Ecuaciones diferenciales en derivadas parciales

Size: px
Start display at page:

Download "Ecuaciones diferenciales en derivadas parciales"

Transcription

1 Ecuacones dferencales en dervadas parcales Pedro Corcuera Dpto. Matemátca Aplcada y Cencas de la Computacón Unversdad de Cantabra corcuerp@uncan.es

2 Obetvos Revsón de las ecuacones dferencales en dervadas parcales y técncas de solucón Ec. dervadas parcales

3 Dferencacón Ec. dervadas parcales

4 Dferencacón de funcones contnuas he mathematcal defnton of a dervatve begns wth a dfference approxmaton: y ( ) f ( x ) x f x x x and as x s allowed to approach zero, the dfference becomes a dervatve: f ( x x) f ( x ) dy dx lm x x Ec. dervadas parcales 4

5 Fórmulas de dferencacón de gran exacttud aylor seres expanson can be used to generate hgh-accuracy formulas for dervatves by usng lnear algebra to combne the expanson around several ponts. hree categores for the formula nclude forward fnte-dfference, backward fnte-dfference, and centered fnte-dfference. Ec. dervadas parcales 5

6 Aproxmacón por dferenca en adelanto f For a fnte ( x) ' Δx' f(x) lm Δx f ( x) f ( x Δx) f ( x) f Δx ( x x) f ( x) x x xδx Graphcal Representaton of forward dfference approxmaton of frst dervatve. Ec. dervadas parcales 6

7 Aproxmacón por dferenca en adelanto - eemplo he velocty of a rocket s gven by ν t ( t) ln 9.8t, t Where 'ν' s gven n m/s and 't' s gven n seconds. a)use forward dfference approxmaton of the frst dervatve of ν( t) to calculate the acceleraton at t 6s. Use a step sze of Δ t s. b)fnd the exact value of the acceleraton of the rocket. c) Calculate the absolute relatve true error for part (b). Ec. dervadas parcales 7

8 Aproxmacón por dferenca en adelanto - eemplo Soluton a) a ( t ) ( 6) ( t ) ( t ) ν ν t ν ν ( 8) ( 6) t 6 Δ t t t 6 t a 4 4 ν ( 8) ln 9.8( 8) 45. m/s 4 4 ( 8) 4 4 ν ( 6) ln 9.8( 6) m/s 4 ( 6) Hence ν ( ) ( 8) ν ( 6) a 6.474m/s b) he exact value of a( 6) can be calculated by dfferentatng 4 ( t 4 ν ) ln 9. t 4 t 8 4 as d a ( t) [ ν( t) ] Ec. dervadas parcales 8 dt 8

9 Aproxmacón por dferenca en adelanto - eemplo Knowng that d [ ( t) ] d ln and dt t dt t t t d 4 a( t) dt 4 t t t t t a ( 6) ( ) ( ) ( ) ( ) 9. 8 ( ) 9.674m/s c) he absolute relatve true error s rue Value - Approxmate Value t x.6967 % rue Value Ec. dervadas parcales 9

10 Efecto del tamaño de paso en el método de dferenca dvdda en adelanto f ( x) 9e 4x Value of h ' (.) f (.) E f a usng forward dfference method. ε a % Sgnfcant dgts E t ε t % E E Ec. dervadas parcales

11 Efecto del tamaño de paso en el método de dferenca dvdda en adelanto 9 f'(.) Number of tmes step sze halved, n Ea Number of tmes step sze halved, n Ea % Number of tmes step sze halved, n Least number of sgnfcant dgts correct Number of tmes step sze halved, n Ec. dervadas parcales

12 Efecto del tamaño de paso en el método de dferenca dvdda en adelanto Number of tmes step sze halved, n E t % 6 E t Number of tmes step sze halved, n Ec. dervadas parcales

13 Aproxmacón por dferenca en atraso Sabemos que For a fnte Δ ', f ( x) ' x f ( x) lm Δx f ( x Δx) f ( x) f Δx ( x x) f ( x) x If ' Δx' s chosen as a negatve number, f ( x) f ( x x) f ( x) x f ( x) f ( x Δx) Δx Ec. dervadas parcales

14 hs s a backward dfference approxmaton as you are takng a pont backward from x. o fnd the value of f ( x) at x x, we may choose another pont ' Δx' behnd as x. hs gves f ( x ) where Aproxmacón por dferenca en atraso f x ( x ) f ( x ) f x f ( x ) ( x ) x x Δx x x f(x) x-δx Graphcal Representaton of backward dfference approxmaton of frst dervatve. x x Ec. dervadas parcales 4

15 Obtencón de la adad a partr de las seres de aylor aylor s theorem says that f you know the value of a functon f at a pont x and all ts dervatves at that pont, provded the dervatves are contnuous between and, then f x x ( x ) f ( x ) f ( x )( x x ) Substtutng for convenence f f f f! Δx ( x ) f ( x ) f ( x ) f Δx! f x! Δ ( x ) f ( x ) f ( x ) ( ) x ( x ) f ( x ) ( ) ( x ) x ( x ) f ( x ) O( x) x ( x ) ( ) x x x x Ec. dervadas parcales 5

16 Obtencón de la adad a partr de las seres de aylor O( x) he term shows that the error n the approxmaton s of the order of x. It s easy to derve from aylor seres the formula for backward dvded dfference approxmaton of the frst dervatve. As shown above, both forward and backward dvded dfference approxmaton of the frst dervatve are accurate on the order of O( x). Can we get better approxmatons? Yes, another method s called the Central dfference approxmaton of the frst dervatve. Ec. dervadas parcales 6

17 Obtencón de la adc a partr de las seres de aylor From aylor seres f f ( x ) f ( x ) f ( x ) Δx ( x ) ( ) ( ) f x ( ) Δx Δ ( x ) f ( x ) f ( x ) Δx Subtractng equaton () from equaton () f f! f x! x ( ) ( ) ( ) f ( ) Δx Δ ( x ) f ( x ) f ( x )( x) f f ( x ) f!! ( x ) ( ) f x! ( x ) ( ) f x f ( x ) ( ) x ( x ) f x ( x ) f ( x ) x O! ( x) x x () () Ec. dervadas parcales 7

18 Obtencón de la adc a partr de las seres de aylor Hence showng that we have obtaned a more accurate formula as the error s of the order of O( x) f(x) x-δx x xδx x Graphcal Representaton of central dfference approxmaton of frst dervatve Ec. dervadas parcales 8

