Variations in the Mechanical Energy Cycle of the Atmosphere

Size: px
Start display at page:

Download "Variations in the Mechanical Energy Cycle of the Atmosphere"

Transcription

1 Variations in the echanical nergy Cycle of the Atmosphere Liming Li * Andrew P. Ingersoll Xun Jiang Yuk L. Yung Division of Geological and Planetary Sciences, California Institute of Technology, 1200 ast California Boulevard, Pasadena, CA 91125, USA. * To whom all correspondence should be addressed. -mail: liming@gps.caltech.edu To be submitted to GRL, August 9,

2 Abstract The global atmospheric energy cycle and its variability are examined using the NCP-2 reanalysis - the most complete and physically consistent meteorological dataset of the modern satellite era ). A significant positive trend in eddy kinetic energy is concentrated in the Southern Hemisphere SH), which is consistent with a reported increase in the depth and radius of the SH storms. Trends are also found in the conversion rates between different energies and the corresponding generation and dissipation terms. These changes in the conversion rates integrated over the 27-year period are much larger than the observed changes in the atmospheric energies, suggesting that the climate system remains close to dynamical balance. The positive trends in all conversion rates and the increasing dissipation of kinetic energy further suggests that the efficiency of the atmosphere has increased during the modern satellite era. 2

3 1. Introduction The Lorenz atmospheric energy cycle describes the general circulation from a specific perspective that emphasizes energy transformation how the incoming solar radiation generates potential energy that is transferred to kinetic energy and is finally lost to frictional dissipation. Trends in the rates of energy transformation are a climate change indicator that focuses on the dynamics of the atmosphere. These statistical characteristics of the global atmospheric energy cycle are useful for the validation of general circulation models since they constitute the constraints that must be fulfilled. ost of the earlier computations of the energy components of the atmosphere are based on data sets that do not cover the area south of 20 N [Krueger et al., 1965; Wiin-Nielsen 1967; Peixoto and Oort, 1974; Oort and Peixoto, 1974, 1976; Hu et al., 2004]. The only early study that covered the globe [Oort, 1983] was based on a 10-year ) rawinsonde dataset with observational limitations due to the sparseness of stations in the Southern Hemisphere SH) and large data gaps at some stations due to adverse meteorological conditions. The advent of "data assimilation" techniques and new sources of data, particularly a wide range of observations coming from satellites, make it possible to construct homogeneous global meteorological data sets in a quality not available heretofore. The National Centers for nvironmental Prediction NCP) and National Center for Atmospheric Research NCAR) have cooperated to produce a retroactive record of more than 50 years of global atmospheric fields [Kalnay et al., 1996; Kistler et al., 2001; Kanamitsu, et al., 2002; Simmonds, 2003]. The so-called reanalysis datasets 3

4 have been utilized in numerous research papers. The NCP reanalysis 2 NCP-2) is an update of the NCP/NCAR reanalysis project that corresponds to the modern satellite era 1979-current), that has improvements in many aspects [Kistler et al., 2001; Kanamitsu, et al., 2002; Simmonds, 2003]. In this paper, the 27-year ) NCP-2 globally homogeneous daily dataset with horizontal resolution 2.5 degrees in the latitudinal and longitudinal directions and 17 levels in the vertical direction is utilized to address the global atmospheric energetics. The NCP-2 is obtained by assimilating past data into a frozen state-of-the-art analysis/forecast model system, which makes the database one of the most complete, physically consistent meteorological datasets [Kistler et al., 2001; Simmonds, 2003]. In addition, the zonal mean number of all types of observations in the modern satellite era 1979-current) roughly keeps constant on a global scale [Kistler et al., 2001]. Therefore, the physically consistent NCP-2 dataset, which has a longer time range compared to the 10-yr rawinsonde data used by Oort [1983], makes it possible to study the variations of the global atmospheric energy cycle. 2. ethods Following the formulation by Lorenz [1955] and the notation used by Peixoto and Oort [1974], we calculate the following terms in the energy cycle in the mixed space-time domain: the mean available potential energy P, the eddy available potential energy P, the mean kinetic energy K, the eddy kinetic energy K, the conversion rate between 4

5 the mean kinetic energy and available potential energy C K, P ), the conversion rate between the mean and eddy available potential energies C P, P ), the conversion rate between the eddy available potential energy and kinetic energy C P, K ), and the conversion rate between the eddy and mean kinetic energies C K, K ). ost of the computations are based on type A variables [Kalney et al., 1996], which are geopotential height, zonal wind, meridional wind, and temperature. These variables have the highest data quality rating in the NCP-2 reanalysis data set. The only type B variable pressure vertical velocity ω is used in some terms of the conversion rates C P, P ) and C K, K ). Our calculation indicates that these terms involving ω are roughly one order of magnitude smaller than the other terms in C P, P ) and C K, K ). The terms involving the vertical velocity in the other two conversion rates C P, K ) and C P, K ) were changed into terms including horizontal velocity by the continuity equation [Peixoto and Oort, 1974] because the horizontal velocity has higher data quality than the vertical velocity in datasets. The synoptic eddies cyclones and anticyclones), with length-scale around a thousand kilometers and time-scale of several days, play an important role in the atmospheric energy cycle. In this paper, the eddies with sizes and lifetimes smaller than the spatial and temporal resolutions of the daily NCP-2 ~ 250 km and 1 day) respectively are treated in the same category as molecular motions [Lorenz, 1955]. ost of the synoptic eddies have lifetime less than one month, so we present the monthly evaluation of the parameters that characterize the energy cycle based on the NCP-2 global daily data, in which the transient eddy component contains only eddies with time scales less than a 5

6 month. However, the yearly evaluation of the energy cycle, in which the transient eddy component is defined as eddies with all time scales less than 12 months, is given in the supporting online material in order to compare our results with the previous results based on the yearly evaluation of 10-year rawinsonde observations [Oort, 1983]. 3. Results Figure 1 shows the time series of monthly evaluation of the mean and eddy energies of the global atmosphere between 1979 and The energy cycle has a direction from the mean available potential energy to eddy potential energy, then to eddy kinetic energy, finally to mean kinetic energy [Lorenz, 1955]. The classical picture of the energy cycle depicted by Lorenz bears little resemblance to any previous theories that attribute the conversion of potential into kinetic energy to a general rising motion in low latitudes and sinking in high latitudes. A positive correlation between the mean potential energy and mean kinetic energy with correlation coefficient ~ 0.84 panel A and B of Fig. 1) is discovered. The correlation arises because geostrophic balance, in which the large-scale zonal flow is determined by the large-scale meridional temperature gradient, plays an important role in the global general circulation. In addition, Fig. 1 shows a positive linear trend J / m / year in the global eddy kinetic energy K panel D of Fig. 1). The student t-statistics see the auxiliary material) shows that the confidence level corresponding to the positive trend in K is around 99%. The global eddy potential energy P panel C of Fig.1) also shows a positive trend 6

7 2 712J / m / year ) with a confidence level ~ 98%. The mean potential energy, kinetic energy, and the total mechanic energy potential energy + kinetic energy) do not have significant trends. The yearly evaluation of the global atmospheric energetics Fig. A3 in the auxiliary material) also shows a clear trend in the eddy kinetic energy 2 890J / m / year with a confidence level 99%). However, the yearly evaluation of eddy potential energy does not show any trend. The different results on P between the monthly evaluation and the yearly evaluation indicates that the components with time scales less than a month do increase with time but those with longer time scales do not. The spatial distribution of the global eddy kinetic energy and trends are plotted in Fig 2. The top two panels of Fig. 2 A and B) show that the distribution of the eddy kinetic energy is mainly concentrated in mid-latitude oceans. The strongest centers of K in the Northern Hemisphere NH) are associated with the two storm tracks over the Pacific oceans and Atlantic oceans [Harnik and Chang, 2003]. The strong zonal belt of K in the middle latitudes of the SH is related to the storm tracks over the Southern Ocean SO) [Trenberth, 1991; Simmonds, 2003]. The middle two panels of Fig. 2 C and D) show that K has a positive trend in most areas of the SH with a confidence level larger than 95% panel ). Our calculations in the two hemispheres and different seasons Fig. A1 and A2 in the auxiliary material) reveal that the positive trend of K appears in all seasons of the SH. 7

