Non-parametric bootstrap mean squared error estimation for M-quantile estimates of small area means, quantiles and poverty indicators

Size: px
Start display at page:

Download "Non-parametric bootstrap mean squared error estimation for M-quantile estimates of small area means, quantiles and poverty indicators"

Transcription

1 Non-parametric bootstrap mean squared error estimation for M-quantile estimates of small area means, quantiles and poverty indicators Stefano Marchetti 1 Nikos Tzavidis 2 Monica Pratesi 3 1,3 Department of Statistics and Mathematics Applied to Economics, University of Pisa 2 Social Science Statistical Research Institute, University of Southampton NTTS conference, Bruxelles, 23th - 25th February 2011

2 Outline 1 Motivation 2 Review of models for small area estimation 3 Model-Based Estimators of Means, Quantiles and Poverty Indicators 4 A Mean Squared Error Estimator of Small Area Means, Quantiles and Poverty Indicators 5 Simulation Results 6 Concluding Remarks

3 Motivation Part I Motivation

4 Motivation Motivation Goal: Picture on poverty and social exclusion at small area level (e.g. LAU 1-2) How: Estimate small area means, totals, quantiles, head count ratio and poverty gap Focus: Mean Squared Error (MSE) estimation for small area estimators Unique framework to estimate MSE of small area means, quantiles and poverty indicators estimators under the M-quantile regression model

5 Motivation Why do we use small area methods? Measure key statistics (e.g. poverty indicators) Survey data (e.g. EU-SILC) Design for accurate estimates at a given domain level (e.g. NUTS 2) Demand of accurate estimates at an higher domain level (e.g. LAU 1-2) Use of small area methods (not need oversampling)

6 Review of models for small area estimation Part II Review of models for small area estimation

7 Review of models for small area estimation Methods for small area estimation Modern small area estimation is based on model-based methods Statistical models link the variable of interest with covariate information that is also known for units not in the sample A class of models suitable for small area estimation is multilevel models A novel approach to small area estimation is based on quantile/m-quantile models

8 Review of models for small area estimation Small area estimation: mixed effects models Concept: include random area-specific effects to account for the between area variation beyond that explained by the variation in model covariates Notation: (j =area, i =individual) Variable of interest: y ij Focus on unit level covariate information: x ij Area level random effect: γ j - (hp: normal distribution) Random error: ɛ ij - (hp: normal distribution) y ij = x T ij β + γ j + ɛ ij, i = 1,..., n j, j = 1,..., d

9 Review of models for small area estimation M-quantile models With regression models we model the mean of the variable of interest (y) given the covariates (x) A more complete picture is offered, however, by modeling not only the mean of (y) given (x) but also other quantiles. Examples include the median, the 25th, 75th percentiles. This is known as quantile regression An M-quantile regression model for quantile q Main features of these models Q q = x T ij β ψ (q) No hypothesis of normal distribution Robust methods (influence function of the M-quantile regression)

10 Review of models for small area estimation Using M-quantile models to measure area effects Central Idea: Area effects can be described by estimating an area specific q value (ˆθ j ) for each area (group) of a hierarchical dataset (Chambers and Tzavidis, 2006) q ij : Q qij = y ij y ij = x T ij β ψ(q ij ) ˆθ j = n 1 j i s j q ij ŷ ij = x T ij β ψ(ˆθ j ) REMARK: A mixed effects model uses random effects γ j to capture the dissimilarity between groups. M-quantile models attempt to capture this dissimilarity via the group-specific M-quantile coefficients ˆθ j

11 Model-Based Estimators of Means, Quantiles and Poverty Indicators Part III Model-Based Estimators of Means, Quantiles and Poverty Indicators

12 Model-Based Estimators of Means, Quantiles and Poverty Indicators Model-Based Estimators of Small Area Quantiles An estimator of the Chambers-Dunstan small area distribution function can be defined under the M-quantile model ˆF (t) j,cd = N 1 j i sj I (y ij t) + n 1 j I (ŷ kj + (y ij ŷ ij ) t) i s j k r j where ŷ kj = x T kj ˆβ ψ (ˆθ j ) and ŷ ij = x T ij ˆβ ψ (ˆθ j ). The estimate of the qth quantile for small area j ( ˆQ q,j ) can be obtained by numerically solving the integral ˆQ q,j : ˆQ q,j dˆf (t) j,cd = q

13 Model-Based Estimators of Means, Quantiles and Poverty Indicators Model-Based Estimators of Small Area Means Following Tzavidis, Marchetti & Chambers (2010), the bias-adjusted estimator of the mean is defined as ˆm MQ/CD j = t dˆf CD,j (t) = N 1 j { y ij + x T ˆβ(ˆθ ij j ) + N j n j n j i s j i r j i s j [y ij x T ij ˆβ(ˆθ j )]} An alternative to the CD estimator of the distribution function that can be used is the Rao-Kovar-Mantel (RKM) estimator It can be shown that under srs integration of the RKM or the CD estimators will result in the same estimator for the small area mean

14 Model-Based Estimators of Means, Quantiles and Poverty Indicators Model-Based Estimators of Poverty Indicators Denoting by t the poverty line and following the EB approach (Molina and Rao, 2010), different poverty measures are defined by using ( t yij ) αi(yij F α,ij = t) i = 1,..., N t The population distribution function in small area j can be decomposed as follows [ ] F α,j = N 1 j F α,ij + F α,ij i s j i r j Setting α = 0 defines the Head Count Ratio whereas setting α = 1 defines the Poverty Gap. HCR and PG can be estimated as follows { ˆF 0,j = N 1 j I (y ij t) + n 1 j i s j { ˆF 1,j = N 1 t y ij j t i s j I (y ij t) + n 1 j k r j } I (ŷ kj + (y ij ŷ ij ) t) k r j i s j t ŷ kj (y ij ŷ ij ) t i s j } I (ŷ kj + (y ij ŷ ij ) t) where ŷ kj = x T kj ˆβ ψ (ˆθ j ) and ŷ ij = x T ij ˆβ ψ (ˆθ j )