19 Aproxmacón por dferenca central - eemplo he velocty of a rocket s gven by ν t ( t) ln 9.8t, t Where 'ν' s gven n m/s and 't' s gven n seconds. a)use central dvded dfference approxmaton of the frst dervatve of ν( t) to calculate the acceleraton at t 6s. Use a step sze of Δ t s. b)calculate the absolute relatve true error for part (a). Ec. dervadas parcales 9

20 Soluton Aproxmacón por dferenca central - eemplo ( t ) ( t ) ν ν t 6 Δ t t t t t 6 ν ν t t t 6 a) a( t ) 4 ( ) ( 8) ( 4) 8 a ν ( 8) ln 9.8( 8) 4 4 ( 8) 45. m/s 4 4 ν ( 4) ln 9.8( 4) 4 4 ( 4) 4.4 m/s Hence ν ( ) ( 8) ν ( 4) a m/s 4 4 b) he absolute relatve true error s knowng that the exact value at s a( 6 ) m/s t.6957 % t 6s Ec. dervadas parcales

21 Efecto del tamaño de paso en el método de dferenca dvdda central f ( x) 9e 4x Value of h ' (.) f (.) E f a usng forward dfference method. ε a % Sgnfcant dgts E t ε t % E E E-5.5E E E E-6 7.6E E E E-6.9E E-7 Ec. dervadas parcales

22 Efecto del tamaño de paso en el método de dferenca dvdda central 95 f'(.) 85 Number of steps nvolved, n E(a) Number of tmes the step sze s halved, n - E(a),% Least number of sgnfcant dgts correct Number of steps nvolved, n Number of steps nvolved, n Ec. dervadas parcales

23 Efecto del tamaño de paso en el método de dferenca dvdda central.8 E(t) Number of steps nvolved, n E t % Number of tmes step sze halved,n Ec. dervadas parcales

24 Comparacón de métodos adad, adat, adc he results from the three dfference approxmatons are gven n the followng table. Summary of a (6) usng dfferent dvded dfference approxmatons ype of Dfference Approxmaton Forward Backward Central a( 6) ( m / s ) t % Ec. dervadas parcales 4

25 Obtencón del valor de la dervada con una toleranca específca In real lfe, one would not know the exact value of the dervatve so how would one know how accurately they have found the value of the dervatve. A smple way would be to start wth a step sze and keep on halvng the step sze untl the absolute relatve approxmate error s wthn a pre-specfed tolerance. ake the example of fndng at ν t 6 v ( t) t for ( t ) ln 9. 8 t usng the backward dvded dfference scheme. Ec. dervadas parcales 5

26 Obtencón del valor de la dervada con una toleranca específca he values obtaned usng the backward dfference approxmaton method and the correspondng absolute relatve approxmate errors are gven n the followng table. t v ( t) % a one can see that the absolute relatve approxmate error decreases as the step sze s reduced. At t.5 the absolute relatve approxmate error s.655%, meanng that at least sgnfcant dgts are correct n the answer. Ec. dervadas parcales 6

27 Fórmulas de dferenca fnta en adelanto Ec. dervadas parcales 7

28 Fórmulas de dferenca fnta en atraso Ec. dervadas parcales 8

29 Fórmulas de dferenca fnta centrada Ec. dervadas parcales 9

30 Sstemas de ecuacones lneales Ec. dervadas parcales

31 Matrces A matrx conssts of a rectangular array of elements represented by a sngle symbol (example: [A]). An ndvdual entry of a matrx s an element (example: a ) Ec. dervadas parcales

32 Matrces especales Matrces where mn are called square matrces. here are a number of specal forms of square matrces: Symmetrc 5 [ A] Dagonal a [ A] a a Identty [ A] Upper rangular a a a [ A] a a a Lower rangular a [ A] a a a a a Banded a a a [ A a a ] a a a 4 a 4 a 44 Ec. dervadas parcales

33 Multplcacón matrcal he elements n the matrx [C] that results from multplyng matrces [A] and [B] are calculated usng: c n k a k b k Ec. dervadas parcales

34 Representacón de Algebra Lneal Matrces provde a concse notaton for representng and solvng smultaneous lnear equatons: a x a x a x b a x a x a x b a x a x a x b a a a a a a a a a x x x b b b [A]{x} {b} Ec. dervadas parcales 4

35 Solucón con Matlab MALAB provdes two drect ways to solve systems of lnear algebrac equatons [A]{x}{b}: Left-dvson x A\b Matrx nverson x nv(a)*b he matrx nverse s less effcent than left-dvson and also only works for square, non-sngular systems. Ec. dervadas parcales 5

36 Matrz nversa Recall that f a matrx [A] s square, there s another matrx [A] -, called the nverse of [A], for whch [A][A] - [A] - [A][I] he nverse can be computed n a column by column fashon by generatng solutons wth unt vectors as the rght-hand-sde constants: { } A [ ] x { } A [ ] x [ A] [ x x x ] { } A [ ] x Ec. dervadas parcales 6

37 Matrz nversa y sstemas estímulo - respuesta Recall that LU factorzaton can be used to effcently evaluate a system for multple rght-hand-sde vectors - thus, t s deal for evaluatng the multple unt vectors needed to compute the nverse. Many systems can be modeled as a lnear combnaton of equatons, and thus wrtten as a matrx equaton: [ Interactons] { response} { stmul} he system response can thus be found usng the matrx nverse. Ec. dervadas parcales 7

38 Normas vectorales y matrcales A norm s a real-valued functon that provdes a measure of the sze or length of mult-component mathematcal enttes such as vectors and matrces. Vector norms and matrx norms may be computed dfferently. Ec. dervadas parcales 8

39 Normas vectorales For a vector {X} of sze n, the p-norm s: X p n x p Important examples of vector p-norms nclude: / p p p p : sum of the absolute values : Eucldan norm (length) : maxmum magntude X X X n X x e max n x n x Ec. dervadas parcales 9

40 Normas matrcales Common matrx norms for a matrx [A] nclude: column - sum norm A Frobenus norm A f a row - sum norm A spectral norm ( norm) n max a n n n n max a n ( ) / A µ max Note - µ max s the largest egenvalue of [A] [A]. Ec. dervadas parcales 4

41 Número de condcón de una matrz he matrx condton number Cond[A] s obtaned by calculatng Cond[A] A A - In can be shown that: X Cond [ A ] A A X he relatve error of the norm of the computed soluton can be as large as the relatve error of the norm of the coeffcents of [A] multpled by the condton number. If the coeffcents of [A] are known to t dgt precson, the soluton [X] may be vald to only t-log (Cond[A]) dgts. Ec. dervadas parcales 4