8 The increase of K in the SH is supported by the positive trend in the mean radius and depth of cyclones over the SO during the modern satellite era [Simmonds, 2003]. The largest center of positive trend of K around W) and 55 S is roughly consistent with the strongest center of positive trend in the mean radius and depth of cyclones over the SO [Simmonds, 2003]. However, recent climate changes in the SH including the variations in cyclone behaviors, which probably cause the trend in the eddy kinetic energy, could not be explained in a simple way [Karoly, 2003; Simmonds, 2003; Turner et al., 2006]. The conversion rates between different energies are displayed in Fig. 3. The conversion term C K, P ) displays a positive trend W / m 2 / year ) with a confidence level ~98% panel A of Fig. 3). The term C P, K ) has a positive trend W / m / year ) with significance level ~99%. The other two terms C P, P ) and C K, K ) shows less significant positive trends W / m 2 / year for C P, P ) and W / m / year for C K, K ) ) with confidence levels ~ 91% and 96% respectively. The smallest change in conversion rates is that between the eddy kinetic energy and mean kinetic energy C K, K ). Nevertheless, the time integral of the excess of C K, K ) relative to 1979 over the 27 years ) generates a large increase in energy J / m ), which is much larger than the observed changes in energies, 0.1 m J / to 1 m J / over the same time period Fig. 1). Therefore, the 8

9 generation and dissipation terms in the energy cycle have to make corresponding changes to balance the large changes due to changing conversion rates. The fact that the changes in the atmospheric energies are small while the changes in conversion rates are large, suggests that the climate system remains close to dynamical balance. The increasing conversion rate C P, K ) will lead to an increasing eddy kinetic energy K. Therefore, the increasing K is probably attributed to the change in the C P, K ). In addition, the dissipation term D K ) must have increased in order to cancel the surplus in K generated by the increasing C P, K ), which can not be balanced by the observed increase value of K and the change in K generated by the small changing C K, K ). An increasing D K ) during a positive trend of K is reasonable because stronger eddy activity will inevitably result in friction increase. Likewise, the generation term G P ) have to increase during the modern satellite era in order to balance the great subtraction of P by the conversion term C P, K ). The increasing C P, K ) also makes a possible explanation why the cyclone system over the SO has become larger and deeper during the modern satellite era [Simmonds, 2003]. The mean energies P and K basically remain constant despite the large positive trend of C K, P ), which is much larger than the trends in the conversion terms C P, P ) and C K, K ). Therefore, the generation term G P ) and the dissipation term D K ) have to decrease to cancel the effect of the large increasing C K P ). The conversion, term C K, P ) is determined by the strength of the direct Hadley cell 9

10 C K, P ) < 0 ) and the indirect Ferrel cell C K, P ) > 0 ). The increasing C K, P ) suggests that the Hadley cell is weakening or the Ferrel cell is strengthening or both. A previous diagnostic study based on the same dataset NCP-2) shows that the strength of the Hadley cell basically keeps constant during the modern satellite era [itas and Clement, 2005]. Combining these factors, it suggests that the Ferrel cell becomes stronger during the time period of The Ferrel cell is associated with the eddy activity in the middle latitudes. Therefore, the result is consistent with the observations that the mean radius and depth of cyclones in the middle latitudes of the SH increase during the modern satellite era [Simmonds, 2003]. The positive trends in all conversion terms Fig. 3 and Fig. A5 in the auxiliary material) suggest that the global atmosphere is in a more efficient state. We compute the changes in dissipation of kinetic energies DK ) and DK ) from the changes in K, K, C P, K ), C K, K ), and C K, P ) Fig. 3). We find that DK ) increased by 0.3W / m 2, and DK ) decreased by 0.15 m 2 W / during the modern satellite era. Thus the total dissipation of kinetic energy increased by 0.15W / m 2, which is ~7% of the total dissipation 2.23W / m 2. This is much greater than the percentage change in the incoming solar radiation. Therefore, the efficiency of the atmosphere, defined as the ratio of the dissipation of kinetic energy and the incoming solar radiation [Peixoto and Oort, 1992], has increased during the modern satellite era. The time series of the energy terms Fig. 1) and conversion rates Fig. 3) shows obvious inter-annual variability besides trends. The power spectra of these time series show some 10

11 l Nino/Southern Oscillation NSO) and Quasi-Biennial Cycle QBC) signals in the time series Figs. A7 and A8 in the auxiliary material), which suggests that the interannual variability of the global atmospheric energy cycle is related with other climate variables. The 27-year mean global atmospheric energy cycle during the modern satellite era is depicted in Fig. 4 based on the monthly evaluations of the NCP-2. The monthly evaluation has larger mean energies and smaller eddy energies than the results based on the yearly evaluation Fig. A6 in the auxiliary material) because fluctuations in the monthly means are treated as eddies in the yearly evaluation. The yearly evaluation based on the NCP-2 Fig. A6 in the auxiliary material) shows the mean energies P and K have values of 37.1 m J / and 6.5 m J / respectively, which are larger than the results from 10-year rawinsonde dataset S 4 with values of J / and 33.3 m J / respectively. The differences between the two estimates based on 4.5 m different datasets are probably because the new NCP-2 dataset extends to polar regions including the coldest 10 latitudes ) and higher altitudes including the region of strong jets in the middle stratosphere, which do not exist in the previous rawinsonde observations. The energetics based on the monthly and yearly evaluation of the NCP-2 supports the classical process of globally atmospheric energy cycle suggested by Lorenz [1995] and Oort [1983]: P P K K. All important calculations from the monthly evaluation are repeated for the yearly evaluation of the NCP-2 data set Figs. A3, A4, A5, and A6 in the auxiliary material). 11

12 In general, the experiment based on the yearly evaluation confirms almost all results from the monthly evaluation in this paper. 4. Conclusions On a whole, the global atmospheric energies remain constant during the modern satellite era even though a linear trend is discovered in the eddy kinetic energy. At the same time, the conversion rates between the different energies display great changes during the modern satellite era, which suggests that the great changes exist in the generation and dissipation terms too. These changes in the generation and dissipation terms suggested by the conversion terms offer important hints to the distribution and variability on the global and local heating cooling), and friction and turbulence associated with mean and eddy circulations, which can not be measured easily. The fact that the observed changes in the atmospheric energies are much smaller than the integral of the excess of conversion rates over the modern satellite era suggests that the global atmospheric energy system remains close to dynamical balance. The positive trends in all conversion terms and the increasing dissipation further suggest that the global atmosphere is in a more efficient state even though it remains close to dynamical balance. These new results of the global atmospheric energy cycle will help to understand the climate changes in a broader perspective. 12

13 References 1. Harnik, N. and Chang,. K ), Storm track variations as seen in radiosonde observations and reanalysis data. Journal of Climate 16, Hu, Q., Tawaye, Y., and Feng, S. 2004), Variations of the northern hemisphere atmospheric energetics: Journal of Climate 17, Kalnay,. et al. 1996), The NCP/NCAR 40-year reanalysis project. Bulletin of the American eteorological Society 77, Kanamitsu,. et al. 2002), NCP-DO AIP-II reanalysis R-2). Bulletin of the American eteorological Society 83, Karoly, D. J. 2003), Ozone and climate change. Science 302, Kistler, R. et al. 2001), The NCP-NCAR 50-year reanalysis: onthly means CD-RO and documentation. Bulletin of the American eteorological Society 82, Krueger, A.F., Winston, J. S. and Haines, D. A. 1965), Computation of atmospheric energy and its transformation for the northern hemisphere for a recent five-year period. onthly Weather Review 93, Lorenz,. N. 1955), Available potential energy and the maintenance of the general circulation. Tellus 7, itas, C.. and Clement, A. 2005), Has the Hadley cell been strengthening in recent decades? Geophysical Research Letters 32, / 2004GL Oort, A. H. 1983), Global atmospheric circulation statistics, NOAA Professional Paper No 14, U. S. Government Printing Office, Washington, D. C