15 Model-Based Estimators of Means, Quantiles and Poverty Indicators Model-Based Estimators of Poverty Indicators (MC approach) 1 Fit the M-quantile small area model using the raw y s sample values and obtain estimates of β and θ j ; 2 draw an out of sample vector using y ij,r = x ij,r ˆβ(ˆθj ) + e ij,r, where eij,r is a vector of size N j n j drawn from the Empirical Distribution Function (EDF) of the estimated M-quantile regression residuals or from a smooth version of this distribution and ˆβ, ˆθ j are obtained from the previous step; 3 repeat the process H times. Each time combine the sample data and out of sample data for estimating the target using ˆF α,j = N 1 j 4 average the results over H simulations. [ ] I(y ij t) + I(yij t) ; i s j i r j

16 A MSE Estimator of Small Area Means, Quantiles and Poverty Indicators Part IV A Mean Squared Error Estimator of Small Area Means, Quantiles and Poverty Indicators

17 A MSE Estimator of Small Area Means, Quantiles and Poverty Indicators A Mean Squared Error Estimator of Small Area Means, Quantiles and Poverty Indicators Our MSE estimator for the small area means, quantiles and poverty indicators is based on the bootstrap method proposed by Lombardia et al. (2003). In this work we adapted and extended the Lombardia et al. (2003) bootstrap method to the small area estimation problem under the M-quantile approach

18 A MSE Estimator of Small Area Means, Quantiles and Poverty Indicators A Mean Squared Error Estimator of Small Area Means, Quantiles and Poverty Indicators Let b = (1,..., B), where B is the number of bootstrap populations Let r = (1,..., R), where R is the number of bootstrap samples Let Ω = (y k, x k ), k (1,..., N), be the target population By we denote bootstrap quantities ˆτ j denotes the small area j mean, quantile or poverty indicators estimator Let y be the study variable that is known only for sampled units and let x be the vector of auxiliary variables that is known for all the population units Let s = (1,..., n) be a within area simple random sample of the finite population Ω = {1,..., N}

19 A MSE Estimator of Small Area Means, Quantiles and Poverty Indicators A Mean Squared Error Estimator of Small Area Means, Quantiles and Poverty Indicators Fit the M-quantile regression model on sample s, ŷ ij = x T ij ˆβ ψp (ˆθ j ) Compute the residuals, y ij ŷ ij = e ij Generate B bootstrap populations of dimension N, Ω b 1 y kj = x T kj ˆβ ψ (ˆθ j ) + e kj, k = (1,..., N) 2 e kj are obtained by sampling with replacement residuals e ij 3 residuals can be sampled from the empirical distribution function or from a smoothed distribution function 4 we can consider all the residuals (e i, i = 1,..., n), that is the unconditional approach or only area residuals (e ij, i = 1,..., n j ), that is the conditional approach. From every bootstrap population draw R samples of size n without replacement

20 A MSE Estimator of Small Area Means, Quantiles and Poverty Indicators A Mean Squared Error Estimator of Small Area Means, Quantiles and Poverty Indicators Bias From the B bootstrap populations and from the R samples drawn from every bootstrap population estimate the mean squared error of the Chambers-Dunstan estimator of the distribution function BIAS(ˆτ j ) = B 1 B b=1 R 1 R r=1 Variance VAR(ˆτ j ) = B 1 B b=1 R 1 R r=1 (ˆτ br j (ˆτ br j ) τj b ) br 2 ˆτ j where τj b is the true parameter of the are j in the bth bootstrap population ˆτ j br is the estimate for τj b estimated using the r th sample drown from the bth bootstrap population ˆτ j br = R 1 R br r=1 ˆτ j

21 Simulation Results Part V Simulation Results

22 Simulation Results Simulation Design Data generating process: y ij = 11 x ij + γ j + ɛ ij, j = 1,..., d = 30, i = 1,..., N j 50 N j 150 and N = 2820, 5 n j 15 and n = 282 x ij N(µ j, σ x = 1), µ j U[8, 11] γ i χ 2 (1), ɛ ij χ 2 (6) The target parameters are the mean, the median and the head count ratio and poverty gap

23 Simulation Results Model Based Simulation Averages Min 1st Q Median Mean 3rd Q Max True Estimated(Analytic) Estimated(Bootstrap) Rel. Bias(%)(Analytic) Rel. Bias(%)(Bootstrap) RMSE(Analytic) RMSE(Bootstrap) HCR Min 1st Q Median Mean 3rd Q Max True Estimated Rel. Bias(%) RMSE PG Min 1st Q Median Mean 3rd Q Max True Estimated Rel. Bias(%) RMSE Median Min 1st Q Median Mean 3rd Q Max True Estimated Rel. Bias(%) RMSE Table: True, Estimated, Root Mean Squared Error (RMSE) and relative bias of the Root Mean Squared Error estimator summarized over areas and simulations. Smooth Unconditional Approach.