42 Comandos Matlab MALAB has bult-n functons to compute both norms and condton numbers: norm(x,p) Compute the p norm of vector X, where p can be any number, nf, or fro (for the Eucldean norm) norm(a,p) Compute a norm of matrx A, where p can be,, nf, or fro (for the Frobenus norm) cond(x,p) or cond(a,p) Calculate the condton number of vector X or matrx A usng the norm specfed by p. Ec. dervadas parcales 4

43 Método teratvo: Gauss - Sedel he Gauss-Sedel method s the most commonly used teratve method for solvng lnear algebrac equatons [A]{x}{b}. he method solves each equaton n a system for a partcular varable, and then uses that value n later equatons to solve later varables. For a x system wth nonzero elements along the dagonal, for example, the th teraton values are found from the - th teraton usng: x b a x a x a x b a x a x a x b a x a x a Ec. dervadas parcales 4

44 he Jacob teraton s smlar to the Gauss-Sedel method, except the -th nformaton s used to update all varables n the th teraton: a) Gauss-Sedel b) Jacob Iteracón de Jacob Ec. dervadas parcales 44

45 Convergenca he convergence of an teratve method can be calculated by determnng the relatve percent change of each element n {x}. For example, for the th element n the th teraton, ε x a, x % he method s ended when all elements have converged to a set tolerance. x Ec. dervadas parcales 45

46 Domnanca dagonal he Gauss-Sedel method may dverge, but f the system s dagonally domnant, t wll defntely converge. Dagonal domnance means: a > n a Ec. dervadas parcales 46

47 Relaacón o enhance convergence, an teratve program can ntroduce relaxaton where the value at a partcular teraton s made up of a combnaton of the old value and the newly calculated value: x new new ( ) old λx λ x where λ s a weghtng factor that s assgned a value between and. <λ<: underrelaxaton λ: no relaxaton <λ : overrelaxaton Ec. dervadas parcales 47

48 Ecuacones dferencales en dervadas parcales Ec. dervadas parcales 48

49 Ecuacones en dervadas parcales Ordnary Dfferental Equatons have only one ndependent varable dy x 5y e, y() 5 dx Partal Dfferental Equatons have more than one ndependent varable u x u y x y subect to certan condtons: where u s the dependent varable, and x and y are the ndependent varables. Ec. dervadas parcales 49

50 Clasfcacón de EDPs de orden u u u A B C D x x y y where A, B, andc are functons of x and y, and. D s a functon of u u xyu,, and,. x y can be: Ellptc f B 4AC < Parabolc f B 4AC Hyperbolc f B 4AC > Ec. dervadas parcales 5

51 Eemplos de EDPs de orden Ellptc Parabolc Hyperbolc A, B, C x t x y k y c A, B x A k, B, C, C t y c Laplace equaton Heat equaton Wave equaton Ec. dervadas parcales 5

52 Eemplo físco de una PDE elíptca y t W l r L b x Schematc dagram of a plate wth specfed temperature boundary condtons he Laplace equaton governs the temperature: x y Ec. dervadas parcales 5

53 Dscretzando la PDE elíptca y (, n) t l (, ) x x y L m y r W n (, ) y (, ) x (, ) (, ) (,) b (m,) x (, ) x ( x, y) ( x x, y) ( x, y) ( x ( x) x, y) y ( x, y) ( x, y y) ( x, y) ( x, ( y) y y) Ec. dervadas parcales 5

54 Dscretzando la PDE elíptca y (, n) t l (, ) x y r (, ) y (, ) x (, ) (, ) (,) b (m,) x (, ) x ( x, y) ( x x, y) ( x, y) ( x x, y) ( x), x,, ( x), y ( x, y) ( x, y y) ( x, y) ( x, y y) ( y), y,, ( y), Ec. dervadas parcales 54

55 Substtutng these approxmatons nto the Laplace equaton yelds: f, the Laplace equaton can be rewrtten as (Eq. ) there are several numercal methods that can be used to solve the problem: Drect Method Gauss-Sedel Method Leberman Method Ec. dervadas parcales 55 Dscretzando la PDE elíptca y x ( ) ( ),,,,,, y x x y 4,,,,,

56 Eemplo : Método drecto Consder a plate.4m. m that s subected to the boundary condtons shown below. Fnd the temperature at the nteror nodes usng a square grd wth a length of.6m by usng the drect method. y C W 75. m C C 5.4m L C x Ec. dervadas parcales 56

57 Eemplo : Método drecto We dscretze the plate by takng, L W m 4 n 5 x y x y. 6m he nodal temperatures at the boundary nodes are gven by: y C,5,5, 5, 5 4, 5 75 C,4,,,,,4, 4,4 4, 4,,, 4,,,, 4,,,, 4,,,, 4, 5 C C x, 4,,,5 75,,,,4,,,,4 5,,,,,, Ec. dervadas parcales 57

58 Eemplo : Método drecto the equaton for the temperature at the node (,) y,5,5, 5, 5 4, 5,4,4, 4,4 4, 4,,,, 4,,,,, 4, and,,,, 4,,,,, 4,,,,, 4,,,,4, 4,,, 4,,4, x Ec. dervadas parcales 58

59 Eemplo : Método drecto We can develop smlar equatons for every nteror node leavng us wth an equal number of equatons and unknowns. For ths problem the number of equatons generated s Ec. dervadas parcales 59

60 he corner nodal temperature of,5, 4,5, 4,,, are not needed o get the temperature at the nteror nodes we have to wrte Equaton for all the combnatons of and,,..., m ;,..., n and and and and 4 and and and and 4 and and and and 4 Eemplo : Método drecto 4,,, 5, 4,,,, 4,,4, 75, 4,4, 4 75, 4,,,,, 4,,,,, 4,,4,,4, 4,4, 4, 4,, 5,, 4,,,, 4,, 4,4, 4, Ec. dervadas parcales 6

61 Eemplo : Método drecto We can use Excel and matrx operatons to solve the lnear equatons system,,,,4,,,,4,,,,4 RHE -4-5, , , , , , , , , , , , Ec. dervadas parcales 6

62 Método Gauss-Sedel Recall the dscretzed equaton,,,, 4, hs can be rewrtten as,,,, For the Gauss-Sedel Method, ths equaton s solved teratvely for all nteror nodes untl a pre-specfed tolerance s met. 4, Ec. dervadas parcales 6

63 Eemplo : Método Gauss-Sedel Consder a plate.4m. m that s subected to the boundary condtons shown below. Fnd the temperature at the nteror nodes usng a square grd wth a length of.6m usng the Gauss-Sedel method. Assume the ntal temperature at all nteror nodes to be C. y C W 75. m C C 5 C x.4m L 6