14 11. Oort, A. H. and Peixoto, J. P. 1974), The annual cycle of the energetics of the atmosphere on a planetary scale. Journal of Geophysical Research 79, Oort, A. H. and Peixoto, J. P. 1976), On the variability of the atmospheric energy cycle within a 5-year period. Journal of Geophysical Research 81, Oort, A. H. and Peixoto, P. 1983), Theory of climate. p edited by Saltzman, B., Academic press. 14. Peixoto, J. P., Oort, A. H. 1974), The annual distribution of atmospheric energy on a planetary scale. Journal of Geophysical Research 79, Peixoto, P. and Oort, A. H. 1993), Physics of climate. American Institute of Physics. pp American institute of physics. 16. Simmonds, I. 2003), odes of atmospheric variability over the Southern Ocean. Journal of Geophysical Research 108, / 2000JC Trenberth, K ), Storm tracks in the southern hemisphere. Journal of the Atmospheric Sciences 48, Turner, J. et al. 2006), Significant warming of the Antarctic winter troposphere. Science 311, Wiin-Nielsen, A. 1967), On the annual variation and spectral distribution of atmospheric energy. Tellus 19,

15 Figure captions Figure 1 Time series of the global mean atmospheric energies based on the monthly evaluation of the NCP-2 data set. Global mean energies are calculated by weighting the zonal-mean energies in the meridional direction by cosine of latitude and in the vertical direction by the different intervals of pressurek. A multiplication factor [Sltzman, 1983], which takes into account the mean mass distribution over the globe i.e., less mass over the mountains), is used. In addition, a 12-point moving average is used for the removal of the seasonal cycle. A) The mean available potential energy P. B) The mean kinetic energy K. C) The eddy available potential energy P. D) The eddy kinetic energy. ) The sum of P, K, P and K. The eddies with sizes and lifetimes smaller than the spatial and temporal resolutions of the daily NCP-2 ~ 250 km and 1 day) respectively are treated in the same category as molecular motions by following the idea from Lorenz 12, which is not included in the computation of eddy energies. Figure 2 Global distribution of the eddy kinetic energy and its trend. The eddy kinetic energy is integrated in the vertical direction for each grid-point in the global map 73 x 144). A linear trend is calculated for the monthly time series of the column eddy kinetic energy for each grid-point. A) The zonal-mean eddy kinetic energy. B) The global distribution of the column eddy kinetic energy. C) The zonal-mean linear trend of the column eddy kinetic energy. D) The global distribution of the linear trend of the column eddy kinetic energy. ) Areas in which linear trends having confidence levels larger than 95%. The confidence level of the linear trend at each grid-point of panel D) is 15

16 calculated by the student t-statistics Box et al., 2005). Green in panel ) denotes the areas that have linear trends with confidence levels larger than 95%. Figure 3 Time series of the global mean conversion rates based on the monthly evaluation of the NCP-2. Same weighting, multiplication factor, and 12-point moving average in Fig. 1 are used. A) The conversion rate between the mean available potential energy and the eddy available potential energy C P, P ). B) The conversion rate between the mean kinetic energy and mean potential energy C K, P ). Notice: the conversion term C K, P ) = C P, K ). ost of previous researchers used C P, K ). Here, we use C K, P ) based on the fact that energy is actually transferred from mean kinetic energy K to mean potential energy P. C) The conversion rate between the eddy available potential energy and the eddy kinetic energy C P, K ). D) The conversion rate between the eddy kinetic energy and the mean kinetic energy C K, K ). Figure 4 The 27-year mean global energy cycle based on the monthly evaluation of the NCP-2. The generation and dissipation terms G P ), G P ), D K ), and D K ) are evaluated by balancing the corresponding conversion terms, which are put in parentheses. The 27-year mean C K, P ) is positive, which indicates that energy is transferred from the mean kinetic energy K to the mean potential energy P. 16

17 Figures 1 17

18 Figure 2 18

19 Figure 3 19

20 Figure 4 20

21 Auxiliary aterial for Variations in the echanical nergy Cycle of the Atmosphere Liming Li * Andrew P. Ingersoll Xun Jiang Yuk L. Yung * To whom all correspondence should be addressed. -mail: liming@gps.caltech.edu Calculation of confidence levels on linear trends The confidence levels on the linear trends of the time series of the energies and conversion rates are estimated by the t-statistics. For the linear trend b calculated from the least-squares fitting, the t-statistics is defined by t = b / S b) [Box, Hunter, and Hunter, 2005]. S b) is the standard error of the linear trend b, which is estimated by 2 S b) = σ / N1 ) 1/ N 2 ) xi [Bevington, 1969], where σ is the standard deviation of the data, N 1 is the number of freedom of the data, N 2 is the length of the data, and x i i is the time series corresponding to a number of measurements with x = 0. The number of freedom N 1 is estimated by a formula suggested by Bretherton et al. [1999]: N 2 2 [ 1 r Δx) ] [ 1+ r Δx ] =, where r Δx) is the autocorrelation corresponding to a 1 N 2 ) lag of the time interval Δ x. The linear trend is statistically significant when t is larger than certain value t 0, which can be found from the t-distribution table [Box, Hunter, and Hunter, 2005]. nergies in the two hemispheres and different seasons Figure A1 shows that eddy kinetic energy K does not have a significant trend in the NH, but it displays a clear positive trend in the SH. The eddy kinetic energy K in all 21

22 seasons of the SH shows positive trend panel, F, G, and H of Fig. A2). The seasonal changes of the eddy kinetic energy K in the NH are a little complicated. In summer June, July, and August) and autumn September, October, and November) of the NH, the eddy kinetic energy has a positive trend. In spring arch, April, and ay) of the NH, the eddy kinetic energy has a negative trend. The eddy kinetic energy does not have a significant trend in winter December, January, and February) of the NH, which has largest eddy kinetic energy K. xperiment of the global atmospheric energy cycle based on the yearly evaluation of the NCP-2 As a second experiment, we check global atmospheric energy cycle based on the yearly 2 evaluation of the NCP-2. Figure A3 displays a positive trend 889J / m / year ) with a confidence level ~ 99% in the global eddy kinetic energy K, which is a little smaller 2 than the positive trend based on the monthly evaluation 1046J / m / year ). All other global energies do not have a significant trend. Figure A4 shows the global distributions of the eddy kinetic energy and its trend based on the yearly evaluation, that are almost same with the corresponding results based on the monthly evaluation. Figure A5 shows that the four conversion terms based on the yearly evaluation, that have the same trends with the corresponding results based on the monthly evaluation. Small differences are displayed in the values of trends and confidence levels with the yearly evaluation as following: 22

23 C K, P ) having a positive trend W / m 2 / year C P, P ) having a positive trend W / m 2 / year C P, K ) having a positive trend W / m 2 / year C P, K ) having a positive trend W / m 2 / year with a confidence level ~ 99%, with a confidence level ~ 97%, with a confidence level ~ 99%, with a confidence level ~ 98%. Figure A6 shows the 27-year mean global energy cycle based on the yearly evaluation of the dataset NCP-2. On a whole, the 27-year mean global atmospheric energy cycle based on the yearly evaluation of the NCP-2 agrees with the one based on the 10-year rawinsonde observations [Oort, 1983]. Power spectra of the time series in the Fig. 1 and Fig. 3 The l Nino/Southern Oscillation NSO) and Quasi-Biennial Cycle QBC) signals are revealed in the time series of the global energies and conversion rates. Notice, the NSO has broad time spectrum 2-7 year) so that the peaks around the average time period of NSO 4.7 years) can be regarded as the signals of NSO. At the same time, some lowfrequency signals ~ 10 years) are revealed in the power spectra of the time series. A1. Box, G.. P., Hunter, J. S., and Hunter, W. G. 2005), Statistical for experiments. 2 nd edition. pp , John Wiley & Sons, Inc. A2. Bevington, P. R. 1969), Data reduction and error analysis for the physical sciences. P. 117, cgraw-hill BOOK, Inc. 23