24 Concluding Remarks Part VI Concluding Remarks

25 Concluding Remarks Concluding Remarks Unique framework for Bootstrap MSE Estimator for the Small Area Means, Quantiles and Poverty Indicators Easy to implement for tackling a very difficult problem i.e. estimating the MSE of small area estimated quantiles Asymptotic assumptions and results made by Lombardia et al. (2003) are still reasonable under the M-quantile regression model R functions are available to compute point estimates and relative mean squared error of small area means, quantiles and poverty indicators Time consuming Small underestimation It is necessary to know auxiliary variables for all the population units

26 Concluding Remarks Essential Bibliography Breckling J. and Chambers R. (1988). M-quantiles. Biometrika, 75, Chambers, R., Dorfman, A., Peter, H. (1992). Properties of estimators of the finite population distribution function. Biometrika 79 (3), Chambers, R., Dunstan, M. (1986). Estimating distribution function from survey data. Biometrika 73, Chambers, R., Tzavidis, N. (2006). M-quantile models for small area estimation. Biometrika 93 (2), Foster, J., Greer, J., Thorbecke, E. (1984). A class of decomposable poverty measures. Econometrica 52, Lombardia, M., Gonzalez-Manteiga, W., Prada-Sanchez, J. (2003). Bootstrapping the chambers-dunstan estimate of finite population distribution function. Journal of Statistical Planning and Inference 116, Molina, I., Rao, J. (2010). Small area estimation of poverty indicators. The Canadian Journal of Statistics. Newey, W., Powell, J. (1987). Asymmetric least squares estimation and testing. Econometrica 55 (4), Tzavidis, N., Marchetti, S., Chambers, R. (2010). Robust estimation of small area means and quantiles. Australian and New Zealand Journal of Statistics 52 (2),

Non-Parametric Bootstrap Mean. Squared Error Estimation For M- Quantile Estimators Of Small Area. Averages, Quantiles And Poverty

Non-Parametric Bootstrap Mean. Squared Error Estimation For M- Quantile Estimators Of Small Area. Averages, Quantiles And Poverty Working Paper M11/02 Methodology Non-Parametric Bootstrap Mean Squared Error Estimation For M- Quantile Estimators Of Small Area Averages, Quantiles And Poverty Indicators Stefano Marchetti, Nikos Tzavidis,

More information

Selection of small area estimation method for Poverty Mapping: A Conceptual Framework

Selection of small area estimation method for Poverty Mapping: A Conceptual Framework Selection of small area estimation method for Poverty Mapping: A Conceptual Framework Sumonkanti Das National Institute for Applied Statistics Research Australia University of Wollongong The First Asian

More information

Nonparametric Small Area Estimation via M-quantile Regression using Penalized Splines

Nonparametric Small Area Estimation via M-quantile Regression using Penalized Splines Nonparametric Small Estimation via M-quantile Regression using Penalized Splines Monica Pratesi 10 August 2008 Abstract The demand of reliable statistics for small areas, when only reduced sizes of the

More information

Estimation of Complex Small Area Parameters with Application to Poverty Indicators

Estimation of Complex Small Area Parameters with Application to Poverty Indicators 1 Estimation of Complex Small Area Parameters with Application to Poverty Indicators J.N.K. Rao School of Mathematics and Statistics, Carleton University (Joint work with Isabel Molina from Universidad

More information

Small Domains Estimation and Poverty Indicators. Carleton University, Ottawa, Canada

Small Domains Estimation and Poverty Indicators. Carleton University, Ottawa, Canada Small Domains Estimation and Poverty Indicators J. N. K. Rao Carleton University, Ottawa, Canada Invited paper for presentation at the International Seminar Population Estimates and Projections: Methodologies,

More information

Model-based Estimation of Poverty Indicators for Small Areas: Overview. J. N. K. Rao Carleton University, Ottawa, Canada

Model-based Estimation of Poverty Indicators for Small Areas: Overview. J. N. K. Rao Carleton University, Ottawa, Canada Model-based Estimation of Poverty Indicators for Small Areas: Overview J. N. K. Rao Carleton University, Ottawa, Canada Isabel Molina Universidad Carlos III de Madrid, Spain Paper presented at The First

More information

On Modifications to Linking Variance Estimators in the Fay-Herriot Model that Induce Robustness

On Modifications to Linking Variance Estimators in the Fay-Herriot Model that Induce Robustness Statistics and Applications {ISSN 2452-7395 (online)} Volume 16 No. 1, 2018 (New Series), pp 289-303 On Modifications to Linking Variance Estimators in the Fay-Herriot Model that Induce Robustness Snigdhansu

More information

Bootstrapping Heteroskedasticity Consistent Covariance Matrix Estimator

Bootstrapping Heteroskedasticity Consistent Covariance Matrix Estimator Bootstrapping Heteroskedasticity Consistent Covariance Matrix Estimator by Emmanuel Flachaire Eurequa, University Paris I Panthéon-Sorbonne December 2001 Abstract Recent results of Cribari-Neto and Zarkos

More information

M-Quantile And Expectile. Random Effects Regression For

M-Quantile And Expectile. Random Effects Regression For Working Paper M/7 Methodology M-Quantile And Expectile Random Effects Regression For Multilevel Data N. Tzavidis, N. Salvati, M. Geraci, M. Bottai Abstract The analysis of hierarchically structured data

More information

Small Area Estimates of Poverty Incidence in the State of Uttar Pradesh in India

Small Area Estimates of Poverty Incidence in the State of Uttar Pradesh in India Small Area Estimates of Poverty Incidence in the State of Uttar Pradesh in India Hukum Chandra Indian Agricultural Statistics Research Institute, New Delhi Email: hchandra@iasri.res.in Acknowledgments