64 Eemplo : Método Gauss-Sedel Dscretzng the plate by takng, L W m 4 n 5 x y x y. 6m he nodal temperatures at the boundary nodes are gven by: y C,5,5, 5, 5 4, 5 75 C,4,,,,,4, 4,4 4, 4,,, 4,,,, 4,,,, 4,,,, 4, 5 C C x, 4,,,5 75,,,,4,,,,4 5,,,,,, Ec. dervadas parcales 64

65 Eemplo : Método Gauss-Sedel Now we can begn to solve for the temperature at each nteror node usng,,,,,,,,,4;,,,4,5 4 Assume all nternal nodes to have an ntal temperature of zero. Iteraton : and.5º C and, and 6.565º C and 4, and 5.96 º C and, and 4.98º C and,4 and.5º C and,, and.788º C and º C,.44º C, º C, 8.574º C, 6.969º C,, º C Ec. dervadas parcales 65

66 Eemplo : Método Gauss-Sedel Iteraton : we take the temperatures from teraton and calculate the present prevous approxmated error.,, ε a, present,, º C 7.7%,,, º C.49%, 4,, º C ε a 54.49%,,, 4.8º C ε a 4.9%,,4, 6.864º C 44.8%,,,.8594 º C 6.%, 4, ε a, ε a,,,4 ε a, ε a, º C, 56.5º C, º C, 56.45º C, º C, º C,4 ε a ε a ε a,,4, ε a, ε a, ε a,4 8.58% 4.46% 4.44%.7% 57.44% 6.% Ec. dervadas parcales 66

67 Eemplo : Método Gauss-Sedel Node,,,,4,,,,4,,,,4 emperature Dstrbuton n the Plate ( C) Number of Iteratons Ec. dervadas parcales 67

68 Eemplo : Método Gauss-Sedel n Excel he numercal soluton of Laplace equaton at a pont s the average of four neghbors Example for cell S8: (S7S9R88)/4, 4,,,, Enter the boundary condtons n the approprate cells. Copy and paste to cover the cells where values of the potental are to be calculated. hs calculaton contans a "crcular reference. Ec. dervadas parcales 68

69 Eemplo : Método Gauss-Sedel n Excel o allow crcular references and enable teratons: Fle Optons Formulas On the "Calculatons optons" form select "Enable teratve calculaton" We can ncrease the Maxmum Iteratons ( s the deafult) and reduce the Maxmum Change (. s the default). Iteratons wll stop when the maxmum teraton s reached or the change s less than the maxmum change. F9 to recalculate. Ec. dervadas parcales 69

70 Eemplo : Método Gauss-Sedel n Excel Color cell based on value o acheve the cell color based on value: Inco Estlos Formato condconal Escalas de color Más reglas We can chose a color scale wth blue for mmmum, whte or gray for mdpont and red for maxmum. Ec. dervadas parcales 7

71 Eemplo : Método Gauss-Sedel n Excel Plottng the results Normally we use the chart type Surface or Contour. Ec. dervadas parcales 7

72 Eemplo : Uso de Solver Fnte Dfference Soluton x\y (-4*D5D4D6C5E5)^ Resduals-squared x\y sum.7745e- SUMA(D7:J) Ec. dervadas parcales 7

73 Método de Leberman Recall the equaton used n the Gauss-Sedel Method,,,,, Because the Gauss-Sedel Method s guaranteed to converge, we can accelerate the process by usng overrelaxaton. In ths case, he λ s known as the overrelaxaton parameter" and s n the range < λ <. 4 relaxed new old, λ, ( λ),, Ec. dervadas parcales 7

74 Condcones de contorno alternatvas In the past examples, the boundary condtons on the plate had a specfed temperature on each edge. What f the condtons are dfferent? For example, what f one of the edges of the plate s nsulated. In ths case, the boundary condton would be the dervatve of the temperature. Because f the rght edge of the plate s nsulated, then the temperatures on the rght edge nodes also become unknowns. y C. m 75 C Insulated 5.4 m C x Ec. dervadas parcales 74

75 Condcones de contorno alternatvas he fnte dfference equaton n ths case for the rght edge for the nodes ( m, ) for,,.. n m, m, m, m, 4 m, However the node ( m, ) s not nsde the plate. he dervatve boundary condton needs to be used to account for these addtonal unknown nodal temperatures on the rght edge. hs s done by approxmatng the dervatve at the edge node ( m, ) as x m m,, ( x) m, y 75 C. m C Insulated 5.4 m C x Ec. dervadas parcales 75

76 Rearrangng ths approxmaton gves us, We can then substtute ths nto the orgnal equaton gves us, Recall that s the edge s nsulated then, Substtutng ths agan yelds, Ec. dervadas parcales 76 Condcones de contorno alternatvas m m m x x,,, ) ( 4 ) (,,,,, m m m m m x x, m x 4,,,, m m m m

77 Ecuacones en dervadas parcales parabólcas he general form for a second order lnear PDE wth two ndependent varables and one dependent varable s u A x u B x y C u y u y he crtera for an equaton of ths type to be consdered parabolc: B 4AC Examne the heat-conducton equaton gven by α x t where A α, B, C, D, E, F, G thus we can classfy ths equaton as parabolc. where α u D x k ρc E Ec. dervadas parcales 77 Fu G k thermal conductvty of rod materal, ρ densty of rod materal, C specfc heat of the rod materal.

78 Eemplo de una EDP parabólca Consder the flow of heat wthn a metal rod of length L, one end of whch s held at a known hgh temperature, the other end at a lower temperature. Heat wll flow from the hot end to the cooler end. We'll assume that the rod s perfectly nsulated, so that heat loss through the sdes can be neglected. We want to calculate the temperature along the length of the rod as a functon of tme. Ec. dervadas parcales 78

79 Dscretzacón de una EDP Parabólca For a rod of length L dvded nto n nodes he tme s smlarly broken nto tme steps of x t L n Hence corresponds to the temperature at node,that s, x ( )( x) and tme t ( )( t) x x x Schematc dagram showng nteror nodes Ec. dervadas parcales 79

80 Solucón EDP Parabólca: Método explícto L n If we defne x we can then wrte the fnte central dvded dfference approxmaton of the left hand sde at a general nteror node ( ) as where ( ) s the node number along x, the tme. he tme dervatve on the rght hand sde s approxmated by the forward dvded dfference method as, t t x ( x) x x, Schematc dagram showng nteror nodes Ec. dervadas parcales 8