24 A3. Bretherton, C. S. et al. 199), The effective number of spatial degrees of a time varying field. Journal of Climate 12, A4. Oort, A. H. 1983), Global atmospheric circulation statistics, NOAA Professional Paper No 14, U. S. Government Printing Office, Washington, D. C

25 Figure captions Figure A1 Time series of the monthly eddy kinetic energy K in the two hemispheres. Same weighting, multiplication factor, and 12-point moving average in Fig. 1 are used. Figure A2 Time series of the monthly eddy kinetic energy in the different seasons of the two hemispheres. The left column is for the NH with A) winter December, January, and February), B) spring arch, April, and ay), C) summer June, July, and August), and D) autumn September, October, and November) from top to bottom. The right column is for the SH with A) winter June, July, and August), B) spring September, October, and November), C) summer December, January, and February), and D) autumn arch, April, and ay). Figure A3 Same with Fig. 1 except for the yearly evaluation on the global energies. Figure A4 Same with Fig. 2 except for yearly evaluation on the global eddy kinetic energy. Figure A5 Same with Fig. 3 except for yearly evaluation on the global conversion rates. Figure A6 Same with Fig. 4 except for yearly evaluation on the global atmospheric energy cycle. 25

26 Figure A7 Power spectra of the time series of different energies. A) mean available potential energy P. B) mean kinetic energy P. D) eddy kinetic energy K. C) eddy available potential energy K. ) Total potential and kinetic energy. The vertical dashed lines in C) donate NSO 48 months), QBC 28 months), QBC-AB 20 months), and annual cycle 12 months) from right to left. The red curves donate mean red noise spectrum, 90% confidence level, and 95% confidence level from bottom to top. Figure A8 Power spectra of the time series of conversion rates. A) conversion rate between the mean kinetic energy and mean available potential energy and C K, P ). B) conversion rate between the mean and eddy available potential energies C P, P ). C) conversion rate between the eddy available potential energy and kinetic energy C P, K ). D) conversion rate between the eddy and mean kinetic energies C K, K ). The vertical dashed lines and red curves are same with these in Fig A7.. 26

27 Figure A1 27

28 Figure A2 28

29 Figure A3 29

30 Figure A4 30

31 Figure A5 31

32 Figure A6 32

33 Figure A7 33

34 Figure A8 34

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory General Circulation Nili Harnik DEES, Lamont-Doherty Earth Observatory nili@ldeo.columbia.edu Latitudinal Radiation Imbalance The annual mean, averaged around latitude circles, of the balance between the

More information

HEIGHT-LATITUDE STRUCTURE OF PLANETARY WAVES IN THE STRATOSPHERE AND TROPOSPHERE. V. Guryanov, A. Fahrutdinova, S. Yurtaeva

HEIGHT-LATITUDE STRUCTURE OF PLANETARY WAVES IN THE STRATOSPHERE AND TROPOSPHERE. V. Guryanov, A. Fahrutdinova, S. Yurtaeva HEIGHT-LATITUDE STRUCTURE OF PLANETARY WAVES IN THE STRATOSPHERE AND TROPOSPHERE INTRODUCTION V. Guryanov, A. Fahrutdinova, S. Yurtaeva Kazan State University, Kazan, Russia When constructing empirical

More information

NOTES AND CORRESPONDENCE. On the Seasonality of the Hadley Cell

NOTES AND CORRESPONDENCE. On the Seasonality of the Hadley Cell 1522 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 60 NOTES AND CORRESPONDENCE On the Seasonality of the Hadley Cell IOANA M. DIMA AND JOHN M. WALLACE Department of Atmospheric Sciences, University of Washington,

More information

The Interdecadal Variation of the Western Pacific Subtropical High as Measured by 500 hpa Eddy Geopotential Height

The Interdecadal Variation of the Western Pacific Subtropical High as Measured by 500 hpa Eddy Geopotential Height ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2015, VOL. 8, NO. 6, 371 375 The Interdecadal Variation of the Western Pacific Subtropical High as Measured by 500 hpa Eddy Geopotential Height HUANG Yan-Yan and

More information

High initial time sensitivity of medium range forecasting observed for a stratospheric sudden warming

High initial time sensitivity of medium range forecasting observed for a stratospheric sudden warming GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044119, 2010 High initial time sensitivity of medium range forecasting observed for a stratospheric sudden warming Yuhji Kuroda 1 Received 27 May

More information

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response 2013 ATLANTIC HURRICANE SEASON OUTLOOK June 2013 - RMS Cat Response Season Outlook At the start of the 2013 Atlantic hurricane season, which officially runs from June 1 to November 30, seasonal forecasts

More information

PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Event Response

PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Event Response PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK June 2014 - RMS Event Response 2014 SEASON OUTLOOK The 2013 North Atlantic hurricane season saw the fewest hurricanes in the Atlantic Basin

More information

The Planetary Circulation System

The Planetary Circulation System 12 The Planetary Circulation System Learning Goals After studying this chapter, students should be able to: 1. describe and account for the global patterns of pressure, wind patterns and ocean currents

More information

Climatic changes in the troposphere, stratosphere and lower mesosphere in

Climatic changes in the troposphere, stratosphere and lower mesosphere in IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Climatic changes in the troposphere, stratosphere and lower mesosphere in 1979-2016 To cite this article: Y P Perevedentsev et al

More information

Historical trends in the jet streams

Historical trends in the jet streams GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L08803, doi:10.1029/2008gl033614, 2008 Historical trends in the jet streams Cristina L. Archer 1 and Ken Caldeira 1 Received 12 February 2008; revised 10 March 2008;

More information

Is the Atmospheric Zonal Index Driven by an Eddy Feedback?

Is the Atmospheric Zonal Index Driven by an Eddy Feedback? 1OCTOBER 1998 FELDSTEIN AND LEE 3077 Is the Atmospheric Zonal Index Driven by an Eddy Feedback? STEVEN FELDSTEIN Earth System Science Center, The Pennsylvania State University, University Park, Pennsylvania

More information

On the remarkable Arctic winter in 2008/2009

On the remarkable Arctic winter in 2008/2009 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2009jd012273, 2009 On the remarkable Arctic winter in 2008/2009 K. Labitzke 1 and M. Kunze 1 Received 17 April 2009; revised 11 June 2009; accepted

More information

Characteristics of Storm Tracks in JMA s Seasonal Forecast Model

Characteristics of Storm Tracks in JMA s Seasonal Forecast Model Characteristics of Storm Tracks in JMA s Seasonal Forecast Model Akihiko Shimpo 1 1 Climate Prediction Division, Japan Meteorological Agency, Japan Correspondence: ashimpo@naps.kishou.go.jp INTRODUCTION

More information

Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data

Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L09806, doi:10.1029/2004gl022328, 2005 Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data Mark P. Baldwin Northwest

More information

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base Pole Eq Lecture 3: ATMOSPHERE (Outline) JS JP Hadley Cell Ferrel Cell Polar Cell (driven by eddies) L H L H Basic Structures and Dynamics General Circulation in the Troposphere General Circulation in the

More information

Long-Term Trend and Decadal Variability of Persistence of Daily 500-mb Geopotential Height Anomalies during Boreal Winter

Long-Term Trend and Decadal Variability of Persistence of Daily 500-mb Geopotential Height Anomalies during Boreal Winter OCTOBER 2009 D I N G A N D L I 3519 Long-Term Trend and Decadal Variability of Persistence of Daily 500-mb Geopotential Height Anomalies during Boreal Winter RUIQIANG DING AND JIANPING LI State Key Laboratory

More information

Transient and Eddy. Transient/Eddy Flux. Flux Components. Lecture 3: Weather/Disturbance. Transient: deviations from time mean Time Mean