More information

A Resampling Method on Pivotal Estimating Functions

A Resampling Method on Pivotal Estimating Functions A Resampling Method on Pivotal Estimating Functions Kun Nie Biostat 277,Winter 2004 March 17, 2004 Outline Introduction A General Resampling Method Examples - Quantile Regression -Rank Regression -Simulation

More information

BTRY 4090: Spring 2009 Theory of Statistics

BTRY 4090: Spring 2009 Theory of Statistics BTRY 4090: Spring 2009 Theory of Statistics Guozhang Wang September 25, 2010 1 Review of Probability We begin with a real example of using probability to solve computationally intensive (or infeasible)

More information

Combining data from two independent surveys: model-assisted approach

Combining data from two independent surveys: model-assisted approach Combining data from two independent surveys: model-assisted approach Jae Kwang Kim 1 Iowa State University January 20, 2012 1 Joint work with J.N.K. Rao, Carleton University Reference Kim, J.K. and Rao,

More information

Advances in M-quantile estimation

Advances in M-quantile estimation University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2017 Advances in M-quantile estimation James Dawber University of Wollongong

More information

Lecture 13: Subsampling vs Bootstrap. Dimitris N. Politis, Joseph P. Romano, Michael Wolf

Lecture 13: Subsampling vs Bootstrap. Dimitris N. Politis, Joseph P. Romano, Michael Wolf Lecture 13: 2011 Bootstrap ) R n x n, θ P)) = τ n ˆθn θ P) Example: ˆθn = X n, τ n = n, θ = EX = µ P) ˆθ = min X n, τ n = n, θ P) = sup{x : F x) 0} ) Define: J n P), the distribution of τ n ˆθ n θ P) under

More information

Poverty Estimation Methods: a Comparison under Box-Cox Type Transformations with Application to Mexican Data

Poverty Estimation Methods: a Comparison under Box-Cox Type Transformations with Application to Mexican Data Thesis submitted in fulfillment for the degree of Master of Science in Statistics to the topic Poverty Estimation Methods: a Comparison under Box-Cox Type Transformations with Application to Mexican Data

More information

Bootstrap. Director of Center for Astrostatistics. G. Jogesh Babu. Penn State University babu.

Bootstrap. Director of Center for Astrostatistics. G. Jogesh Babu. Penn State University  babu. Bootstrap G. Jogesh Babu Penn State University http://www.stat.psu.edu/ babu Director of Center for Astrostatistics http://astrostatistics.psu.edu Outline 1 Motivation 2 Simple statistical problem 3 Resampling

More information

Outlier robust small area estimation

Outlier robust small area estimation University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2014 Outlier robust small area estimation Ray Chambers

More information

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D.

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Ruppert A. EMPIRICAL ESTIMATE OF THE KERNEL MIXTURE Here we

More information

Robust Hierarchical Bayes Small Area Estimation for Nested Error Regression Model

Robust Hierarchical Bayes Small Area Estimation for Nested Error Regression Model Robust Hierarchical Bayes Small Area Estimation for Nested Error Regression Model Adrijo Chakraborty, Gauri Sankar Datta,3 and Abhyuday Mandal NORC at the University of Chicago, Bethesda, MD 084, USA Department

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 12: Frequentist properties of estimators (v4) Ramesh Johari ramesh.johari@stanford.edu 1 / 39 Frequentist inference 2 / 39 Thinking like a frequentist Suppose that for some

More information

Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems. ArXiv: Alexandre Belloni (Duke) + Kengo Kato (Tokyo)

Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems. ArXiv: Alexandre Belloni (Duke) + Kengo Kato (Tokyo) Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems. ArXiv: 1304.0282 Victor MIT, Economics + Center for Statistics Co-authors: Alexandre Belloni (Duke) + Kengo Kato (Tokyo)

More information

Accounting for Complex Sample Designs via Mixture Models

Accounting for Complex Sample Designs via Mixture Models Accounting for Complex Sample Designs via Finite Normal Mixture Models 1 1 University of Michigan School of Public Health August 2009 Talk Outline 1 2 Accommodating Sampling Weights in Mixture Models 3

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Small area prediction based on unit level models when the covariate mean is measured with error

Small area prediction based on unit level models when the covariate mean is measured with error Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2015 Small area prediction based on unit level models when the covariate mean is measured with error Andreea

More information

Local Polynomial Wavelet Regression with Missing at Random

Local Polynomial Wavelet Regression with Missing at Random Applied Mathematical Sciences, Vol. 6, 2012, no. 57, 2805-2819 Local Polynomial Wavelet Regression with Missing at Random Alsaidi M. Altaher School of Mathematical Sciences Universiti Sains Malaysia 11800

More information

Flexible Estimation of Treatment Effect Parameters

Flexible Estimation of Treatment Effect Parameters Flexible Estimation of Treatment Effect Parameters Thomas MaCurdy a and Xiaohong Chen b and Han Hong c Introduction Many empirical studies of program evaluations are complicated by the presence of both

More information

Robustness to Parametric Assumptions in Missing Data Models

Robustness to Parametric Assumptions in Missing Data Models Robustness to Parametric Assumptions in Missing Data Models Bryan Graham NYU Keisuke Hirano University of Arizona April 2011 Motivation Motivation We consider the classic missing data problem. In practice

More information

Monte Carlo Studies. The response in a Monte Carlo study is a random variable.