81 Substtutng these approxmatons nto the governng equaton yelds α ( x) t Solvng for the temp at the tme node gves t ( ) α ( x) choosng, t λ α we can wrte the equaton as, Solucón EDP Parabólca: Método explícto ( x) λ ( ) we can be solved explctly: for each nternal locaton node of the rod for tme node n terms of the temperature at tme node. If we know the temperature at node, and the boundary temperatures, we can fnd the temperature at the next tme step. We contnue the process untl we reach the tme at whch we are nterested n fndng the temperature. Ec. dervadas parcales 8

82 Eemplo EDP Parabólca: Método explícto Consder a steel rod that s subected to a temperature of C on the left end and 5 C on the rght end. If the rod s of length.5m,use the explct method to fnd the temperature dstrbuton n the rod from t and t 9 seconds. Use x. m, t s. W kg m K m Gven: k, ρ, he ntal temperature of the rod s C. J C 49 kg K 4 5 C 5 C.m Ec. dervadas parcales 8

83 Eemplo EDP Parabólca: Método explícto Number of tme steps Recall, k α ρ C t t fnal tntal 9 54 t 5.49 m / s hen, λ α.49 ( x) (.) Boundary Condtons C All nternal nodes are at C for sec: C C C Interor nodes C 4 C 5 C C for all,,, t C, for all,,,4 We can now calculate the temperature at each node explctly usng the equaton formulated earler, ( ) λ Ec. dervadas parcales 8

84 Eemplo EDP Parabólca: Método explícto Nodal temperatures vs. me t sec C C C Interor nodes C 4 C 5 C 5 t sec C Boundary Condton 5.9 C C C. C 5 C Boundary Condton 4 5 t 6sec C 59.7 C 4.75 C.889 C 4.44 C 5 C 5 t 9sec C C 9. C 7.66 C 4.87 C 5 C 5 Ec. dervadas parcales 84

85 Eemplo EDP Parabólca: Método explícto tme t (sec) me-dependent emperature Dstrbuton n a Brass Rod (emperature values n bold are constant) length, cm heat capacty of brass, cal/g/deg,9 (hcap) thermal conductvty of brass, cal/sec/cm/deg,6 (k) densty of brass, g/cm 8,4 (rho) Coeffcent e n general PDE, k/(hcap*rho),(e) x (Dx) t (Dt) fe*dt/(dx^), (f) Dstance x (cm) ,9,,,,,,,, 44,,8,,,,,,, 5,6 8,,6,,,,,, 4 56,5 4,4 7,,,,,,, 5 6, 9,,9,8,4,,,, 6 6,,4 4, 4,7,,,,, 7 65,5 6,9 7,4 6,6,9,4,,, 8 67,5 9,9, 8,6,,8,,, 9 69, 4,5,9,6 4,,,,, 7,5 44,8 5,,5 5,,9,5,, 7,8 46,9 7,5 4,4 6,6,6,9,, 7,9 48,7 9,6 6, 7,8,,,4, 7,8 5,4,4 7,8 9, 4,,6,6, 4 74,7 5,9, 9,4, 4,9,,8, 5 75,5 5, 4,8,,5 5,8,6,, 6 76, 54,5 6,,4,7 6,6,,,5 7 76,9 55,7 7,7,8,9 7,5,7,6,6 8 77,5 56,8 9, 5, 5, 8,4 4,,,7 9 78, 57,8 4, 6,4 6, 9, 4,9,,9 78,6 58,7 4,5 7,6 7,, 5,5,7, 79, 59,6 4,6 8,8 8,,9 6,,, 79,6 6,4 4,6 9,9 9,,7 6,7,5,4 8, 6, 44,6,9,,6 7,,8,6 4 8,4 6,9 45,6,9,,4 7,9 4,,8 5 8,8 6,6 46,5,9, 4, 8,5 4,6, emperature ºC emperature ºC emperature at x5cm me sec. emperature dstrbuton along the length of the rod Loc aton on rod cm. t sec. t 5 sec. t sec. Ec. dervadas parcales 85

86 Usng the explct method, we were able to fnd the temperature at each node, one equaton at a tme. However, the temperature at a specfc node was only dependent on the temperature of the neghborng nodes from the prevous tme step. hs s contrary to what we expect from the physcal problem. he mplct method allows us to solve ths and other problems by developng a system of smultaneous lnear equatons for the temperature at all nteror nodes at a partcular tme. he second dervatve s approxmated by the CDD and the frst dervatve by the BDD scheme at tme level at node ( ) as Ec. dervadas parcales 86 Solucón EDP Parabólca: Método mplícto t x α ( ), x x t t,

87 Substtutng these approxmatons nto the heat conducton equaton yelds Rearrangng yelds gven that he rearranged equaton can be wrtten for every node durng each tme step. hese equatons can then be solved as a smultaneous system of lnear equatons to fnd the nodal temperatures at a partcular tme. Ec. dervadas parcales 87 Solucón EDP Parabólca: Método mplícto t x α ( ) t x α ) ( λ λ λ ( ) x t α λ

88 Eemplo EDP Parabólca: Método mplícto Consder a steel rod that s subected to a temperature of C on the left end and 5 C on the rght end. If the rod s of length.5m,use the mplct method to fnd the temperature dstrbuton n the rod from t and t 9 seconds. Use x. m, t s. W kg m K m Gven: k, ρ, he ntal temperature of the rod s C. J C 49 kg K 4 5 C 5 C.m Ec. dervadas parcales 88

89 Eemplo EDP Parabólca: Método mplícto Number of tme steps Recall, k α ρ C t t fnal tntal 9 54 t 5.49 m / s hen, λ α.49 ( x) (.) Boundary Condtons C All nternal nodes are at C for sec: C C C Interor nodes C 4 C 5 C C for all,,, t C, for all,,,4 We can now form the system of equatons for the frst tme step by wrtng the approxmated heat conducton equaton for each node λ ( λ λ) Ec. dervadas parcales 89

90 Nodal temperatures when For the frst tme step we can wrte four such equatons wth four unknowns, expressng them n matrx form yelds he above coeffcent matrx s tr-dagonal, so specal algorthms (e.g.homas algorthm) can be used to solve. he soluton s gven by Ec. dervadas parcales 9 Eemplo EDP Parabólca: Método mplícto sec t

91 Nodal temperatures when: Ec. dervadas parcales 9 Eemplo EDP Parabólca: Método mplícto sec t sec t sec 9 t

92 Usng the mplct method our approxmaton of was of accuracy, whle our approxmaton of was of accuracy. One can acheve smlar orders of accuracy by approxmatng the second dervatve, on the left hand sde of the heat equaton, at the mdpont of the tme step. Dong so yelds he frst dervatve, on the rght hand sde of the heat equaton, s approxmated usng the forward dvded dfference method at tme level, Ec. dervadas parcales 9 Solucón EDP Parabólca: Método Crank-Ncolson x ( x) O t ) ( t O ( ) ( ), x x x α t t,