Transient and Eddy. Transient/Eddy Flux. Flux Components. Lecture 3: Weather/Disturbance. Transient: deviations from time mean Time Mean Lecture 3: Weather/Disturbance Transients and Eddies Climate Roles Mid-Latitude Cyclones Tropical Hurricanes Mid-Ocean Eddies Transient and Eddy Transient: deviations from time mean Time Mean Eddy: deviations

More information

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION Chapter 2 - pg. 1 CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION The atmosphere is driven by the variations of solar heating with latitude. The heat is transferred to the air by direct absorption

More information

3. Carbon Dioxide (CO 2 )

3. Carbon Dioxide (CO 2 ) 3. Carbon Dioxide (CO 2 ) Basic information on CO 2 with regard to environmental issues Carbon dioxide (CO 2 ) is a significant greenhouse gas that has strong absorption bands in the infrared region and

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 3 Worksheet 1 Meteorology Name: Circle the letter that corresponds to the correct answer 1) If the maximum temperature for a particular day is 26 C and the minimum temperature is 14 C, the daily

More information

Interdecadal and Interannnual Variabilities of the Antarctic Oscillation Simulated by CAM3

Interdecadal and Interannnual Variabilities of the Antarctic Oscillation Simulated by CAM3 ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2014, VOL. 7, NO. 6, 515 520 Interdecadal and Interannnual Variabilities of the Antarctic Oscillation Simulated by CAM3 XUE Feng 1, SUN Dan 2,3, and ZHOU Tian-Jun

More information

Introduction to Climate ~ Part I ~

Introduction to Climate ~ Part I ~ 2015/11/16 TCC Seminar JMA Introduction to Climate ~ Part I ~ Shuhei MAEDA (MRI/JMA) Climate Research Department Meteorological Research Institute (MRI/JMA) 1 Outline of the lecture 1. Climate System (

More information

The effect of varying forcing on the transport of heat by transient eddies.

The effect of varying forcing on the transport of heat by transient eddies. The effect of varying forcing on the transport of heat by transient eddies. LINDA MUDONI Department of Atmospheric Sciences, Iowa State University May 02 20 1. Introduction The major transport of heat

More information

Extremely cold and persistent stratospheric Arctic vortex in the winter of

Extremely cold and persistent stratospheric Arctic vortex in the winter of Article Atmospheric Science September 2013 Vol.58 No.25: 3155 3160 doi: 10.1007/s11434-013-5945-5 Extremely cold and persistent stratospheric Arctic vortex in the winter of 2010 2011 HU YongYun 1* & XIA

More information

Wind: Global Systems Chapter 10

Wind: Global Systems Chapter 10 Wind: Global Systems Chapter 10 General Circulation of the Atmosphere General circulation of the atmosphere describes average wind patterns and is useful for understanding climate Over the earth, incoming

More information

The Atmospheric Circulation

The Atmospheric Circulation The Atmospheric Circulation Vertical structure of the Atmosphere http://www.uwsp.edu/geo/faculty/ritter/geog101/textbook/atmosphere/atmospheric_structure.html The global heat engine [courtesy Kevin Trenberth,

More information

ONE-YEAR EXPERIMENT IN NUMERICAL PREDICTION OF MONTHLY MEAN TEMPERATURE IN THE ATMOSPHERE-OCEAN-CONTINENT SYSTEM

ONE-YEAR EXPERIMENT IN NUMERICAL PREDICTION OF MONTHLY MEAN TEMPERATURE IN THE ATMOSPHERE-OCEAN-CONTINENT SYSTEM 71 4 MONTHLY WEATHER REVIEW Vol. 96, No. 10 ONE-YEAR EXPERIMENT IN NUMERICAL PREDICTION OF MONTHLY MEAN TEMPERATURE IN THE ATMOSPHERE-OCEAN-CONTINENT SYSTEM JULIAN ADEM and WARREN J. JACOB Extended Forecast

More information

Trends in Climate Teleconnections and Effects on the Midwest

Trends in Climate Teleconnections and Effects on the Midwest Trends in Climate Teleconnections and Effects on the Midwest Don Wuebbles Zachary Zobel Department of Atmospheric Sciences University of Illinois, Urbana November 11, 2015 Date Name of Meeting 1 Arctic

More information

Why There Is Weather?

Why There Is Weather? Lecture 6: Weather, Music Of Our Sphere Weather and Climate WEATHER The daily fluctuations in atmospheric conditions. The atmosphere on its own can produce weather. (From Understanding Weather & Climate)

More information

P2.11 DOES THE ANTARCTIC OSCILLATION MODULATE TROPICAL CYCLONE ACTIVITY IN THE NORTHWESTERN PACIFIC

P2.11 DOES THE ANTARCTIC OSCILLATION MODULATE TROPICAL CYCLONE ACTIVITY IN THE NORTHWESTERN PACIFIC P2.11 DOES THE ANTARCTIC OSCILLATION MODULATE TROPICAL CYCLONE ACTIVITY IN THE NORTHWESTERN PACIFIC Joo-Hong Kim*, Chang-Hoi Ho School of Earth and Environmental Sciences, Seoul National University, Korea

More information

Contributions of the Hadley and Ferrel Circulations to the Energetics of the Atmosphere over the past 32-years

Contributions of the Hadley and Ferrel Circulations to the Energetics of the Atmosphere over the past 32-years Contributions of the Hadley and Ferrel Circulations to the Energetics of the Atmosphere over the past 32-years The Harvard community has made this article openly available. Please share how this access

More information

Changes in Frequency of Extreme Wind Events in the Arctic

Changes in Frequency of Extreme Wind Events in the Arctic Changes in Frequency of Extreme Wind Events in the Arctic John E. Walsh Department of Atmospheric Sciences University of Illinois 105 S. Gregory Avenue Urbana, IL 61801 phone: (217) 333-7521 fax: (217)

More information

Modeling the Downward Influence of Stratospheric Final Warming events

Modeling the Downward Influence of Stratospheric Final Warming events Modeling the Downward Influence of Stratospheric Final Warming events Lantao Sun Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign Walter A. Robinson Division of Atmospheric

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12310 We present here two additional Tables (Table SI-1, 2) and eight further Figures (Figures SI-1 to SI-8) to provide extra background information to the main figures of the paper.

More information

A Multidecadal Variation in Summer Season Diurnal Rainfall in the Central United States*

A Multidecadal Variation in Summer Season Diurnal Rainfall in the Central United States* 174 JOURNAL OF CLIMATE VOLUME 16 A Multidecadal Variation in Summer Season Diurnal Rainfall in the Central United States* QI HU Climate and Bio-Atmospheric Sciences Group, School of Natural Resource Sciences,

More information

Stratospheric Temperature Trends Between 10 and 70 hpa During the Period

Stratospheric Temperature Trends Between 10 and 70 hpa During the Period 16 The Open Atmospheric Science Journal, 2011, 5, 16-22 Open Access Stratospheric Temperature Trends Between 10 and 70 hpa During the Period 1948-2009 Marta Zossi de Artigas *,1,2 and Patricia Fernandez

More information

Stratospheric planetary wave reflection and its influence on the troposphere

Stratospheric planetary wave reflection and its influence on the troposphere Stratospheric planetary wave reflection and its influence on the troposphere N. Harnik, Tel Aviv University J. Perlwitz, CIRES U. Colorado/NOAA ESRL T. A. Shaw, Columbia University, NY, NY, USA The following

More information

The feature of atmospheric circulation in the extremely warm winter 2006/2007

The feature of atmospheric circulation in the extremely warm winter 2006/2007 The feature of atmospheric circulation in the extremely warm winter 2006/2007 Hiroshi Hasegawa 1, Yayoi Harada 1, Hiroshi Nakamigawa 1, Atsushi Goto 1 1 Climate Prediction Division, Japan Meteorological

More information

Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends

Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L18701, doi:10.1029/2009gl040419, 2009 Effect of zonal asymmetries in stratospheric ozone on simulated Southern Hemisphere climate trends

