Computational modeling

Size: px
Start display at page:

Download "Computational modeling"

Transcription

1 Computational modeling Lecture 4 : Central Limit Theorem Theory: Normal distribution Programming: Arrays Instructor : Cedric Weber Course : 4CCP1000

2 Schedule Class/Week Chapter Topic Milestones 1 Monte Carlo UNIX system / Fortran 2 Monte Carlo Fibonacci sequence 3 Monte Carlo Random variables 4 Monte Carlo Central Limit Theorem 5 Monte Carlo Monte Carlo integration Milestone 1 6 Differential equations The Pendulum 7 Differential equations A Quantum Particle in a box 8 Differential equations The Tacoma bridge Milestone 2 9 Linear Algebra System of equations 10 Linear Algebra Matrix operations Milestone 3 2

3 What did you learn last time? 1. Summing up sequences with a do loop " " "ý " " 2. Defining your own functions " ý " 3. Using a random generator to produce random values ý " 4. Generating files and plotting them with xmgrace " "ý 5. Using modules to build up your own library" " "ý " 3

4 Where are we going? 100% Lecture 1: Introduction 90% 80% 70% Lecture 2: Fibonacci sequence / do loop Lecture 3: Random variables / functions 60% 50% 40% 30% 20% 10% Milestone 1 : Monte Carlo integration Lecture 4: Summing up random variables / multiple events statistics 0% week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10 4

5 Part 1 : Theory Central limit theorem 5

6 Jacob Bernoulli ( ): Game Theory q Simple idea: lets define the outcome of an experiment X i, and the result of the experiment is either X i =0 or X i =1. When I repeat the experiment, I sometimes get X i =0, and sometimes I obtain X i =1" q Letʼs think of X i as a coin, which is flipped (head/tail). " q Experiment: flip the coin 1000 times" q how many tail, how many head?" q Definition of a Probability: " q P(head) = N(head) / total P(tail) = N(tail) / total " " q Reference: The Life and Times of the Central Limit Theorem, William J. Adams" = 500 = 500 6

7 Flipping many coins Now, what if I throw many coins at the same time? Each coin is labeled with an index We attribute the value 0 to tail, 1 to head X =(X 1,X 2,X 3,X 4,X 5,X 6,X 7 ) To describe the outcome of this experiment, we define the variable S n : S n = X 1 + X X n In the experiment above I get : S n = 3 Now, I throw the coins again We get (fill the blank) : S n = [ ]?

8 I repeat the experiments many times I throw 7 coins, count how many heads I obtain, I do it again I obtain the sequence : Central limit theorem S=3, S=4, S=1, S=7, S=4, S=3, S=4, S=5, S=4, S=0, S=2.. I count how many times I obtain S=0, how many times I obtain S=1,, and how many times I obtain S=7 Number of occurence Question: if I throw the coins 700 times, how many times will you obtain the result S=0? As many times as you obtain S=1, S=2, S=3, S=4, S=5, S=6 and S=7 right? S=0 S=1 S=2 S=3 S=4 S= S=6 S=7 8

9 Simulating this experiment with a computer This program will be written in the practice session Result : The number of S 1,S 2,S 3 S 7 obtained S=0 S=1 S=2 S=3 S=4 S=5 0 This histogram gives the probability P(S) to obtain S, if we divide the number of occurrence of each S i by the total number of experiments (700 in this case) Who can spot something wrong in the histogram? 9 S=6 S=7

10 Seriously? Nope, I am not cheating you Central limit theorem (CLT) : the sum of a large collection of random variables (S n = X X n ) is distributed as a binomial law (or gaussian) P (S) =e (S µ)2 /(2σ 2 ) Where m is called the average and s the variance First discussed by Abraham De Moivre ( ) Physical experiment in a laboratory: There is a large number of unknown parameters which are uncontrolled and contribute to your physical measurement (measure velocity with a timer, ) CLT : by repeating the same measurement, you will obtain a distribution of results (data), this distribution will a gaussian centered around the average value (m=your final measurement) and with a given width (s=your error bars) 10

11 Gaussian function m=0, s=1 m=0, s=3 m=1, s=1 Average m Variance s 11

12 Example 1 : gambling (Dices) Problem to be solved in the practice session Throwing to the casino a pair of dice at the same time Sum of a pair of dice takes values from 2 to 12 Where do you put your bet? S=2? Rolling many dices : Distribution is again gaussian 12

13 Example 2: Galton q Balls are bumping against many ticks during their fall q Balls are collected at the end of the free fall q Gaussian distribution (software to perform simple model calculations) 13

14 Example 3: population height Distribution of people according to their height is a gaussian as well (top: college male students, bottom: men in black and women in white) Pr Joiner s students, class of 1975, Penn state Joiner, B. L. (1975), Living Histograms, International Statistical Review, 3, Connecticut State College (J. Heredity 5: , 1914). 14

15 Fuzzy CLT 15 Larry Gonick, The Cartoon Guide to Statistics, New York, NY : Collins Reference / HarperPerennial 1993, p. 83.