93 Substtutng these approxmatons nto the governng equaton for heat conductance yelds gvng where Havng rewrtten the equaton n ths form allows us to dscretze the physcal problem. We then solve a system of smultaneous lnear equatons to fnd the temperature at every node at any pont n tme. Ec. dervadas parcales 9 Solucón EDP Parabólca: Método Crank-Ncolson ( ) ( ) t x x α ) ( ) ( λ λ λ λ λ λ ( ) x t α λ

94 Eemplo EDP Parabólca: Método Crank-Ncolson Consder a steel rod that s subected to a temperature of C on the left end and 5 C on the rght end. If the rod s of length.5m,use the Crank-Ncolson method to fnd the temperature dstrbuton n the rod from t and t 9 seconds. Use x. m, t s. W kg m K m Gven: k, ρ, he ntal temperature of the rod s C. J C 49 kg K 4 5 C 5 C.m Ec. dervadas parcales 94

95 Eemplo EDP Parabólca: Método Crank-Ncolson Number of tme steps Recall, k α ρ C t t fnal tntal 9 54 t 5.49 m / s hen, λ α.49 ( x) (.) Boundary Condtons C All nternal nodes are at C for sec: C C C Interor nodes C 4 C 5 C 5 λ 5 5 C for all,,, t C, for all,,,4 We can now form the system of equatons for the frst tme step by wrtng the approxmated heat conducton equaton for each node λ λ λ λ λ ( ) ( ) Ec. dervadas parcales 95

96 Nodal temperatures when For the frst tme step we can wrte four such equatons wth four unknowns, expressng them n matrx form yelds he above coeffcent matrx s tr-dagonal, so specal algorthms (e.g.homas algorthm) can be used to solve. he soluton s gven by Ec. dervadas parcales 96 Eemplo EDP Parabólca: Método Crank-Ncolson sec t

97 Nodal temperatures when: Ec. dervadas parcales 97 Eemplo EDP Parabólca: Método Crank-Ncolson sec t sec 6 t sec 9 t

98 Comparacón de métodos: temperaturas en 9 seg. he table below allows you to compare the results from all three methods dscussed n uxtaposton wth the analytcal soluton. Node Explct Implct Crank- Ncolson Analytcal Ec. dervadas parcales 98

99 Ecuacones en dervadas parcales hperbólcas he general form for a second order lnear PDE wth two ndependent varables and one dependent varable s u A x u B x y C u y he crtera for an equaton of ths type to be consdered hyperbolc: B 4AC > he wave equaton (oscllatory systems) gven by y t k y x u y where A, B, C thus we can classfy ths equaton as hyperbolc. u D x g where k w E Ec. dervadas parcales 99 Fu G tenson, g gravtatonal constant, w weght/unt W/L,Wweght, Llength

100 Eemplo de una EDP hperbólca A strng of certan length and weght s under a fxed tenson. Intally the md-pont of the strng s dsplaced some dstance from ts equlbrum poston and released. We want to calculate the dsplacement as a functon of tme at fxed ntervals along the length of the strng. Ec. dervadas parcales

101 Once agan, we can solve the problem by replacng dervatves by fnte dfferences. whch, when rearranged, yelds If we set, the above equaton s smplfed to When employng the smplfed equaton, the value of s determned by the expresson.o begn the calculatons (value at t ), t s requred values of the functon at t and also a value at t -. We can get a value for the functon at t - by makng use of the fact that the functon s perodc. We can use for the frst row. Ec. dervadas parcales Solucón EDP hperbólca: Método explícto ( ) ( ) x w g t ( ) ( ) ( ) ( ) x t w g x t w g ) ( ( ) ( ) x w t g t w g x t /

102 Eemplo EDP hperbólca A strng 5 cm long and weghng.5 g s under a tenson of kg. Intally the md-pont of the strng s dsplaced.5 cm from ts equlbrum poston and released. We want to calculate the dsplacement as a functon of tme at 5 cm ntervals along the length of the strng, usng equaton x g / w From equaton t the must be 8.8 x -5 seconds. t Ec. dervadas parcales

103 Eemplo EDP hperbólca he Wave Equaton:Vbraton of a Strng length, cm 5 (L) tenson, g () weght,g,5 (Wt) weght per unt length, g/cm, (w) gravtatonal constant, cm/sec 98 (g) Dx 5 (Dx) Dt 8,79E-5 (Dt) tme t (sec) Dstance x (cm) ,,,,4,5,4,,, 8,8E-5,,,,4,4,4,,,,8E-4,,,,,,,,,,6E-4,,,,,,,,,,5E-4,,,,,,,,, 4,4E-4,,,,,,,,, 5,E-4 -, -, -, -, -, -, -, -, -, 6,E-4 -, -, -, -, -, -, -, -, -, 7,E-4 -, -, -, -, -, -, -, -, -, 7,9E-4 -, -, -, -,4 -,4 -,4 -, -, -, 8,8E-4 -, -, -, -,4 -,5 -,4 -, -, -, 9,7E-4 -, -, -, -,4 -,4 -,4 -, -, -,,E- -, -, -, -, -, -, -, -, -,,E- -, -, -, -, -, -, -, -, -,,E- -, -, -, -, -, -, -, -, -,,E-,,,,,,,,,,4E-,,,,,,,,,,5E-,,,,,,,,,,6E-,,,,,,,,,,7E-,,,,4,4,4,,,,8E-,,,,4,5,4,,,,8E-,,,,4,4,4,,,,9E-,,,,,,,,,,E-,,,,,,,,,,E-,,,,,,,,,,E-,,,,,,,,,,E- -, -, -, -, -, -, -, -, -,,4E- -, -, -, -, -, -, -, -, -,,5E- -, -, -, -, -, -, -, -, -,,5E- -, -, -, -,4 -,4 -,4 -, -, -,,6E- -, -, -, -,4 -,5 -,4 -, -, -,,7E- -, -, -, -,4 -,4 -,4 -, -, -,,8E- -, -, -, -, -, -, -, -, -, Dsplacement (cm.) Dsplacement evoluton at 5 cm me (sec.) Ec. dervadas parcales

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems Chapter. Ordnar Dfferental Equaton Boundar Value (BV) Problems In ths chapter we wll learn how to solve ODE boundar value problem. BV ODE s usuall gven wth x beng the ndependent space varable. p( x) q(

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

Numerical Transient Heat Conduction Experiment

Numerical Transient Heat Conduction Experiment Numercal ransent Heat Conducton Experment OBJECIVE 1. o demonstrate the basc prncples of conducton heat transfer.. o show how the thermal conductvty of a sold can be measured. 3. o demonstrate the use

