converting a δ-hard function f : {0, 1} n {0, 1} into

More information

On the Power of Small-Depth Computation

On the Power of Small-Depth Computation On the Power of Small-Depth Computation Emanuele Viola 1 November 12, 2009 Very slight updates to Chapter 1 made on: May 24, 2016 1 Supported by NSF grant CCF-0845003. Email: viola@ccs.neu.edu Abstract

More information

Local Reductions. September Emanuele Viola Northeastern University

Local Reductions. September Emanuele Viola Northeastern University Local Reductions September 2014 Emanuele Viola Northeastern University Papers: Local Reductions with Hamid Jahanjou and Eric Miles Succinct and explicit circuits for sorting and connectivity With Hamid

More information

Polynomial Identity Testing. Amir Shpilka Technion

Polynomial Identity Testing. Amir Shpilka Technion Polynomial Identity Testing Amir Shpilka Technion 1 Goal of talk Model: Arithmetic circuits Problem: Polynomial Identity Testing Example: Depth-3 circuits Some open problems 2 Holy grail: P vs. NP Boolean

More information

Noisy Interpolating Sets for Low Degree Polynomials

Noisy Interpolating Sets for Low Degree Polynomials Noisy Interpolating Sets for Low Degree Polynomials Zeev Dvir Amir Shpilka Abstract A Noisy Interpolating Set (NIS) for degree d polynomials is a set S F n, where F is a finite field, such that any degree

More information

COS598D Lecture 3 Pseudorandom generators from one-way functions

COS598D Lecture 3 Pseudorandom generators from one-way functions COS598D Lecture 3 Pseudorandom generators from one-way functions Scribe: Moritz Hardt, Srdjan Krstic February 22, 2008 In this lecture we prove the existence of pseudorandom-generators assuming that oneway

More information

2 Completing the Hardness of approximation of Set Cover

2 Completing the Hardness of approximation of Set Cover CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005) Lecture 15: Set Cover hardness and testing Long Codes Nov. 21, 2005 Lecturer: Venkat Guruswami Scribe: Atri Rudra 1 Recap We will first

More information

HARDNESS AMPLIFICATION VIA SPACE-EFFICIENT DIRECT PRODUCTS

HARDNESS AMPLIFICATION VIA SPACE-EFFICIENT DIRECT PRODUCTS HARDNESS AMPLIFICATION VIA SPACE-EFFICIENT DIRECT PRODUCTS Venkatesan Guruswami and Valentine Kabanets Abstract. We prove a version of the derandomized Direct Product lemma for deterministic space-bounded

More information

Pseudorandom Generators

Pseudorandom Generators 8 Pseudorandom Generators Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 andomness is one of the fundamental computational resources and appears everywhere. In computer science,

More information

The Strength of Multilinear Proofs

The Strength of Multilinear Proofs The Strength of Multilinear Proofs Ran Raz Iddo Tzameret December 19, 2006 Abstract We introduce an algebraic proof system that manipulates multilinear arithmetic formulas. We show that this proof system

More information

QUANTUM COMPUTATION. Exercise sheet 1. Ashley Montanaro, University of Bristol H Z U = 1 2

QUANTUM COMPUTATION. Exercise sheet 1. Ashley Montanaro, University of Bristol H Z U = 1 2 School of Mathematics Spring 017 QUANTUM COMPUTATION Exercise sheet 1 Ashley Montanaro, University of Bristol ashley.montanaro@bristol.ac.uk 1. The quantum circuit model. (a) Consider the following quantum

More information

JASS 06 Report Summary. Circuit Complexity. Konstantin S. Ushakov. May 14, 2006

JASS 06 Report Summary. Circuit Complexity. Konstantin S. Ushakov. May 14, 2006 JASS 06 Report Summary Circuit Complexity Konstantin S. Ushakov May 14, 2006 Abstract Computer science deals with many computational models. In real life we have normal computers that are constructed using,