16 Normal is everywhere 16

17 Convergence to the Normal distribution by increasing the number of coins to ~1000 average variance 17

18 Part 2 : Programming Arrays 18

19 Collection of variables 1. Program something 2. Integer(4) :: x1,x2,x3,x4,x5 3. Integer(4) :: x6,x7 4. x1 = 1 5. x2 = 2 6. x3 = 3 7. x4 = 4 8. x5 = 5 9. x6 = x7 = 7 Ø We need to define a collection of variables Ø X1,.,X10 Ø We need to assign values to these variables Ø Time consuming! 11. end program 19

20 Arrays An array is a collection of variables, grouped under the same name myarray is the array s name for the array in this example Each box of the array corresponds to a real(8) variable, which can take any value To access a particular variable in the group, the position of the variable in the array needs to be provided, example : write(*,*) myarray(2) 20

21 Arrays Variables real(8) aa = 16 :: aa Arrays real(8) :: myarray(7) myarray(2) =

22 Variables real(8) :: aa aa = 16 Arrays Arrays real(8) :: myarray(7) myarray(2) = 16 Accessing member 2 Number of members (7)

23 Array: Global assignment real(8) ":: myarray(3)" " myarray(2) = 0" real(8) ":: myarray(3)" " myarray = 0" How many members/elements does the array myarray have?" " "Answer : " " [FILL IN]" What do you think the difference is between those two operations? " On the left side, "which element is set to zero? " On the right side, "which element is set to zero? " 23

24 Array: Global assignment real(8) ":: myarray(3)" " myarray(2) = 0" real(8) ":: myarray(3)" " myarray = 0"

25 Array: global operations 1. program testarray 2. real(8) :: myarray(10) 3. myarray = 2.0 Is this operation global and affects the whole array, or is it local and only affects one element? [Tick] global local 4. write(*,*) the second element of the array has the value:, myarray(2) 5. myarray = sin ( myarray ) 6. end program 25

26 Defining an array s dimension The last index of the array is y real(8) :: myarray( x : y ) The first index of the array is x (if not specified x=1) by default : x=1 x can be zero : x=0 x can be negative : x=- 5 Real(8):: myarray(1:5), myarray(5) Real(8):: myarray(0:7) Real(8):: myarray(- 5:5) 26

27 Arrays & Coins What we will practice today : we define an array which contains the number of outcomes obtained by repeating the experiment of throwing 7 coins. Each box of the array is counting the number of outcomes obtained with a given sum of coins, S=0, S=1, S=2, S=3, S=4, S=5, S=7 Each time an experiment is realized, we measure S, and we increment myarray(s): myarray(s) = myarray(s)+1" myarray is the histogram of the obtained S 2

28 Outcome of experiment: Arrays & flipping coins S= We keep track that we obtained one more event S=3 by repeating our experiment : " " " " "myarray(3) = myarray(3) + 1" S= We now want to keep track that we obtained S=4: " " " " "myarray(4) = myarray(4) + 1" 28

29 Summation of all values contained in the array myarray : y=sum(myarray)" Returns the minimum value contained in myarray : y=minval(myarray) Returns the maximum value contained in myarray : y=maxval(myarray)" Functions of arrays Returns the dimension of the array (i in this example should be an integer) : i =size(myarray) 29

30 Combined conditional statements BLOCK 1 BLOCK 2 1. Program something 2. Implicit none 3. Real(8) :: a 4. a= If ( a > 0.1 && a < 0.5 ) then 6. write(*,*) It is true 7. else 8. write(*,*) It is false 9. end if The if statement executes: the block 1 if the condition a>0.1 and the condition a<0.5 are satisfied The block 2 if either of a>0.1 or a<0.5 is NOT satisfied 10. end program 30

31 Practice Problems u Exercice 1 : Central limit theorem, convergence to a Normal distribution with random variables (X i =0,1) u Exercice 2 : Rolling dices at the casino 31

Introduction to computational modelling

Introduction to computational modelling Introduction to computational modelling Lecture 6 : Differential equations Physics: Pendulum Algorithm: Taylor s method Programming: Code explained Instructor : Cedric Weber Course : 4CCP1000 Schedule