Monte Carlo Studies. The response in a Monte Carlo study is a random variable. Monte Carlo Studies The response in a Monte Carlo study is a random variable. The response in a Monte Carlo study has a variance that comes from the variance of the stochastic elements in the data-generating

More information

Constructing Prediction Intervals for Random Forests

Constructing Prediction Intervals for Random Forests Senior Thesis in Mathematics Constructing Prediction Intervals for Random Forests Author: Benjamin Lu Advisor: Dr. Jo Hardin Submitted to Pomona College in Partial Fulfillment of the Degree of Bachelor

More information

3 Joint Distributions 71

3 Joint Distributions 71 2.2.3 The Normal Distribution 54 2.2.4 The Beta Density 58 2.3 Functions of a Random Variable 58 2.4 Concluding Remarks 64 2.5 Problems 64 3 Joint Distributions 71 3.1 Introduction 71 3.2 Discrete Random

More information

Small Area Estimation Using a Nonparametric Model Based Direct Estimator

Small Area Estimation Using a Nonparametric Model Based Direct Estimator University of Wollongong Research Online Centre for Statistical & Survey Methodology Working Paper Series Faculty of Engineering and Information Sciences 2009 Small Area Estimation Using a Nonparametric

More information

Inference based on robust estimators Part 2

Inference based on robust estimators Part 2 Inference based on robust estimators Part 2 Matias Salibian-Barrera 1 Department of Statistics University of British Columbia ECARES - Dec 2007 Matias Salibian-Barrera (UBC) Robust inference (2) ECARES

More information

Advanced Statistics II: Non Parametric Tests

Advanced Statistics II: Non Parametric Tests Advanced Statistics II: Non Parametric Tests Aurélien Garivier ParisTech February 27, 2011 Outline Fitting a distribution Rank Tests for the comparison of two samples Two unrelated samples: Mann-Whitney

More information

Disease mapping via negative binomial M-quantile regression

Disease mapping via negative binomial M-quantile regression University of Wollongong Research Online Centre for Statistical & Survey Methodology Working Paper Series Faculty of Engineering and Information Sciences 2013 Disease mapping via negative binomial M-quantile

More information

Economics 582 Random Effects Estimation

Economics 582 Random Effects Estimation Economics 582 Random Effects Estimation Eric Zivot May 29, 2013 Random Effects Model Hence, the model can be re-written as = x 0 β + + [x ] = 0 (no endogeneity) [ x ] = = + x 0 β + + [x ] = 0 [ x ] = 0

More information

Preliminaries The bootstrap Bias reduction Hypothesis tests Regression Confidence intervals Time series Final remark. Bootstrap inference

Preliminaries The bootstrap Bias reduction Hypothesis tests Regression Confidence intervals Time series Final remark. Bootstrap inference 1 / 171 Bootstrap inference Francisco Cribari-Neto Departamento de Estatística Universidade Federal de Pernambuco Recife / PE, Brazil email: cribari@gmail.com October 2013 2 / 171 Unpaid advertisement

More information

Linear Models and Estimation by Least Squares

Linear Models and Estimation by Least Squares Linear Models and Estimation by Least Squares Jin-Lung Lin 1 Introduction Causal relation investigation lies in the heart of economics. Effect (Dependent variable) cause (Independent variable) Example:

More information

Supplement to Quantile-Based Nonparametric Inference for First-Price Auctions

Supplement to Quantile-Based Nonparametric Inference for First-Price Auctions Supplement to Quantile-Based Nonparametric Inference for First-Price Auctions Vadim Marmer University of British Columbia Artyom Shneyerov CIRANO, CIREQ, and Concordia University August 30, 2010 Abstract

More information

Recitation 5. Inference and Power Calculations. Yiqing Xu. March 7, 2014 MIT

Recitation 5. Inference and Power Calculations. Yiqing Xu. March 7, 2014 MIT 17.802 Recitation 5 Inference and Power Calculations Yiqing Xu MIT March 7, 2014 1 Inference of Frequentists 2 Power Calculations Inference (mostly MHE Ch8) Inference in Asymptopia (and with Weak Null)

More information

Small Area Modeling of County Estimates for Corn and Soybean Yields in the US

Small Area Modeling of County Estimates for Corn and Soybean Yields in the US Small Area Modeling of County Estimates for Corn and Soybean Yields in the US Matt Williams National Agricultural Statistics Service United States Department of Agriculture Matt.Williams@nass.usda.gov

More information

Linear models and their mathematical foundations: Simple linear regression

Linear models and their mathematical foundations: Simple linear regression Linear models and their mathematical foundations: Simple linear regression Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/21 Introduction

More information

Statistical Inference

Statistical Inference Statistical Inference Liu Yang Florida State University October 27, 2016 Liu Yang, Libo Wang (Florida State University) Statistical Inference October 27, 2016 1 / 27 Outline The Bayesian Lasso Trevor Park

More information

36. Multisample U-statistics and jointly distributed U-statistics Lehmann 6.1

36. Multisample U-statistics and jointly distributed U-statistics Lehmann 6.1 36. Multisample U-statistics jointly distributed U-statistics Lehmann 6.1 In this topic, we generalize the idea of U-statistics in two different directions. First, we consider single U-statistics for situations

More information

NEW APPROXIMATE INFERENTIAL METHODS FOR THE RELIABILITY PARAMETER IN A STRESS-STRENGTH MODEL: THE NORMAL CASE

NEW APPROXIMATE INFERENTIAL METHODS FOR THE RELIABILITY PARAMETER IN A STRESS-STRENGTH MODEL: THE NORMAL CASE Communications in Statistics-Theory and Methods 33 (4) 1715-1731 NEW APPROXIMATE INFERENTIAL METODS FOR TE RELIABILITY PARAMETER IN A STRESS-STRENGT MODEL: TE NORMAL CASE uizhen Guo and K. Krishnamoorthy