More information

Definition of Antarctic Oscillation Index

Definition of Antarctic Oscillation Index 1 Definition of Antarctic Oscillation Index Daoyi Gong and Shaowu Wang Department of Geophysics, Peking University, P.R. China Abstract. Following Walker s work about his famous three oscillations published

More information

Vertical wind shear in relation to frequency of Monsoon Depressions and Tropical Cyclones of Indian Seas

Vertical wind shear in relation to frequency of Monsoon Depressions and Tropical Cyclones of Indian Seas Vertical wind shear in relation to frequency of Monsoon Depressions and Tropical Cyclones of Indian Seas Prince K. Xavier and P.V. Joseph Department of Atmospheric Sciences Cochin University of Science

More information

Dynamical Impacts of Antarctic Stratospheric Ozone Depletion on the Extratropical Circulation of the Southern Hemisphere

Dynamical Impacts of Antarctic Stratospheric Ozone Depletion on the Extratropical Circulation of the Southern Hemisphere Dynamical Impacts of Antarctic Stratospheric Ozone Depletion on the Extratropical Circulation of the Southern Hemisphere Kevin M. Grise David W.J. Thompson Department of Atmospheric Science Colorado State

More information

The North Atlantic Oscillation: Climatic Significance and Environmental Impact

The North Atlantic Oscillation: Climatic Significance and Environmental Impact 1 The North Atlantic Oscillation: Climatic Significance and Environmental Impact James W. Hurrell National Center for Atmospheric Research Climate and Global Dynamics Division, Climate Analysis Section

More information

Vertical Structure of Atmosphere

Vertical Structure of Atmosphere ATMOS 3110 Introduction to Atmospheric Sciences Distribution of atmospheric mass and gaseous constituents Because of the earth s gravitational field, the atmosphere exerts a downward forces on the earth

More information

Dynamical. regions during sudden stratospheric warming event (Case study of 2009 and 2013 event)

Dynamical. regions during sudden stratospheric warming event (Case study of 2009 and 2013 event) Dynamical Coupling between high and low latitude regions during sudden stratospheric warming event (Case study of 2009 and 2013 event) Vinay Kumar 1,S. K. Dhaka 1,R. K. Choudhary 2,Shu-Peng Ho 3,M. Takahashi

More information

Eurasian Snow Cover Variability and Links with Stratosphere-Troposphere Coupling and Their Potential Use in Seasonal to Decadal Climate Predictions

Eurasian Snow Cover Variability and Links with Stratosphere-Troposphere Coupling and Their Potential Use in Seasonal to Decadal Climate Predictions US National Oceanic and Atmospheric Administration Climate Test Bed Joint Seminar Series NCEP, Camp Springs, Maryland, 22 June 2011 Eurasian Snow Cover Variability and Links with Stratosphere-Troposphere

More information

Climate Change 2007: The Physical Science Basis

Climate Change 2007: The Physical Science Basis Climate Change 2007: The Physical Science Basis Working Group I Contribution to the IPCC Fourth Assessment Report Presented by R.K. Pachauri, IPCC Chair and Bubu Jallow, WG 1 Vice Chair Nairobi, 6 February

More information

Course , General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 4: Water Vapor Budget

Course , General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 4: Water Vapor Budget Course 12.812, General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 4: Water Vapor Budget Water Vapor Distribution First let us look at the distribution of specific humidity, q. The

More information

Lecture 1. Amplitude of the seasonal cycle in temperature

Lecture 1. Amplitude of the seasonal cycle in temperature Lecture 6 Lecture 1 Ocean circulation Forcing and large-scale features Amplitude of the seasonal cycle in temperature 1 Atmosphere and ocean heat transport Trenberth and Caron (2001) False-colour satellite

More information

Changes in Southern Hemisphere rainfall, circulation and weather systems

Changes in Southern Hemisphere rainfall, circulation and weather systems 19th International Congress on Modelling and Simulation, Perth, Australia, 12 16 December 2011 http://mssanz.org.au/modsim2011 Changes in Southern Hemisphere rainfall, circulation and weather systems Frederiksen,

More information

Impacts of Climate Change on Autumn North Atlantic Wave Climate

Impacts of Climate Change on Autumn North Atlantic Wave Climate Impacts of Climate Change on Autumn North Atlantic Wave Climate Will Perrie, Lanli Guo, Zhenxia Long, Bash Toulany Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS Abstract

More information

SHORT COMMUNICATION INTERANNUAL VARIATIONS OF STORM TRACKS IN THE SOUTHERN HEMISPHERE AND THEIR CONNECTIONS WITH THE ANTARCTIC OSCILLATION

SHORT COMMUNICATION INTERANNUAL VARIATIONS OF STORM TRACKS IN THE SOUTHERN HEMISPHERE AND THEIR CONNECTIONS WITH THE ANTARCTIC OSCILLATION INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 23: 1537 1545 (2003) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/joc.948 SHORT COMMUNICATION INTERANNUAL VARIATIONS

More information

GENERAL CIRCULATION: MEAN CHARACTERISTICS (MS 154)

GENERAL CIRCULATION: MEAN CHARACTERISTICS (MS 154) GENERAL CIRCULATION: MEAN CHARACTERISTICS (MS 154) Richard Grotjahn, Richard Grotjahn Department of Land, Air, and Water Resources, One Shields Ave University of California, Davis, California 95616-8627,

More information

Stratosphere Troposphere Coupling in a Relatively Simple AGCM: Impact of the Seasonal Cycle

Stratosphere Troposphere Coupling in a Relatively Simple AGCM: Impact of the Seasonal Cycle 1 NOVEMBER 2006 N O T E S A N D C O R R E S P O N D E N C E 5721 Stratosphere Troposphere Coupling in a Relatively Simple AGCM: Impact of the Seasonal Cycle PAUL J. KUSHNER Department of Physics, University

More information

The role of stratospheric processes in large-scale teleconnections

The role of stratospheric processes in large-scale teleconnections The role of stratospheric processes in large-scale teleconnections Judith Perlwitz NOAA/Earth System Research Laboratory and CIRES/University of Colorado Outline Introduction Comparison of features of

More information

Variations of total heat flux during typhoons in the South China Sea

Variations of total heat flux during typhoons in the South China Sea 78 Variations of total heat flux during typhoons in the South China Sea Wan Ruslan Ismail 1, and Tahereh Haghroosta 2,* 1 Section of Geography, School of Humanities, Universiti Sains Malaysia, 11800 Minden,

More information

Assessing and understanding the role of stratospheric changes on decadal climate prediction

Assessing and understanding the role of stratospheric changes on decadal climate prediction MiKlip II-Status seminar, Berlin, 1-3 March 2017 Assessing and understanding the role of stratospheric changes on decadal climate prediction Martin Dameris Deutsches Zentrum für Luft- und Raumfahrt, Institut

More information

The Stratospheric Link Between the Sun and Climate

The Stratospheric Link Between the Sun and Climate The Stratospheric Link Between the Sun and Climate The Stratospheric Link Between the Sun and Climate Mark P. Baldwin Northwest Research Associates, USA SORCE, 27 October 2004 Overview Climatology of the

More information

Observational Zonal Mean Flow Anomalies: Vacillation or Poleward

Observational Zonal Mean Flow Anomalies: Vacillation or Poleward ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2013, VOL. 6, NO. 1, 1 7 Observational Zonal Mean Flow Anomalies: Vacillation or Poleward Propagation? SONG Jie The State Key Laboratory of Numerical Modeling for

More information

Why the Atlantic was surprisingly quiet in 2013

Why the Atlantic was surprisingly quiet in 2013 1 Why the Atlantic was surprisingly quiet in 2013 by William Gray and Phil Klotzbach Preliminary Draft - March 2014 (Final draft by early June) ABSTRACT This paper discusses the causes of the unusual dearth