More information

Computational modeling

Computational modeling Computational modeling Lecture 1 : Linear algebra - Matrix operations Examination next week: How to get prepared Theory and programming: Matrix operations Instructor : Cedric Weber Course : 4CCP1 Schedule

More information

Lecture 2 Binomial and Poisson Probability Distributions

Lecture 2 Binomial and Poisson Probability Distributions Binomial Probability Distribution Lecture 2 Binomial and Poisson Probability Distributions Consider a situation where there are only two possible outcomes (a Bernoulli trial) Example: flipping a coin James

More information

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 2 Discrete Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Random Variable Discrete Random

More information

Lecture 2. Binomial and Poisson Probability Distributions

Lecture 2. Binomial and Poisson Probability Distributions Durkin, Lecture 2, Page of 6 Lecture 2 Binomial and Poisson Probability Distributions ) Bernoulli Distribution or Binomial Distribution: Consider a situation where there are only two possible outcomes

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

Simultaneous Equations Solve for x and y (What are the values of x and y): Summation What is the value of the following given x = j + 1. x i.

Simultaneous Equations Solve for x and y (What are the values of x and y): Summation What is the value of the following given x = j + 1. x i. 1 Algebra Simultaneous Equations Solve for x and y (What are the values of x and y): x + 2y = 6 x - y = 3 Summation What is the value of the following given x = j + 1. Summation Calculate the following:

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science Probability Theory: Counting in Terms of Proportions Lecture 10 (September 27, 2007) Some Puzzles Teams A and B are equally good In any one game, each

More information

Business Statistics PROBABILITY DISTRIBUTIONS

Business Statistics PROBABILITY DISTRIBUTIONS Business Statistics PROBABILITY DISTRIBUTIONS CONTENTS Probability distribution functions (discrete) Characteristics of a discrete distribution Example: uniform (discrete) distribution Example: Bernoulli

More information

STA 247 Solutions to Assignment #1

STA 247 Solutions to Assignment #1 STA 247 Solutions to Assignment #1 Question 1: Suppose you throw three six-sided dice (coloured red, green, and blue) repeatedly, until the three dice all show different numbers. Assuming that these dice

More information

4. Discrete Probability Distributions. Introduction & Binomial Distribution

4. Discrete Probability Distributions. Introduction & Binomial Distribution 4. Discrete Probability Distributions Introduction & Binomial Distribution Aim & Objectives 1 Aims u Introduce discrete probability distributions v Binomial distribution v Poisson distribution 2 Objectives

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Topics in Computer Mathematics

Topics in Computer Mathematics Random Number Generation (Uniform random numbers) Introduction We frequently need some way to generate numbers that are random (by some criteria), especially in computer science. Simulations of natural

More information

Discrete Probability. Chemistry & Physics. Medicine

Discrete Probability. Chemistry & Physics. Medicine Discrete Probability The existence of gambling for many centuries is evidence of long-running interest in probability. But a good understanding of probability transcends mere gambling. The mathematics

More information

Expected Value II. 1 The Expected Number of Events that Happen

Expected Value II. 1 The Expected Number of Events that Happen 6.042/18.062J Mathematics for Computer Science December 5, 2006 Tom Leighton and Ronitt Rubinfeld Lecture Notes Expected Value II 1 The Expected Number of Events that Happen Last week we concluded by showing

More information

Materials Genome Assessment

Materials Genome Assessment Materials Genome Assessment Lecture 12 : Quantum Mechanics Theory: Differential equations with boundary conditions Schrodinger s cat Particle in a Box Programming: Modification of the Pendulum program

More information

Scientific Measurement

Scientific Measurement Scientific Measurement SPA-4103 Dr Alston J Misquitta Lecture 5 - The Binomial Probability Distribution Binomial Distribution Probability of k successes in n trials. Gaussian/Normal Distribution Poisson

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

2. The Binomial Distribution

2. The Binomial Distribution 1 of 11 7/16/2009 6:39 AM Virtual Laboratories > 11. Bernoulli Trials > 1 2 3 4 5 6 2. The Binomial Distribution Basic Theory Suppose that our random experiment is to perform a sequence of Bernoulli trials

More information

Unit 4 Probability. Dr Mahmoud Alhussami

Unit 4 Probability. Dr Mahmoud Alhussami Unit 4 Probability Dr Mahmoud Alhussami Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping a coin, rolling a die or drawing a card from

More information

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th HW2 Solutions, for MATH44, STAT46, STAT56, due September 9th. You flip a coin until you get tails. Describe the sample space. How many points are in the sample space? The sample space consists of sequences