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Dr. Andrea Beccarini Center for Quantitative Economics Winter 2013/2014 Andrea Beccarini (CQE) Econometrics Winter 2013/2014 1 / 156 General information Aims and prerequisites Objective:

More information

Modeling Real Estate Data using Quantile Regression

Modeling Real Estate Data using Quantile Regression Modeling Real Estate Data using Semiparametric Quantile Regression Department of Statistics University of Innsbruck September 9th, 2011 Overview 1 Application: 2 3 4 Hedonic regression data for house prices

More information

A measurement error model approach to small area estimation

A measurement error model approach to small area estimation A measurement error model approach to small area estimation Jae-kwang Kim 1 Spring, 2015 1 Joint work with Seunghwan Park and Seoyoung Kim Ouline Introduction Basic Theory Application to Korean LFS Discussion

More information

Model-free prediction intervals for regression and autoregression. Dimitris N. Politis University of California, San Diego

Model-free prediction intervals for regression and autoregression. Dimitris N. Politis University of California, San Diego Model-free prediction intervals for regression and autoregression Dimitris N. Politis University of California, San Diego To explain or to predict? Models are indispensable for exploring/utilizing relationships

More information

Spatial M-quantile Models for Small Area Estimation

Spatial M-quantile Models for Small Area Estimation University of Wollongong Research Online Centre for Statistical & Survey Methodology Working Paper Series Faculty of Engineering and Information Sciences 2008 Spatial M-quantile Models for Small Area Estimation

More information

Statistical Properties of Numerical Derivatives

Statistical Properties of Numerical Derivatives Statistical Properties of Numerical Derivatives Han Hong, Aprajit Mahajan, and Denis Nekipelov Stanford University and UC Berkeley November 2010 1 / 63 Motivation Introduction Many models have objective

More information

AFT Models and Empirical Likelihood

AFT Models and Empirical Likelihood AFT Models and Empirical Likelihood Mai Zhou Department of Statistics, University of Kentucky Collaborators: Gang Li (UCLA); A. Bathke; M. Kim (Kentucky) Accelerated Failure Time (AFT) models: Y = log(t

More information

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018

Econometrics I KS. Module 2: Multivariate Linear Regression. Alexander Ahammer. This version: April 16, 2018 Econometrics I KS Module 2: Multivariate Linear Regression Alexander Ahammer Department of Economics Johannes Kepler University of Linz This version: April 16, 2018 Alexander Ahammer (JKU) Module 2: Multivariate

More information

Quantile regression and heteroskedasticity

Quantile regression and heteroskedasticity Quantile regression and heteroskedasticity José A. F. Machado J.M.C. Santos Silva June 18, 2013 Abstract This note introduces a wrapper for qreg which reports standard errors and t statistics that are

More information

A better way to bootstrap pairs

A better way to bootstrap pairs A better way to bootstrap pairs Emmanuel Flachaire GREQAM - Université de la Méditerranée CORE - Université Catholique de Louvain April 999 Abstract In this paper we are interested in heteroskedastic regression

More information

Contextual Effects in Modeling for Small Domains

Contextual Effects in Modeling for Small Domains University of Wollongong Research Online Applied Statistics Education and Research Collaboration (ASEARC) - Conference Papers Faculty of Engineering and Information Sciences 2011 Contextual Effects in

More information

UNIVERSITÄT POTSDAM Institut für Mathematik

UNIVERSITÄT POTSDAM Institut für Mathematik UNIVERSITÄT POTSDAM Institut für Mathematik Testing the Acceleration Function in Life Time Models Hannelore Liero Matthias Liero Mathematische Statistik und Wahrscheinlichkeitstheorie Universität Potsdam

More information

Chapter 4. Replication Variance Estimation. J. Kim, W. Fuller (ISU) Chapter 4 7/31/11 1 / 28

Chapter 4. Replication Variance Estimation. J. Kim, W. Fuller (ISU) Chapter 4 7/31/11 1 / 28 Chapter 4 Replication Variance Estimation J. Kim, W. Fuller (ISU) Chapter 4 7/31/11 1 / 28 Jackknife Variance Estimation Create a new sample by deleting one observation n 1 n n ( x (k) x) 2 = x (k) = n

More information

Generalized quantiles as risk measures

Generalized quantiles as risk measures Generalized quantiles as risk measures Bellini, Klar, Muller, Rosazza Gianin December 1, 2014 Vorisek Jan Introduction Quantiles q α of a random variable X can be defined as the minimizers of a piecewise

More information

Motivational Example

Motivational Example Motivational Example Data: Observational longitudinal study of obesity from birth to adulthood. Overall Goal: Build age-, gender-, height-specific growth charts (under 3 year) to diagnose growth abnomalities.

More information

Introduction to Survey Data Integration

Introduction to Survey Data Integration Introduction to Survey Data Integration Jae-Kwang Kim Iowa State University May 20, 2014 Outline 1 Introduction 2 Survey Integration Examples 3 Basic Theory for Survey Integration 4 NASS application 5

More information

Preliminaries The bootstrap Bias reduction Hypothesis tests Regression Confidence intervals Time series Final remark. Bootstrap inference

Preliminaries The bootstrap Bias reduction Hypothesis tests Regression Confidence intervals Time series Final remark. Bootstrap inference 1 / 172 Bootstrap inference Francisco Cribari-Neto Departamento de Estatística Universidade Federal de Pernambuco Recife / PE, Brazil email: cribari@gmail.com October 2014 2 / 172 Unpaid advertisement