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method Soluton of Lnear System of Equatons and Matr Inverson Gauss Sedel Iteraton Method It s another well-known teratve method for solvng a system of lnear equatons of the form a + a22 + + ann = b a2 + a222

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 13 GENE H GOLUB 1 Iteratve Methods Very large problems (naturally sparse, from applcatons): teratve methods Structured matrces (even sometmes dense,

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Implicit Integration Henyey Method

Implicit Integration Henyey Method Implct Integraton Henyey Method In realstc stellar evoluton codes nstead of a drect ntegraton usng for example the Runge-Kutta method one employs an teratve mplct technque. Ths s because the structure

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 16 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 218 LECTURE 16 1 why teratve methods f we have a lnear system Ax = b where A s very, very large but s ether sparse or structured (eg, banded, Toepltz, banded plus

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

DUE: WEDS FEB 21ST 2018

DUE: WEDS FEB 21ST 2018 HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechancs for Scentsts and Engneers Davd Mller Types of lnear operators Types of lnear operators Blnear expanson of operators Blnear expanson of lnear operators We know that we can expand functons

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Relaxation Methods for Iterative Solution to Linear Systems of Equations

Relaxation Methods for Iterative Solution to Linear Systems of Equations Relaxaton Methods for Iteratve Soluton to Lnear Systems of Equatons Gerald Recktenwald Portland State Unversty Mechancal Engneerng Department gerry@pdx.edu Overvew Techncal topcs Basc Concepts Statonary

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Consistency & Convergence

Consistency & Convergence /9/007 CHE 374 Computatonal Methods n Engneerng Ordnary Dfferental Equatons Consstency, Convergence, Stablty, Stffness and Adaptve and Implct Methods ODE s n MATLAB, etc Consstency & Convergence Consstency

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence.

Vector Norms. Chapter 7 Iterative Techniques in Matrix Algebra. Cauchy-Bunyakovsky-Schwarz Inequality for Sums. Distances. Convergence. Vector Norms Chapter 7 Iteratve Technques n Matrx Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematcs Unversty of Calforna, Berkeley Math 128B Numercal Analyss Defnton A vector norm

More information

PART 8. Partial Differential Equations PDEs

PART 8. Partial Differential Equations PDEs he Islamc Unverst of Gaza Facult of Engneerng Cvl Engneerng Department Numercal Analss ECIV 3306 PAR 8 Partal Dfferental Equatons PDEs Chapter 9; Fnte Dfference: Ellptc Equatons Assocate Prof. Mazen Abualtaef

More information

LECTURE 9 CANONICAL CORRELATION ANALYSIS

LECTURE 9 CANONICAL CORRELATION ANALYSIS LECURE 9 CANONICAL CORRELAION ANALYSIS Introducton he concept of canoncal correlaton arses when we want to quantfy the assocatons between two sets of varables. For example, suppose that the frst set of

More information

Review of Taylor Series. Read Section 1.2

Review of Taylor Series. Read Section 1.2 Revew of Taylor Seres Read Secton 1.2 1 Power Seres A power seres about c s an nfnte seres of the form k = 0 k a ( x c) = a + a ( x c) + a ( x c) + a ( x c) k 2 3 0 1 2 3 + In many cases, c = 0, and the

More information

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system. Chapter Matlab Exercses Chapter Matlab Exercses. Consder the lnear system of Example n Secton.. x x x y z y y z (a) Use the MATLAB command rref to solve the system. (b) Let A be the coeffcent matrx and

More information

The Finite Element Method

The Finite Element Method The Fnte Element Method GENERAL INTRODUCTION Read: Chapters 1 and 2 CONTENTS Engneerng and analyss Smulaton of a physcal process Examples mathematcal model development Approxmate solutons and methods of

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850) hermal-fluds I Chapter 18 ransent heat conducton Dr. Prmal Fernando prmal@eng.fsu.edu Ph: (850) 410-6323 1 ransent heat conducton In general, he temperature of a body vares wth tme as well as poston. In

More information

6.3.4 Modified Euler s method of integration

6.3.4 Modified Euler s method of integration 6.3.4 Modfed Euler s method of ntegraton Before dscussng the applcaton of Euler s method for solvng the swng equatons, let us frst revew the basc Euler s method of numercal ntegraton. Let the general from

More information

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018 MATH 5630: Dscrete Tme-Space Model Hung Phan, UMass Lowell March, 08 Newton s Law of Coolng Consder the coolng of a well strred coffee so that the temperature does not depend on space Newton s law of collng

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra MEM 255 Introducton to Control Systems Revew: Bascs of Lnear Algebra Harry G. Kwatny Department of Mechancal Engneerng & Mechancs Drexel Unversty Outlne Vectors Matrces MATLAB Advanced Topcs Vectors A

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

ALGORITHM FOR THE CALCULATION OF THE TWO VARIABLES CUBIC SPLINE FUNCTION

ALGORITHM FOR THE CALCULATION OF THE TWO VARIABLES CUBIC SPLINE FUNCTION ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I. CUZA DIN IAŞI (S.N.) MATEMATICĂ, Tomul LIX, 013, f.1 DOI: 10.478/v10157-01-00-y ALGORITHM FOR THE CALCULATION OF THE TWO VARIABLES CUBIC SPLINE FUNCTION BY ION

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

Chapter 4: Root Finding

Chapter 4: Root Finding Chapter 4: Root Fndng Startng values Closed nterval methods (roots are search wthn an nterval o Bsecton Open methods (no nterval o Fxed Pont o Newton-Raphson o Secant Method Repeated roots Zeros of Hgher-Dmensonal

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

New Method for Solving Poisson Equation. on Irregular Domains

New Method for Solving Poisson Equation. on Irregular Domains Appled Mathematcal Scences Vol. 6 01 no. 8 369 380 New Method for Solvng Posson Equaton on Irregular Domans J. Izadan and N. Karamooz Department of Mathematcs Facult of Scences Mashhad BranchIslamc Azad

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method Journal of Electromagnetc Analyss and Applcatons, 04, 6, 0-08 Publshed Onlne September 04 n ScRes. http://www.scrp.org/journal/jemaa http://dx.do.org/0.46/jemaa.04.6000 The Exact Formulaton of the Inverse

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Module 14: THE INTEGRAL Exploring Calculus

Module 14: THE INTEGRAL Exploring Calculus Module 14: THE INTEGRAL Explorng Calculus Part I Approxmatons and the Defnte Integral It was known n the 1600s before the calculus was developed that the area of an rregularly shaped regon could be approxmated