More information

Lecture notes for probability. Math 124

Lecture notes for probability. Math 124 Lecture notes for probability Math 124 What is probability? Probabilities are ratios, expressed as fractions, decimals, or percents, determined by considering results or outcomes of experiments whose result

More information

MAT Mathematics in Today's World

MAT Mathematics in Today's World MAT 1000 Mathematics in Today's World Last Time We discussed the four rules that govern probabilities: 1. Probabilities are numbers between 0 and 1 2. The probability an event does not occur is 1 minus

More information

Name: Practice Final Exam May 8, 2012

Name: Practice Final Exam May 8, 2012 Math 00 Finite Math Practice Final Exam May 8, 0 Name: Be sure that you have all 7 pages of the test. The exam lasts for hours. The Honor Code is in effect for this examination, including keeping your

More information

What is a random variable

What is a random variable OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MATH 256 Probability and Random Processes 04 Random Variables Fall 20 Yrd. Doç. Dr. Didem Kivanc Tureli didemk@ieee.org didem.kivanc@okan.edu.tr

More information

Exam III #1 Solutions

Exam III #1 Solutions Department of Mathematics University of Notre Dame Math 10120 Finite Math Fall 2017 Name: Instructors: Basit & Migliore Exam III #1 Solutions November 14, 2017 This exam is in two parts on 11 pages and

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

Discrete Structures for Computer Science

Discrete Structures for Computer Science Discrete Structures for Computer Science William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #24: Probability Theory Based on materials developed by Dr. Adam Lee Not all events are equally likely

More information

Recap. The study of randomness and uncertainty Chances, odds, likelihood, expected, probably, on average,... PROBABILITY INFERENTIAL STATISTICS

Recap. The study of randomness and uncertainty Chances, odds, likelihood, expected, probably, on average,... PROBABILITY INFERENTIAL STATISTICS Recap. Probability (section 1.1) The study of randomness and uncertainty Chances, odds, likelihood, expected, probably, on average,... PROBABILITY Population Sample INFERENTIAL STATISTICS Today. Formulation

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan Introduction The markets can be thought of as a complex interaction of a large number of random processes,

More information

Chapter 2: The Random Variable

Chapter 2: The Random Variable Chapter : The Random Variable The outcome of a random eperiment need not be a number, for eample tossing a coin or selecting a color ball from a bo. However we are usually interested not in the outcome

More information

Crash Course in Statistics for Neuroscience Center Zurich University of Zurich

Crash Course in Statistics for Neuroscience Center Zurich University of Zurich Crash Course in Statistics for Neuroscience Center Zurich University of Zurich Dr. C.J. Luchsinger 1 Probability Nice to have read: Chapters 1, 2 and 3 in Stahel or Chapters 1 and 2 in Cartoon Guide Further

More information

Statistical Methods for the Social Sciences, Autumn 2012

Statistical Methods for the Social Sciences, Autumn 2012 Statistical Methods for the Social Sciences, Autumn 2012 Review Session 3: Probability. Exercises Ch.4. More on Stata TA: Anastasia Aladysheva anastasia.aladysheva@graduateinstitute.ch Office hours: Mon

More information

Random Variables. Statistics 110. Summer Copyright c 2006 by Mark E. Irwin

Random Variables. Statistics 110. Summer Copyright c 2006 by Mark E. Irwin Random Variables Statistics 110 Summer 2006 Copyright c 2006 by Mark E. Irwin Random Variables A Random Variable (RV) is a response of a random phenomenon which is numeric. Examples: 1. Roll a die twice

More information

6.041SC Probabilistic Systems Analysis and Applied Probability, Fall 2013 Transcript Tutorial:A Random Number of Coin Flips

6.041SC Probabilistic Systems Analysis and Applied Probability, Fall 2013 Transcript Tutorial:A Random Number of Coin Flips 6.041SC Probabilistic Systems Analysis and Applied Probability, Fall 2013 Transcript Tutorial:A Random Number of Coin Flips Hey, everyone. Welcome back. Today, we're going to do another fun problem that

More information

Statistics and Sampling distributions

Statistics and Sampling distributions Statistics and Sampling distributions a statistic is a numerical summary of sample data. It is a rv. The distribution of a statistic is called its sampling distribution. The rv s X 1, X 2,, X n are said

More information

STAT/SOC/CSSS 221 Statistical Concepts and Methods for the Social Sciences. Random Variables

STAT/SOC/CSSS 221 Statistical Concepts and Methods for the Social Sciences. Random Variables STAT/SOC/CSSS 221 Statistical Concepts and Methods for the Social Sciences Random Variables Christopher Adolph Department of Political Science and Center for Statistics and the Social Sciences University

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Introduction The markets can be thought of as a complex interaction of a large number of random

More information

TOPIC 12: RANDOM VARIABLES AND THEIR DISTRIBUTIONS

TOPIC 12: RANDOM VARIABLES AND THEIR DISTRIBUTIONS TOPIC : RANDOM VARIABLES AND THEIR DISTRIBUTIONS In the last section we compared the length of the longest run in the data for various players to our expectations for the longest run in data generated

More information

CS70: Jean Walrand: Lecture 15b.