More information

Graduate Econometrics I: Asymptotic Theory

Graduate Econometrics I: Asymptotic Theory Graduate Econometrics I: Asymptotic Theory Yves Dominicy Université libre de Bruxelles Solvay Brussels School of Economics and Management ECARES Yves Dominicy Graduate Econometrics I: Asymptotic Theory

More information

INFERENCE APPROACHES FOR INSTRUMENTAL VARIABLE QUANTILE REGRESSION. 1. Introduction

INFERENCE APPROACHES FOR INSTRUMENTAL VARIABLE QUANTILE REGRESSION. 1. Introduction INFERENCE APPROACHES FOR INSTRUMENTAL VARIABLE QUANTILE REGRESSION VICTOR CHERNOZHUKOV CHRISTIAN HANSEN MICHAEL JANSSON Abstract. We consider asymptotic and finite-sample confidence bounds in instrumental

More information

Monte Carlo Study on the Successive Difference Replication Method for Non-Linear Statistics

Monte Carlo Study on the Successive Difference Replication Method for Non-Linear Statistics Monte Carlo Study on the Successive Difference Replication Method for Non-Linear Statistics Amang S. Sukasih, Mathematica Policy Research, Inc. Donsig Jang, Mathematica Policy Research, Inc. Amang S. Sukasih,

More information

Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods.

Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods. TheThalesians Itiseasyforphilosopherstoberichiftheychoose Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods Ivan Zhdankin

More information

Binary choice 3.3 Maximum likelihood estimation

Binary choice 3.3 Maximum likelihood estimation Binary choice 3.3 Maximum likelihood estimation Michel Bierlaire Output of the estimation We explain here the various outputs from the maximum likelihood estimation procedure. Solution of the maximum likelihood

More information

Inference via Kernel Smoothing of Bootstrap P Values

Inference via Kernel Smoothing of Bootstrap P Values Queen s Economics Department Working Paper No. 1054 Inference via Kernel Smoothing of Bootstrap P Values Jeff Racine McMaster University James G. MacKinnon Queen s University Department of Economics Queen

More information

AN EMPIRICAL LIKELIHOOD RATIO TEST FOR NORMALITY

AN EMPIRICAL LIKELIHOOD RATIO TEST FOR NORMALITY Econometrics Working Paper EWP0401 ISSN 1485-6441 Department of Economics AN EMPIRICAL LIKELIHOOD RATIO TEST FOR NORMALITY Lauren Bin Dong & David E. A. Giles Department of Economics, University of Victoria

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2

MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2 MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2 1 Bootstrapped Bias and CIs Given a multiple regression model with mean and

More information

ESTP course on Small Area Estimation

ESTP course on Small Area Estimation ESTP course on Small Area Estimation Statistics Finland, Helsinki, 29 September 2 October 2014 Topic 1: Introduction to small area estimation Risto Lehtonen, University of Helsinki Lecture topics: Monday

More information

SMOOTHED BLOCK EMPIRICAL LIKELIHOOD FOR QUANTILES OF WEAKLY DEPENDENT PROCESSES

SMOOTHED BLOCK EMPIRICAL LIKELIHOOD FOR QUANTILES OF WEAKLY DEPENDENT PROCESSES Statistica Sinica 19 (2009), 71-81 SMOOTHED BLOCK EMPIRICAL LIKELIHOOD FOR QUANTILES OF WEAKLY DEPENDENT PROCESSES Song Xi Chen 1,2 and Chiu Min Wong 3 1 Iowa State University, 2 Peking University and

More information

Graduate Econometrics I: Unbiased Estimation

Graduate Econometrics I: Unbiased Estimation Graduate Econometrics I: Unbiased Estimation Yves Dominicy Université libre de Bruxelles Solvay Brussels School of Economics and Management ECARES Yves Dominicy Graduate Econometrics I: Unbiased Estimation

More information

Small Sample Corrections for LTS and MCD

Small Sample Corrections for LTS and MCD myjournal manuscript No. (will be inserted by the editor) Small Sample Corrections for LTS and MCD G. Pison, S. Van Aelst, and G. Willems Department of Mathematics and Computer Science, Universitaire Instelling

More information

Transformation and Smoothing in Sample Survey Data

Transformation and Smoothing in Sample Survey Data Scandinavian Journal of Statistics, Vol. 37: 496 513, 2010 doi: 10.1111/j.1467-9469.2010.00691.x Published by Blackwell Publishing Ltd. Transformation and Smoothing in Sample Survey Data YANYUAN MA Department

More information

Generated Covariates in Nonparametric Estimation: A Short Review.

Generated Covariates in Nonparametric Estimation: A Short Review. Generated Covariates in Nonparametric Estimation: A Short Review. Enno Mammen, Christoph Rothe, and Melanie Schienle Abstract In many applications, covariates are not observed but have to be estimated

More information

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models University of Illinois Fall 2016 Department of Economics Roger Koenker Economics 536 Lecture 7 Introduction to Specification Testing in Dynamic Econometric Models In this lecture I want to briefly describe

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Bootstrap for Regression Week 9, Lecture 1

MA 575 Linear Models: Cedric E. Ginestet, Boston University Bootstrap for Regression Week 9, Lecture 1 MA 575 Linear Models: Cedric E. Ginestet, Boston University Bootstrap for Regression Week 9, Lecture 1 1 The General Bootstrap This is a computer-intensive resampling algorithm for estimating the empirical

More information

Lecture 3: Statistical Decision Theory (Part II)

Lecture 3: Statistical Decision Theory (Part II) Lecture 3: Statistical Decision Theory (Part II) Hao Helen Zhang Hao Helen Zhang Lecture 3: Statistical Decision Theory (Part II) 1 / 27 Outline of This Note Part I: Statistics Decision Theory (Classical