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

Formal solvers of the RT equation

Formal solvers of the RT equation Formal solvers of the RT equaton Formal RT solvers Runge- Kutta (reference solver) Pskunov N.: 979, Master Thess Long characterstcs (Feautrer scheme) Cannon C.J.: 970, ApJ 6, 55 Short characterstcs (Hermtan

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations Numercal Methods (CENG 00) CHAPTER-VI Numercal Soluton of Ordnar Dfferental Equatons 6 Introducton Dfferental equatons are equatons composed of an unknown functon and ts dervatves The followng are examples

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Kim Gaik Universiti Tun Hussein Onn Malaysia

SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Kim Gaik Universiti Tun Hussein Onn Malaysia SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Km Gak Unverst Tun Hussen Onn Malaysa Kek Se Long Unverst Tun Hussen Onn Malaysa Rosmla Abdul-Kahar

More information

Lecture 2 Solution of Nonlinear Equations ( Root Finding Problems )

Lecture 2 Solution of Nonlinear Equations ( Root Finding Problems ) Lecture Soluton o Nonlnear Equatons Root Fndng Problems Dentons Classcaton o Methods Analytcal Solutons Graphcal Methods Numercal Methods Bracketng Methods Open Methods Convergence Notatons Root Fndng

More information

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

Modelli Clamfim Equazione del Calore Lezione ottobre 2014 CLAMFIM Bologna Modell 1 @ Clamfm Equazone del Calore Lezone 17 15 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/24? Convoluton The convoluton of two functons g(t) and f(t) s the functon (g

More information

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k) ISSN 1749-3889 (prnt), 1749-3897 (onlne) Internatonal Journal of Nonlnear Scence Vol.17(2014) No.2,pp.188-192 Modfed Block Jacob-Davdson Method for Solvng Large Sparse Egenproblems Hongy Mao, College of

More information

ACTM State Calculus Competition Saturday April 30, 2011

ACTM State Calculus Competition Saturday April 30, 2011 ACTM State Calculus Competton Saturday Aprl 30, 2011 ACTM State Calculus Competton Sprng 2011 Page 1 Instructons: For questons 1 through 25, mark the best answer choce on the answer sheet provde Afterward

More information

November 5, 2002 SE 180: Earthquake Engineering SE 180. Final Project

November 5, 2002 SE 180: Earthquake Engineering SE 180. Final Project SE 8 Fnal Project Story Shear Frame u m Gven: u m L L m L L EI ω ω Solve for m Story Bendng Beam u u m L m L Gven: m L L EI ω ω Solve for m 3 3 Story Shear Frame u 3 m 3 Gven: L 3 m m L L L 3 EI ω ω ω

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 umercal Solutons of oundary-value Problems n Os ovember 7, 7 umercal Solutons of oundary- Value Problems n Os Larry aretto Mechancal ngneerng 5 Semnar n ngneerng nalyss ovember 7, 7 Outlne Revew stff equaton

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluton to the Heat Equaton ME 448/548 Notes Gerald Recktenwald Portland State Unversty Department of Mechancal Engneerng gerry@pdx.edu ME 448/548: FTCS Soluton to the Heat Equaton Overvew 1. Use

More information

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation Nonl. Analyss and Dfferental Equatons, ol., 4, no., 5 - HIKARI Ltd, www.m-har.com http://dx.do.org/.988/nade.4.456 Asymptotcs of the Soluton of a Boundary alue Problem for One-Characterstc Dfferental Equaton

More information

Lecture Note 3. Eshelby s Inclusion II

Lecture Note 3. Eshelby s Inclusion II ME340B Elastcty of Mcroscopc Structures Stanford Unversty Wnter 004 Lecture Note 3. Eshelby s Incluson II Chrs Wenberger and We Ca c All rghts reserved January 6, 004 Contents 1 Incluson energy n an nfnte

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

P A = (P P + P )A = P (I P T (P P ))A = P (A P T (P P )A) Hence if we let E = P T (P P A), We have that

P A = (P P + P )A = P (I P T (P P ))A = P (A P T (P P )A) Hence if we let E = P T (P P A), We have that Backward Error Analyss for House holder Reectors We want to show that multplcaton by householder reectors s backward stable. In partcular we wsh to show fl(p A) = P (A) = P (A + E where P = I 2vv T s the

More information

The optimal delay of the second test is therefore approximately 210 hours earlier than =2.

The optimal delay of the second test is therefore approximately 210 hours earlier than =2. THE IEC 61508 FORMULAS 223 The optmal delay of the second test s therefore approxmately 210 hours earler than =2. 8.4 The IEC 61508 Formulas IEC 61508-6 provdes approxmaton formulas for the PF for smple

More information

SIO 224. m(r) =(ρ(r),k s (r),µ(r))

SIO 224. m(r) =(ρ(r),k s (r),µ(r)) SIO 224 1. A bref look at resoluton analyss Here s some background for the Masters and Gubbns resoluton paper. Global Earth models are usually found teratvely by assumng a startng model and fndng small

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

STAT 511 FINAL EXAM NAME Spring 2001

STAT 511 FINAL EXAM NAME Spring 2001 STAT 5 FINAL EXAM NAME Sprng Instructons: Ths s a closed book exam. No notes or books are allowed. ou may use a calculator but you are not allowed to store notes or formulas n the calculator. Please wrte

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics) CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: -mgk F 1 x O

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

Lecture 5.8 Flux Vector Splitting

Lecture 5.8 Flux Vector Splitting Lecture 5.8 Flux Vector Splttng 1 Flux Vector Splttng The vector E n (5.7.) can be rewrtten as E = AU (5.8.1) (wth A as gven n (5.7.4) or (5.7.6) ) whenever, the equaton of state s of the separable form

More information

AS-Level Maths: Statistics 1 for Edexcel

AS-Level Maths: Statistics 1 for Edexcel 1 of 6 AS-Level Maths: Statstcs 1 for Edecel S1. Calculatng means and standard devatons Ths con ndcates the slde contans actvtes created n Flash. These actvtes are not edtable. For more detaled nstructons,

More information

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to

ρ some λ THE INVERSE POWER METHOD (or INVERSE ITERATION) , for , or (more usually) to THE INVERSE POWER METHOD (or INVERSE ITERATION) -- applcaton of the Power method to A some fxed constant ρ (whch s called a shft), x λ ρ If the egenpars of A are { ( λ, x ) } ( ), or (more usually) to,

More information

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model EXACT OE-DIMESIOAL ISIG MODEL The one-dmensonal Isng model conssts of a chan of spns, each spn nteractng only wth ts two nearest neghbors. The smple Isng problem n one dmenson can be solved drectly n several

More information