CS70: Jean Walrand: Lecture 15b. CS70: Jean Walrand: Lecture 15b. Modeling Uncertainty: Probability Space 1. Key Points 2. Random Experiments 3. Probability Space Key Points Uncertainty does not mean nothing is known How to best make

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Tobias Neckel, Ionuț-Gabriel Farcaș Lehrstuhl Informatik V Summer Semester 2017 Lecture 2: Repetition of probability theory and statistics Example: coin flip Example

More information

Lecture #13 Tuesday, October 4, 2016 Textbook: Sections 7.3, 7.4, 8.1, 8.2, 8.3

Lecture #13 Tuesday, October 4, 2016 Textbook: Sections 7.3, 7.4, 8.1, 8.2, 8.3 STATISTICS 200 Lecture #13 Tuesday, October 4, 2016 Textbook: Sections 7.3, 7.4, 8.1, 8.2, 8.3 Objectives: Identify, and resist the temptation to fall for, the gambler s fallacy Define random variable

More information

Random Variable. Pr(X = a) = Pr(s)

Random Variable. Pr(X = a) = Pr(s) Random Variable Definition A random variable X on a sample space Ω is a real-valued function on Ω; that is, X : Ω R. A discrete random variable is a random variable that takes on only a finite or countably

More information

Week 2. Section Texas A& M University. Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019

Week 2. Section Texas A& M University. Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019 Week 2 Section 1.2-1.4 Texas A& M University Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week2 1

More information

Outline. Probability. Math 143. Department of Mathematics and Statistics Calvin College. Spring 2010

Outline. Probability. Math 143. Department of Mathematics and Statistics Calvin College. Spring 2010 Outline Math 143 Department of Mathematics and Statistics Calvin College Spring 2010 Outline Outline 1 Review Basics Random Variables Mean, Variance and Standard Deviation of Random Variables 2 More Review

More information

Math 243 Section 3.1 Introduction to Probability Lab

Math 243 Section 3.1 Introduction to Probability Lab Math 243 Section 3.1 Introduction to Probability Lab Overview Why Study Probability? Outcomes, Events, Sample Space, Trials Probabilities and Complements (not) Theoretical vs. Empirical Probability The

More information

CH 3 P1. Two fair dice are rolled. What is the conditional probability that at least one lands on 6 given that the dice land on different numbers?

CH 3 P1. Two fair dice are rolled. What is the conditional probability that at least one lands on 6 given that the dice land on different numbers? CH 3 P1. Two fair dice are rolled. What is the conditional probability that at least one lands on 6 given that the dice land on different numbers? P7. The king comes from a family of 2 children. what is

More information

Presentation on Theo e ry r y o f P r P o r bab a il i i l t i y

Presentation on Theo e ry r y o f P r P o r bab a il i i l t i y Presentation on Theory of Probability Meaning of Probability: Chance of occurrence of any event In practical life we come across situation where the result are uncertain Theory of probability was originated

More information

Probability (10A) Young Won Lim 6/12/17

Probability (10A) Young Won Lim 6/12/17 Probability (10A) Copyright (c) 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Stochastic Processes. Review of Elementary Probability Lecture I. Hamid R. Rabiee Ali Jalali

Stochastic Processes. Review of Elementary Probability Lecture I. Hamid R. Rabiee Ali Jalali Stochastic Processes Review o Elementary Probability bili Lecture I Hamid R. Rabiee Ali Jalali Outline History/Philosophy Random Variables Density/Distribution Functions Joint/Conditional Distributions

More information

PHYS 114 Exam 1 Answer Key NAME:

PHYS 114 Exam 1 Answer Key NAME: PHYS 4 Exam Answer Key AME: Please answer all of the questions below. Each part of each question is worth points, except question 5, which is worth 0 points.. Explain what the following MatLAB commands

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 12. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 12. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Fall 203 Vazirani Note 2 Random Variables: Distribution and Expectation We will now return once again to the question of how many heads in a typical sequence

More information

Carleton University. Final Examination Winter DURATION: 2 HOURS No. of students: 152