More information

Spatial and Temporal Variations of Global Frictional Torque during the Period

Spatial and Temporal Variations of Global Frictional Torque during the Period 128 JOURNAL OF METEOROLOGICAL RESEARCH VOL.30 Spatial and Temporal Variations of Global Frictional Torque during the Period 1948 2011 GONG He 1 ( å), HUANG Mei 2 ( p), ZHU Lin 3 (Á»), GUO Shengli 1 (H

More information

Change in Occurrence Frequency of Stratospheric Sudden Warmings. with ENSO-like SST Forcing as Simulated WACCM

Change in Occurrence Frequency of Stratospheric Sudden Warmings. with ENSO-like SST Forcing as Simulated WACCM Change in Occurrence Frequency of Stratospheric Sudden Warmings with ENSO-like SST Forcing as Simulated WACCM Masakazu Taguchi* and Dennis L. Hartmann Department of Atmospheric Sciences, University of

More information

CHAPTER 9 ATMOSPHERE S PLANETARY CIRCULATION MULTIPLE CHOICE QUESTIONS

CHAPTER 9 ATMOSPHERE S PLANETARY CIRCULATION MULTIPLE CHOICE QUESTIONS CHAPTER 9 ATMOSPHERE S PLANETARY CIRCULATION MULTIPLE CHOICE QUESTIONS 1. Viewed from above in the Northern Hemisphere, surface winds about a subtropical high blow a. clockwise and inward. b. counterclockwise.

More information

June 1993 T. Nitta and J. Yoshimura 367. Trends and Interannual and Interdecadal Variations of. Global Land Surface Air Temperature

June 1993 T. Nitta and J. Yoshimura 367. Trends and Interannual and Interdecadal Variations of. Global Land Surface Air Temperature June 1993 T. Nitta and J. Yoshimura 367 Trends and Interannual and Interdecadal Variations of Global Land Surface Air Temperature By Tsuyoshi Nitta Center for Climate System Research, University of Tokyo,

More information

On Sampling Errors in Empirical Orthogonal Functions

On Sampling Errors in Empirical Orthogonal Functions 3704 J O U R N A L O F C L I M A T E VOLUME 18 On Sampling Errors in Empirical Orthogonal Functions ROBERTA QUADRELLI, CHRISTOPHER S. BRETHERTON, AND JOHN M. WALLACE University of Washington, Seattle,

More information

An Analysis of the Spectral Energetics for a Planet Experiencing Rapid Greenhouse Gas Emissions

An Analysis of the Spectral Energetics for a Planet Experiencing Rapid Greenhouse Gas Emissions Atmospheric and Climate Sciences, 2017, 7, 117-126 http://www.scirp.org/journal/acs ISSN Online: 2160-0422 ISSN Print: 2160-0414 An Analysis of the Spectral Energetics for a Planet Experiencing Rapid Greenhouse

More information

Chapter outline. Reference 12/13/2016

Chapter outline. Reference 12/13/2016 Chapter 2. observation CC EST 5103 Climate Change Science Rezaul Karim Environmental Science & Technology Jessore University of science & Technology Chapter outline Temperature in the instrumental record

More information

The Arctic Energy Budget

The Arctic Energy Budget The Arctic Energy Budget The global heat engine [courtesy Kevin Trenberth, NCAR]. Differential solar heating between low and high latitudes gives rise to a circulation of the atmosphere and ocean that

More information

particular regional weather extremes

particular regional weather extremes SUPPLEMENTARY INFORMATION DOI: 1.138/NCLIMATE2271 Amplified mid-latitude planetary waves favour particular regional weather extremes particular regional weather extremes James A Screen and Ian Simmonds

More information

The general circulation: midlatitude storms

The general circulation: midlatitude storms The general circulation: midlatitude storms Motivation for this class Provide understanding basic motions of the atmosphere: Ability to diagnose individual weather systems, and predict how they will change

More information

Climate Forecast Applications Network (CFAN)

Climate Forecast Applications Network (CFAN) Forecast of 2018 Atlantic Hurricane Activity April 5, 2018 Summary CFAN s inaugural April seasonal forecast for Atlantic tropical cyclone activity is based on systematic interactions among ENSO, stratospheric

More information

By STEVEN B. FELDSTEINI and WALTER A. ROBINSON* University of Colorado, USA 2University of Illinois at Urbana-Champaign, USA. (Received 27 July 1993)

By STEVEN B. FELDSTEINI and WALTER A. ROBINSON* University of Colorado, USA 2University of Illinois at Urbana-Champaign, USA. (Received 27 July 1993) Q. J. R. Meteorol. SOC. (1994), 12, pp. 739-745 551.513.1 Comments on Spatial structure of ultra-low frequency variability of the flow in a simple atmospheric circulation model by I. N. James and P. M.

More information

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/2/2015

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/2/2015 Chapter 7: Forces and Force Balances Forces that Affect Atmospheric Motion Fundamental force - Apparent force - Pressure gradient force Gravitational force Frictional force Centrifugal force Forces that

More information

Will a warmer world change Queensland s rainfall?

Will a warmer world change Queensland s rainfall? Will a warmer world change Queensland s rainfall? Nicholas P. Klingaman National Centre for Atmospheric Science-Climate Walker Institute for Climate System Research University of Reading The Walker-QCCCE

More information

Influence of Doubled CO 2 on Ozone via Changes in the Brewer Dobson Circulation

Influence of Doubled CO 2 on Ozone via Changes in the Brewer Dobson Circulation JULY 2007 N O T E S A N D C O R R E S P O N D E N C E 2751 Influence of Doubled CO 2 on Ozone via Changes in the Brewer Dobson Circulation XUN JIANG Division of Geological and Planetary Sciences, and Department

More information

ATMOSPHERIC MODELLING. GEOG/ENST 3331 Lecture 9 Ahrens: Chapter 13; A&B: Chapters 12 and 13

ATMOSPHERIC MODELLING. GEOG/ENST 3331 Lecture 9 Ahrens: Chapter 13; A&B: Chapters 12 and 13 ATMOSPHERIC MODELLING GEOG/ENST 3331 Lecture 9 Ahrens: Chapter 13; A&B: Chapters 12 and 13 Agenda for February 3 Assignment 3: Due on Friday Lecture Outline Numerical modelling Long-range forecasts Oscillations

More information

Part-8c Circulation (Cont)

Part-8c Circulation (Cont) Part-8c Circulation (Cont) Global Circulation Means of Transfering Heat Easterlies /Westerlies Polar Front Planetary Waves Gravity Waves Mars Circulation Giant Planet Atmospheres Zones and Belts Global

More information

Interannual Variability of the Wintertime Polar Vortex in the Northern Hemisphere Middle Stratosphere1

Interannual Variability of the Wintertime Polar Vortex in the Northern Hemisphere Middle Stratosphere1 February 1982 j. M. Wallace and Fong-Chiau Chang 149 Interannual Variability of the Wintertime Polar Vortex in the Northern Hemisphere Middle Stratosphere1 By John M. Wallace and Fong-Chiau Chang Department

More information

Global Warming and Climate Change Part I: Ozone Depletion

Global Warming and Climate Change Part I: Ozone Depletion GCOE-ARS : November 18, 2010 Global Warming and Climate Change Part I: Ozone Depletion YODEN Shigeo Department of Geophysics, Kyoto University 1. Stratospheric Ozone and History of the Earth 2. Observations

More information

Lecture 5: Atmospheric General Circulation and Climate

Lecture 5: Atmospheric General Circulation and Climate Lecture 5: Atmospheric General Circulation and Climate Geostrophic balance Zonal-mean circulation Transients and eddies Meridional energy transport Moist static energy Angular momentum balance Atmosphere

More information

CHAPTER 4. THE HADLEY CIRCULATION 59 smaller than that in midlatitudes. This is illustrated in Fig. 4.2 which shows the departures from zonal symmetry

CHAPTER 4. THE HADLEY CIRCULATION 59 smaller than that in midlatitudes. This is illustrated in Fig. 4.2 which shows the departures from zonal symmetry Chapter 4 THE HADLEY CIRCULATION The early work on the mean meridional circulation of the tropics was motivated by observations of the trade winds. Halley (1686) and Hadley (1735) concluded that the trade

More information

Steady Flow: rad conv. where. E c T gz L q 2. p v 2 V. Integrate from surface to top of atmosphere: rad TOA rad conv surface

Steady Flow: rad conv. where. E c T gz L q 2. p v 2 V. Integrate from surface to top of atmosphere: rad TOA rad conv surface The Three-Dimensional Circulation 1 Steady Flow: F k ˆ F k ˆ VE 0, rad conv where 1 E c T gz L q 2 p v 2 V Integrate from surface to top of atmosphere: VE F FF F 0 rad TOA rad conv surface 2 What causes

More information

Interhemispheric climate connections: What can the atmosphere do?