More information

3 Finish learning monotone Boolean functions

3 Finish learning monotone Boolean functions COMS 6998-3: Sub-Linear Algorithms in Learning and Testing Lecturer: Rocco Servedio Lecture 5: 02/19/2014 Spring 2014 Scribes: Dimitris Paidarakis 1 Last time Finished KM algorithm; Applications of KM

More information

Lecture 2: November 9

Lecture 2: November 9 Semidefinite programming and computational aspects of entanglement IHP Fall 017 Lecturer: Aram Harrow Lecture : November 9 Scribe: Anand (Notes available at http://webmitedu/aram/www/teaching/sdphtml)

More information

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes Limits at Infinity If a function f has a domain that is unbounded, that is, one of the endpoints of its domain is ±, we can determine the long term behavior of the function using a it at infinity. Definition

More information

Notes for Lecture 14 v0.9

Notes for Lecture 14 v0.9 U.C. Berkeley CS27: Computational Complexity Handout N14 v0.9 Professor Luca Trevisan 10/25/2002 Notes for Lecture 14 v0.9 These notes are in a draft version. Please give me any comments you may have,

More information

IS VALIANT VAZIRANI S ISOLATION PROBABILITY IMPROVABLE? Holger Dell, Valentine Kabanets, Dieter van Melkebeek, and Osamu Watanabe December 31, 2012

IS VALIANT VAZIRANI S ISOLATION PROBABILITY IMPROVABLE? Holger Dell, Valentine Kabanets, Dieter van Melkebeek, and Osamu Watanabe December 31, 2012 IS VALIANT VAZIRANI S ISOLATION PROBABILITY IMPROVABLE? Holger Dell, Valentine Kabanets, Dieter van Melkebeek, and Osamu Watanabe December 31, 2012 Abstract. The Isolation Lemma of Valiant & Vazirani (1986)

More information

Noisy Interpolating Sets for Low Degree Polynomials

Noisy Interpolating Sets for Low Degree Polynomials Noisy Interpolating Sets for Low Degree Polynomials Zeev Dvir Amir Shpilka Abstract A Noisy Interpolating Set (NIS) for degree-d polynomials is a set S F n, where F is a finite field, such that any degree-d

More information

Lecture 14: Secure Multiparty Computation

Lecture 14: Secure Multiparty Computation 600.641 Special Topics in Theoretical Cryptography 3/20/2007 Lecture 14: Secure Multiparty Computation Instructor: Susan Hohenberger Scribe: Adam McKibben 1 Overview Suppose a group of people want to determine

More information

Balls and Bins: Smaller Hash Families and Faster Evaluation

Balls and Bins: Smaller Hash Families and Faster Evaluation Balls and Bins: Smaller Hash Families and Faster Evaluation L. Elisa Celis Omer Reingold Gil Segev Udi Wieder April 22, 2011 Abstract A fundamental fact in the analysis of randomized algorithm is that

More information

NP-Complete problems

NP-Complete problems NP-Complete problems NP-complete problems (NPC): A subset of NP. If any NP-complete problem can be solved in polynomial time, then every problem in NP has a polynomial time solution. NP-complete languages

More information

CS 151 Complexity Theory Spring Solution Set 5

CS 151 Complexity Theory Spring Solution Set 5 CS 151 Complexity Theory Spring 2017 Solution Set 5 Posted: May 17 Chris Umans 1. We are given a Boolean circuit C on n variables x 1, x 2,..., x n with m, and gates. Our 3-CNF formula will have m auxiliary

More information

Lecture Examples of problems which have randomized algorithms

Lecture Examples of problems which have randomized algorithms 6.841 Advanced Complexity Theory March 9, 2009 Lecture 10 Lecturer: Madhu Sudan Scribe: Asilata Bapat Meeting to talk about final projects on Wednesday, 11 March 2009, from 5pm to 7pm. Location: TBA. Includes

More information

Are all distributions easy?