Carleton University. Final Examination Winter DURATION: 2 HOURS No. of students: 152 Carleton University Final Examination Winter 2014 DURATION: 2 HOURS No. of students: 152 Department Name & Course Number: Computer Science COMP 2804B Course Instructor: Michiel Smid Authorized memoranda:

More information

V. Probability. by David M. Lane and Dan Osherson

V. Probability. by David M. Lane and Dan Osherson V. Probability by David M. Lane and Dan Osherson Prerequisites none F.Introduction G.Basic Concepts I.Gamblers Fallacy Simulation K.Binomial Distribution L.Binomial Demonstration M.Base Rates Probability

More information

Lecture 2 : CS6205 Advanced Modeling and Simulation

Lecture 2 : CS6205 Advanced Modeling and Simulation Lecture 2 : CS6205 Advanced Modeling and Simulation Lee Hwee Kuan 21 Aug. 2013 For the purpose of learning stochastic simulations for the first time. We shall only consider probabilities on finite discrete

More information

With Question/Answer Animations. Chapter 7

With Question/Answer Animations. Chapter 7 With Question/Answer Animations Chapter 7 Chapter Summary Introduction to Discrete Probability Probability Theory Bayes Theorem Section 7.1 Section Summary Finite Probability Probabilities of Complements

More information

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by:

Example 1. The sample space of an experiment where we flip a pair of coins is denoted by: Chapter 8 Probability 8. Preliminaries Definition (Sample Space). A Sample Space, Ω, is the set of all possible outcomes of an experiment. Such a sample space is considered discrete if Ω has finite cardinality.

More information

Chapter 5 : Probability. Exercise Sheet. SHilal. 1 P a g e

Chapter 5 : Probability. Exercise Sheet. SHilal. 1 P a g e 1 P a g e experiment ( observing / measuring ) outcomes = results sample space = set of all outcomes events = subset of outcomes If we collect all outcomes we are forming a sample space If we collect some

More information

Chapter 2.5 Random Variables and Probability The Modern View (cont.)

Chapter 2.5 Random Variables and Probability The Modern View (cont.) Chapter 2.5 Random Variables and Probability The Modern View (cont.) I. Statistical Independence A crucially important idea in probability and statistics is the concept of statistical independence. Suppose

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Data Science: Jordan Boyd-Graber University of Maryland JANUARY 18, 2018 Data Science: Jordan Boyd-Graber UMD Discrete Probability Distributions 1 / 1 Refresher: Random

More information

Lecture 2: Probability Distributions

Lecture 2: Probability Distributions EAS31136/B9036: Statistics in Earth & Atmospheric Sciences Lecture 2: Probability Distributions Instructor: Prof. Johnny Luo www.sci.ccny.cuny.edu/~luo Dates Topic Reading (Based on the 2 nd Edition of

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 2 Probability Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 3-1 3.1 Definition Random Experiment a process leading to an uncertain

More information

functions Poisson distribution Normal distribution Arbitrary functions

functions Poisson distribution Normal distribution Arbitrary functions Physics 433: Computational Physics Lecture 6 Random number distributions Generation of random numbers of various distribuition functions Normal distribution Poisson distribution Arbitrary functions Random

More information

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION BINOMIAL DISTRIBUTION The binomial distribution is a particular type of discrete pmf. It describes random variables which satisfy the following conditions: 1 You perform n identical experiments (called

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

COMP6053 lecture: Sampling and the central limit theorem. Markus Brede,

COMP6053 lecture: Sampling and the central limit theorem. Markus Brede, COMP6053 lecture: Sampling and the central limit theorem Markus Brede, mb8@ecs.soton.ac.uk Populations: long-run distributions Two kinds of distributions: populations and samples. A population is the set

More information

Data Analysis and Monte Carlo Methods

Data Analysis and Monte Carlo Methods Lecturer: Allen Caldwell, Max Planck Institute for Physics & TUM Recitation Instructor: Oleksander (Alex) Volynets, MPP & TUM General Information: - Lectures will be held in English, Mondays 16-18:00 -

More information

Introduction and Overview STAT 421, SP Course Instructor

Introduction and Overview STAT 421, SP Course Instructor Introduction and Overview STAT 421, SP 212 Prof. Prem K. Goel Mon, Wed, Fri 3:3PM 4:48PM Postle Hall 118 Course Instructor Prof. Goel, Prem E mail: goel.1@osu.edu Office: CH 24C (Cockins Hall) Phone: 614