Interhemispheric climate connections: What can the atmosphere do? Interhemispheric climate connections: What can the atmosphere do? Raymond T. Pierrehumbert The University of Chicago 1 Uncertain feedbacks plague estimates of climate sensitivity 2 Water Vapor Models agree

More information

NOTES AND CORRESPONDENCE. On the Interpretation of Antarctic Temperature Trends

NOTES AND CORRESPONDENCE. On the Interpretation of Antarctic Temperature Trends 3885 NOTES AND CORRESPONDENCE On the Interpretation of Antarctic Temperature Trends MICHIEL R. VAN DEN BROEKE Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands 9August1999and3April2000

More information

CHAPTER 1: INTRODUCTION

CHAPTER 1: INTRODUCTION CHAPTER 1: INTRODUCTION There is now unequivocal evidence from direct observations of a warming of the climate system (IPCC, 2007). Despite remaining uncertainties, it is now clear that the upward trend

More information

THE MEAN STRUCTURE AND TEMPORAL VARIABILITY OF THE SEMIANNUAL OSCILLATION IN THE SOUTHERN EXTRATROPICS

THE MEAN STRUCTURE AND TEMPORAL VARIABILITY OF THE SEMIANNUAL OSCILLATION IN THE SOUTHERN EXTRATROPICS INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 18: 473 504 (1998) THE MEAN STRUCTURE AND TEMPORAL VARIABILITY OF THE SEMIANNUAL OSCILLATION IN THE SOUTHERN EXTRATROPICS IAN SIMMONDS a and DAVID

More information

Differences in mid-latitude stratospheric winds between reanalysis data and versus radiosonde observations at Prague

Differences in mid-latitude stratospheric winds between reanalysis data and versus radiosonde observations at Prague doi:10.5194/angeo-32-353-2014 Author(s) 2014. CC Attribution 3.0 License. Annales Geophysicae Open Access Differences in mid-latitude stratospheric winds between reanalysis data and versus radiosonde observations

More information

Estimating the zonal wavenumber dependence of the meridional energy transport

Estimating the zonal wavenumber dependence of the meridional energy transport MO91 egree Project in Atmospheric Sciences, Oceanography and Climate, 3hp Estimating the zonal wavenumber dependence of the meridional energy transport Mattias Burtu Supervisor: Rune Grand Graversen epartment

More information

Tropical Meteorology. Roger K. Smith INDO IR

Tropical Meteorology. Roger K. Smith INDO IR Tropical Meteorology Roger K. Smith INDO IR 01010510 1 GMS IR 01022621 GOES IR 00112909 2 Introduction to the tropics The zonal mean circulation (Hadley circulation) The data network in the tropics (field

More information

Downward propagation from the stratosphere to the troposphere: A comparison of the two hemispheres

Downward propagation from the stratosphere to the troposphere: A comparison of the two hemispheres JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D24, 4780, doi:10.1029/2003jd004077, 2003 Downward propagation from the stratosphere to the troposphere: A comparison of the two hemispheres Rune G. Graversen

More information

Is Antarctic climate most sensitive to ozone depletion in the middle or lower stratosphere?

Is Antarctic climate most sensitive to ozone depletion in the middle or lower stratosphere? Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L22812, doi:10.1029/2007gl031238, 2007 Is Antarctic climate most sensitive to ozone depletion in the middle or lower stratosphere? S.

More information

INFLUENCE OF LARGE-SCALE ATMOSPHERIC MOISTURE FLUXES ON THE INTERANNUAL TO MULTIDECADAL RAINFALL VARIABILITY OF THE WEST AFRICAN MONSOON

INFLUENCE OF LARGE-SCALE ATMOSPHERIC MOISTURE FLUXES ON THE INTERANNUAL TO MULTIDECADAL RAINFALL VARIABILITY OF THE WEST AFRICAN MONSOON 3C.4 INFLUENCE OF LARGE-SCALE ATMOSPHERIC MOISTURE FLUXES ON THE INTERANNUAL TO MULTIDECADAL RAINFALL VARIABILITY OF THE WEST AFRICAN MONSOON Andreas H. Fink*, and Sonja Eikenberg University of Cologne,

More information

Stratospheric Influences on MSU-Derived Tropospheric Temperature Trends: A Direct Error Analysis

Stratospheric Influences on MSU-Derived Tropospheric Temperature Trends: A Direct Error Analysis 4636 JOURNAL OF CLIMATE Stratospheric Influences on MSU-Derived Tropospheric Temperature Trends: A Direct Error Analysis QIANG FU ANDCELESTE M. JOHANSON Department of Atmospheric Sciences, University of

More information

Seasonal & Diurnal Temp Variations. Earth-Sun Distance. Eccentricity 2/2/2010. ATS351 Lecture 3

Seasonal & Diurnal Temp Variations. Earth-Sun Distance. Eccentricity 2/2/2010. ATS351 Lecture 3 Seasonal & Diurnal Temp Variations ATS351 Lecture 3 Earth-Sun Distance Change in distance has only a minimal effect on seasonal temperature. Note that during the N. hemisphere winter, we are CLOSER to

More information

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written 2. Meridional atmospheric structure; heat and water transport The equator-to-pole temperature difference DT was stronger during the last glacial maximum, with polar temperatures down by at least twice

More information

Lecture 8. Monsoons and the seasonal variation of tropical circulation and rainfall

Lecture 8. Monsoons and the seasonal variation of tropical circulation and rainfall Lecture 8 Monsoons and the seasonal variation of tropical circulation and rainfall According to the second hypothesis, the monsoon is a manifestation of the seasonal variation of the tropical circulation

More information

Transient/Eddy Flux. Transient and Eddy. Flux Components. Lecture 7: Disturbance (Outline) Why transients/eddies matter to zonal and time means?

Transient/Eddy Flux. Transient and Eddy. Flux Components. Lecture 7: Disturbance (Outline) Why transients/eddies matter to zonal and time means? Lecture 7: Disturbance (Outline) Transients and Eddies Climate Roles Mid-Latitude Cyclones Tropical Hurricanes Mid-Ocean Eddies (From Weather & Climate) Flux Components (1) (2) (3) Three components contribute

More information

Traveling planetary-scale Rossby waves in the winter stratosphere: The role of tropospheric baroclinic instability

Traveling planetary-scale Rossby waves in the winter stratosphere: The role of tropospheric baroclinic instability GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl053684, 2012 Traveling planetary-scale Rossby waves in the winter stratosphere: The role of tropospheric baroclinic instability Daniela I. V. Domeisen

More information

Eliassen-Palm Cross Sections Edmon et al. (1980)

Eliassen-Palm Cross Sections Edmon et al. (1980) Eliassen-Palm Cross Sections Edmon et al. (1980) Cecily Keppel November 14 2014 Eliassen-Palm Flux For β-plane Coordinates (y, p) in northward, vertical directions Zonal means F = v u f (y) v θ θ p F will

More information

Attribution of anthropogenic influence on seasonal sea level pressure

Attribution of anthropogenic influence on seasonal sea level pressure Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L23709, doi:10.1029/2009gl041269, 2009 Attribution of anthropogenic influence on seasonal sea level pressure N. P. Gillett 1 and P. A.

More information