Are all distributions easy? Are all distributions easy? Emanuele Viola November 5, 2009 Abstract Complexity theory typically studies the complexity of computing a function h(x) : {0, 1} n {0, 1} m of a given input x. We advocate

More information

On the optimal compression of sets in P, NP, P/poly, PSPACE/poly

On the optimal compression of sets in P, NP, P/poly, PSPACE/poly On the optimal compression of sets in P, NP, P/poly, PSPACE/poly Marius Zimand Towson University CCR 2012- Cambridge Marius Zimand (Towson U.) Compression P, NP, P/poly sets 2011 1 / 19 The language compression

More information

Computational Complexity: A Modern Approach

Computational Complexity: A Modern Approach i Computational Complexity: A Modern Approach Sanjeev Arora and Boaz Barak Princeton University http://www.cs.princeton.edu/theory/complexity/ complexitybook@gmail.com Not to be reproduced or distributed

More information

Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity

Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity Cell-obe oofs and Nondeterministic Cell-obe Complexity Yitong Yin Department of Computer Science, Yale University yitong.yin@yale.edu. Abstract. We study the nondeterministic cell-probe complexity of static

More information

Pseudorandom Generators and Typically-Correct Derandomization

Pseudorandom Generators and Typically-Correct Derandomization Pseudorandom Generators and Typically-Correct Derandomization Jeff Kinne 1, Dieter van Melkebeek 1, and Ronen Shaltiel 2 1 Department of Computer Sciences, University of Wisconsin-Madison, USA {jkinne,dieter}@cs.wisc.edu

More information

Foundations of Machine Learning and Data Science. Lecturer: Avrim Blum Lecture 9: October 7, 2015

Foundations of Machine Learning and Data Science. Lecturer: Avrim Blum Lecture 9: October 7, 2015 10-806 Foundations of Machine Learning and Data Science Lecturer: Avrim Blum Lecture 9: October 7, 2015 1 Computational Hardness of Learning Today we will talk about some computational hardness results

More information

Asymmetric Communication Complexity and Data Structure Lower Bounds

Asymmetric Communication Complexity and Data Structure Lower Bounds Asymmetric Communication Complexity and Data Structure Lower Bounds Yuanhao Wei 11 November 2014 1 Introduction This lecture will be mostly based off of Miltersen s paper Cell Probe Complexity - a Survey

More information

Problem Set 2. Assigned: Mon. November. 23, 2015

Problem Set 2. Assigned: Mon. November. 23, 2015 Pseudorandomness Prof. Salil Vadhan Problem Set 2 Assigned: Mon. November. 23, 2015 Chi-Ning Chou Index Problem Progress 1 SchwartzZippel lemma 1/1 2 Robustness of the model 1/1 3 Zero error versus 1-sided

More information

Polynomial Identity Testing

Polynomial Identity Testing Polynomial Identity Testing Amir Shpilka Technion and MSR NE Based on joint works with: Zeev Dvir, Zohar Karnin, Partha Mukhopadhyay, Ran Raz, Ilya Volkovich and Amir Yehudayoff 1 PIT Survey Oberwolfach

More information

On Uniform Amplification of Hardness in NP

On Uniform Amplification of Hardness in NP On Uniform Amplification of Hardness in NP Luca Trevisan November 4, 2004 Abstract We continue the study of amplification of average-case complexity within NP, and we focus on the uniform case. We prove

More information

Notes for Lecture 7. 1 Increasing the Stretch of Pseudorandom Generators

Notes for Lecture 7. 1 Increasing the Stretch of Pseudorandom Generators UC Bereley Handout N7 CS294: Pseudorandomness and Combinatorial Constructions September 20, 2005 Professor Luca Trevisan Scribe: Constantinos Dasalais Notes for Lecture 7 1 Increasing the Stretch of Pseudorandom

More information

Topic: Sampling, Medians of Means method and DNF counting Date: October 6, 2004 Scribe: Florin Oprea