More information

Business Statistics. Lecture 3: Random Variables and the Normal Distribution

Business Statistics. Lecture 3: Random Variables and the Normal Distribution Business Statistics Lecture 3: Random Variables and the Normal Distribution 1 Goals for this Lecture A little bit of probability Random variables The normal distribution 2 Probability vs. Statistics Probability:

More information

UNIT NUMBER PROBABILITY 6 (Statistics for the binomial distribution) A.J.Hobson

UNIT NUMBER PROBABILITY 6 (Statistics for the binomial distribution) A.J.Hobson JUST THE MATHS UNIT NUMBER 19.6 PROBABILITY 6 (Statistics for the binomial distribution) by A.J.Hobson 19.6.1 Construction of histograms 19.6.2 Mean and standard deviation of a binomial distribution 19.6.3

More information

Basic Statistics and Probability Chapter 3: Probability

Basic Statistics and Probability Chapter 3: Probability Basic Statistics and Probability Chapter 3: Probability Events, Sample Spaces and Probability Unions and Intersections Complementary Events Additive Rule. Mutually Exclusive Events Conditional Probability

More information

success and failure independent from one trial to the next?

success and failure independent from one trial to the next? , section 8.4 The Binomial Distribution Notes by Tim Pilachowski Definition of Bernoulli trials which make up a binomial experiment: The number of trials in an experiment is fixed. There are exactly two

More information

4452 Mathematical Modeling Lecture 14: Discrete and Continuous Probability

4452 Mathematical Modeling Lecture 14: Discrete and Continuous Probability Math Modeling Lecture 14: iscrete and Continuous Page 1 4452 Mathematical Modeling Lecture 14: iscrete and Continuous Introduction If you have taken mathematical statistics, then you have seen all this

More information

CS 246 Review of Proof Techniques and Probability 01/14/19

CS 246 Review of Proof Techniques and Probability 01/14/19 Note: This document has been adapted from a similar review session for CS224W (Autumn 2018). It was originally compiled by Jessica Su, with minor edits by Jayadev Bhaskaran. 1 Proof techniques Here we

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics February 12, 2018 CS 361: Probability & Statistics Random Variables Monty hall problem Recall the setup, there are 3 doors, behind two of them are indistinguishable goats, behind one is a car. You pick

More information

P (A) = P (B) = P (C) = P (D) =

P (A) = P (B) = P (C) = P (D) = STAT 145 CHAPTER 12 - PROBABILITY - STUDENT VERSION The probability of a random event, is the proportion of times the event will occur in a large number of repititions. For example, when flipping a coin,

More information

PHP2510: Principles of Biostatistics & Data Analysis. Lecture X: Hypothesis testing. PHP 2510 Lec 10: Hypothesis testing 1

PHP2510: Principles of Biostatistics & Data Analysis. Lecture X: Hypothesis testing. PHP 2510 Lec 10: Hypothesis testing 1 PHP2510: Principles of Biostatistics & Data Analysis Lecture X: Hypothesis testing PHP 2510 Lec 10: Hypothesis testing 1 In previous lectures we have encountered problems of estimating an unknown population

More information

Chapter 7 Wednesday, May 26th

Chapter 7 Wednesday, May 26th Chapter 7 Wednesday, May 26 th Random event A random event is an event that the outcome is unpredictable. Example: There are 45 students in this class. What is the probability that if I select one student,

More information

Essential Learning Outcomes for Algebra 2

Essential Learning Outcomes for Algebra 2 ALGEBRA 2 ELOs 1 Essential Learning Outcomes for Algebra 2 The following essential learning outcomes (ELOs) represent the 12 skills that students should be able to demonstrate knowledge of upon completion

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 2. MLE, MAP, Bayes classification Barnabás Póczos & Aarti Singh 2014 Spring Administration http://www.cs.cmu.edu/~aarti/class/10701_spring14/index.html Blackboard

More information

MATH 3C: MIDTERM 1 REVIEW. 1. Counting

MATH 3C: MIDTERM 1 REVIEW. 1. Counting MATH 3C: MIDTERM REVIEW JOE HUGHES. Counting. Imagine that a sports betting pool is run in the following way: there are 20 teams, 2 weeks, and each week you pick a team to win. However, you can t pick

More information

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k )

REPEATED TRIALS. p(e 1 ) p(e 2 )... p(e k ) REPEATED TRIALS We first note a basic fact about probability and counting. Suppose E 1 and E 2 are independent events. For example, you could think of E 1 as the event of tossing two dice and getting a

More information

Week 1 Quantitative Analysis of Financial Markets Distributions A

Week 1 Quantitative Analysis of Financial Markets Distributions A Week 1 Quantitative Analysis of Financial Markets Distributions A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Chapter 5. Means and Variances