More information

Jyh-Jen Horng Shiau 1 and Lin-An Chen 1

Jyh-Jen Horng Shiau 1 and Lin-An Chen 1 Aust. N. Z. J. Stat. 45(3), 2003, 343 352 A MULTIVARIATE PARALLELOGRAM AND ITS APPLICATION TO MULTIVARIATE TRIMMED MEANS Jyh-Jen Horng Shiau 1 and Lin-An Chen 1 National Chiao Tung University Summary This

More information

Lecture 4: Heteroskedasticity

Lecture 4: Heteroskedasticity Lecture 4: Heteroskedasticity Econometric Methods Warsaw School of Economics (4) Heteroskedasticity 1 / 24 Outline 1 What is heteroskedasticity? 2 Testing for heteroskedasticity White Goldfeld-Quandt Breusch-Pagan

More information

9. Robust regression

9. Robust regression 9. Robust regression Least squares regression........................................................ 2 Problems with LS regression..................................................... 3 Robust regression............................................................

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown.

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown. Weighting We have seen that if E(Y) = Xβ and V (Y) = σ 2 G, where G is known, the model can be rewritten as a linear model. This is known as generalized least squares or, if G is diagonal, with trace(g)

More information

Bootstrap (Part 3) Christof Seiler. Stanford University, Spring 2016, Stats 205

Bootstrap (Part 3) Christof Seiler. Stanford University, Spring 2016, Stats 205 Bootstrap (Part 3) Christof Seiler Stanford University, Spring 2016, Stats 205 Overview So far we used three different bootstraps: Nonparametric bootstrap on the rows (e.g. regression, PCA with random

More information

Econometrics. Week 4. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague

Econometrics. Week 4. Fall Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Econometrics Week 4 Institute of Economic Studies Faculty of Social Sciences Charles University in Prague Fall 2012 1 / 23 Recommended Reading For the today Serial correlation and heteroskedasticity in

More information

Inference Based on the Wild Bootstrap

Inference Based on the Wild Bootstrap Inference Based on the Wild Bootstrap James G. MacKinnon Department of Economics Queen s University Kingston, Ontario, Canada K7L 3N6 email: jgm@econ.queensu.ca Ottawa September 14, 2012 The Wild Bootstrap

More information

Machine Learning Basics: Maximum Likelihood Estimation

Machine Learning Basics: Maximum Likelihood Estimation Machine Learning Basics: Maximum Likelihood Estimation Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics 1. Learning

More information

Regression #3: Properties of OLS Estimator

Regression #3: Properties of OLS Estimator Regression #3: Properties of OLS Estimator Econ 671 Purdue University Justin L. Tobias (Purdue) Regression #3 1 / 20 Introduction In this lecture, we establish some desirable properties associated with

More information

Bootstrap, Jackknife and other resampling methods

Bootstrap, Jackknife and other resampling methods Bootstrap, Jackknife and other resampling methods Part VI: Cross-validation Rozenn Dahyot Room 128, Department of Statistics Trinity College Dublin, Ireland dahyot@mee.tcd.ie 2005 R. Dahyot (TCD) 453 Modern

More information

Bootstrap, Jackknife and other resampling methods

Bootstrap, Jackknife and other resampling methods Bootstrap, Jackknife and other resampling methods Part III: Parametric Bootstrap Rozenn Dahyot Room 128, Department of Statistics Trinity College Dublin, Ireland dahyot@mee.tcd.ie 2005 R. Dahyot (TCD)

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Nonparametric Estimation of Regression Functions In the Presence of Irrelevant Regressors

Nonparametric Estimation of Regression Functions In the Presence of Irrelevant Regressors Nonparametric Estimation of Regression Functions In the Presence of Irrelevant Regressors Peter Hall, Qi Li, Jeff Racine 1 Introduction Nonparametric techniques robust to functional form specification.

More information

Robust covariance estimation for quantile regression

Robust covariance estimation for quantile regression 1 Robust covariance estimation for quantile regression J. M.C. Santos Silva School of Economics, University of Surrey UK STATA USERS GROUP, 21st MEETING, 10 Septeber 2015 2 Quantile regression (Koenker

More information

Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods

Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods Chapter 4 Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods 4.1 Introduction It is now explicable that ridge regression estimator (here we take ordinary ridge estimator (ORE)

More information

Using Estimating Equations for Spatially Correlated A

Using Estimating Equations for Spatially Correlated A Using Estimating Equations for Spatially Correlated Areal Data December 8, 2009 Introduction GEEs Spatial Estimating Equations Implementation Simulation Conclusion Typical Problem Assess the relationship

More information

Central Limit Theorem ( 5.3)

Central Limit Theorem ( 5.3) Central Limit Theorem ( 5.3) Let X 1, X 2,... be a sequence of independent random variables, each having n mean µ and variance σ 2. Then the distribution of the partial sum S n = X i i=1 becomes approximately

More information

Imputation for Missing Data under PPSWR Sampling

Imputation for Missing Data under PPSWR Sampling July 5, 2010 Beijing Imputation for Missing Data under PPSWR Sampling Guohua Zou Academy of Mathematics and Systems Science Chinese Academy of Sciences 1 23 () Outline () Imputation method under PPSWR

More information

The Bootstrap in Econometrics

The Bootstrap in Econometrics The Bootstrap in Econometrics by Russell Davidson Department of Economics and CIREQ McGill University Montréal, Québec, Canada H3A 2T7 AMSE and GREQAM Centre de la Vieille Charité 2 rue de la Charité 13236

More information