Topic: Sampling, Medians of Means method and DNF counting Date: October 6, 2004 Scribe: Florin Oprea 15-859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Sampling, Medians of Means method and DNF counting Date: October 6, 200 Scribe: Florin Oprea 8.1 Introduction In this lecture we will consider

More information

Low-Depth Witnesses are Easy to Find

Low-Depth Witnesses are Easy to Find Low-Depth Witnesses are Easy to Find Luis Antunes U. Porto Lance Fortnow U. Chicago Alexandre Pinto U. Porto André Souto U. Porto Abstract Antunes, Fortnow, van Melkebeek and Vinodchandran captured the

More information

6.895 PCP and Hardness of Approximation MIT, Fall Lecture 3: Coding Theory

6.895 PCP and Hardness of Approximation MIT, Fall Lecture 3: Coding Theory 6895 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 3: Coding Theory Lecturer: Dana Moshkovitz Scribe: Michael Forbes and Dana Moshkovitz 1 Motivation In the course we will make heavy use of

More information

On the correlation of parity and small-depth circuits

On the correlation of parity and small-depth circuits Electronic Colloquium on Computational Complexity, Report No. 137 (2012) On the correlation of parity and small-depth circuits Johan Håstad KTH - Royal Institute of Technology November 1, 2012 Abstract

More information

Questions Pool. Amnon Ta-Shma and Dean Doron. January 2, Make sure you know how to solve. Do not submit.

Questions Pool. Amnon Ta-Shma and Dean Doron. January 2, Make sure you know how to solve. Do not submit. Questions Pool Amnon Ta-Shma and Dean Doron January 2, 2017 General guidelines The questions fall into several categories: (Know). (Mandatory). (Bonus). Make sure you know how to solve. Do not submit.

More information

1 Circuit Complexity. CS 6743 Lecture 15 1 Fall Definitions

1 Circuit Complexity. CS 6743 Lecture 15 1 Fall Definitions CS 6743 Lecture 15 1 Fall 2007 1 Circuit Complexity 1.1 Definitions A Boolean circuit C on n inputs x 1,..., x n is a directed acyclic graph (DAG) with n nodes of in-degree 0 (the inputs x 1,..., x n ),

More information

Notes for Lecture Decision Diffie Hellman and Quadratic Residues

Notes for Lecture Decision Diffie Hellman and Quadratic Residues U.C. Berkeley CS276: Cryptography Handout N19 Luca Trevisan March 31, 2009 Notes for Lecture 19 Scribed by Cynthia Sturton, posted May 1, 2009 Summary Today we continue to discuss number-theoretic constructions

More information

Two Comments on Targeted Canonical Derandomizers

Two Comments on Targeted Canonical Derandomizers Two Comments on Targeted Canonical Derandomizers Oded Goldreich Department of Computer Science Weizmann Institute of Science Rehovot, Israel. oded.goldreich@weizmann.ac.il April 8, 2011 Abstract We revisit

More information

List Decoding in Average-Case Complexity and Pseudorandomness

List Decoding in Average-Case Complexity and Pseudorandomness List Decoding in Average-Case Complexity and Pseudorandomness Venkatesan Guruswami Department of Computer Science and Engineering University of Washington Seattle, WA, U.S.A. Email: venkat@cs.washington.edu

More information

A Note on the Karp-Lipton Collapse for the Exponential Hierarchy

A Note on the Karp-Lipton Collapse for the Exponential Hierarchy A Note on the Karp-Lipton Collapse for the Exponential Hierarchy Chris Bourke Department of Computer Science & Engineering University of Nebraska Lincoln, NE 68503, USA Email: cbourke@cse.unl.edu January

More information

Min-Rank Conjecture for Log-Depth Circuits

Min-Rank Conjecture for Log-Depth Circuits Min-Rank Conjecture for Log-Depth Circuits Stasys Jukna a,,1, Georg Schnitger b,1 a Institute of Mathematics and Computer Science, Akademijos 4, LT-80663 Vilnius, Lithuania b University of Frankfurt, Institut

More information