Chapter 5. Means and Variances 1 Chapter 5 Means and Variances Our discussion of probability has taken us from a simple classical view of counting successes relative to total outcomes and has brought us to the idea of a probability

More information

FINAL EXAM CHEAT SHEET/STUDY GUIDE. You can use this as a study guide. You will also be able to use it on the Final Exam on

FINAL EXAM CHEAT SHEET/STUDY GUIDE. You can use this as a study guide. You will also be able to use it on the Final Exam on FINAL EXAM CHEAT SHEET/STUDY GUIDE You can use this as a study guide. You will also be able to use it on the Final Exam on Tuesday. If there s anything else you feel should be on this, please send me email

More information

We're in interested in Pr{three sixes when throwing a single dice 8 times}. => Y has a binomial distribution, or in official notation, Y ~ BIN(n,p).

We're in interested in Pr{three sixes when throwing a single dice 8 times}. => Y has a binomial distribution, or in official notation, Y ~ BIN(n,p). Sampling distributions and estimation. 1) A brief review of distributions: We're in interested in Pr{three sixes when throwing a single dice 8 times}. => Y has a binomial distribution, or in official notation,

More information

STT 315 Problem Set #3

STT 315 Problem Set #3 1. A student is asked to calculate the probability that x = 3.5 when x is chosen from a normal distribution with the following parameters: mean=3, sd=5. To calculate the answer, he uses this command: >

More information

Introduction to Probability

Introduction to Probability Introduction to Probability Gambling at its core 16th century Cardano: Books on Games of Chance First systematic treatment of probability 17th century Chevalier de Mere posed a problem to his friend Pascal.

More information

Probability Distributions.

Probability Distributions. Probability Distributions http://www.pelagicos.net/classes_biometry_fa18.htm Probability Measuring Discrete Outcomes Plotting probabilities for discrete outcomes: 0.6 0.5 0.4 0.3 0.2 0.1 NOTE: Area within

More information

MLE/MAP + Naïve Bayes

MLE/MAP + Naïve Bayes 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University MLE/MAP + Naïve Bayes Matt Gormley Lecture 19 March 20, 2018 1 Midterm Exam Reminders

More information

RVs and their probability distributions

RVs and their probability distributions RVs and their probability distributions RVs and their probability distributions In these notes, I will use the following notation: The probability distribution (function) on a sample space will be denoted

More information

Review of Elementary Probability Lecture I Hamid R. Rabiee

Review of Elementary Probability Lecture I Hamid R. Rabiee Stochastic Processes Review o Elementar Probabilit Lecture I Hamid R. Rabiee Outline Histor/Philosoph Random Variables Densit/Distribution Functions Joint/Conditional Distributions Correlation Important

More information

Why should you care?? Intellectual curiosity. Gambling. Mathematically the same as the ESP decision problem we discussed in Week 4.

Why should you care?? Intellectual curiosity. Gambling. Mathematically the same as the ESP decision problem we discussed in Week 4. I. Probability basics (Sections 4.1 and 4.2) Flip a fair (probability of HEADS is 1/2) coin ten times. What is the probability of getting exactly 5 HEADS? What is the probability of getting exactly 10

More information

Math 1313 Experiments, Events and Sample Spaces

Math 1313 Experiments, Events and Sample Spaces Math 1313 Experiments, Events and Sample Spaces At the end of this recording, you should be able to define and use the basic terminology used in defining experiments. Terminology The next main topic in

More information

Probability 1 (MATH 11300) lecture slides

Probability 1 (MATH 11300) lecture slides Probability 1 (MATH 11300) lecture slides Márton Balázs School of Mathematics University of Bristol Autumn, 2015 December 16, 2015 To know... http://www.maths.bris.ac.uk/ mb13434/prob1/ m.balazs@bristol.ac.uk

More information

Question Paper Code : AEC11T03

Question Paper Code : AEC11T03 Hall Ticket No Question Paper Code : AEC11T03 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information

Brief Review of Probability

Brief Review of Probability Brief Review of Probability Nuno Vasconcelos (Ken Kreutz-Delgado) ECE Department, UCSD Probability Probability theory is a mathematical language to deal with processes or experiments that are non-deterministic

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

3 PROBABILITY TOPICS

3 PROBABILITY TOPICS Chapter 3 Probability Topics 135 3 PROBABILITY TOPICS Figure 3.1 Meteor showers are rare, but the probability of them occurring can be calculated. (credit: Navicore/flickr) Introduction It is often necessary

More information

Random Variables Example:

Random Variables Example: Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information