Computational Study of System Dynamics

Size: px
Start display at page:

Download "Computational Study of System Dynamics"

Transcription

1 Computational Study of System Dynamics Review of Rate Laws JCE Summary Computational Methods P Dynamics Methods < Chemical Kinetics Simulator < A+BC: General Trajectory P Mathematics Methods < Integral < Differential P Graphical Interface Differential Equation Solvers

2 Dynamics Methods Chemical Kinetics Simulator P CKS does not integrate differential equations P CKS performs general, rigorously accurate stochastic algorithm to propagate reaction P Speed < Comparable in efficiency to integration for simple < Significantly faster for stiff systems P Models complex reactions < Explosions < Changing volumes P High learning curve P Research quality Dynamics Methods A+BC: General Trajectory P LEPS diagram P Monte Carlo Collisions A b C 2 B cm

3 Mathematics Methods General P Integral Methods < Use integrated rate laws < Tables and Graphs P Differential Methods < Use computational technique to integrate differential rate laws < Tables and Graphs Review of Rate Laws Simple First Order Reactions k A B A = a, B = 0 o o da = ka A = ae kt dt db dt ( 1 ) = ka B = a e kt

4 a = 1000 Mathematics Methods--Integral k = 1 Spreadsheet t A B A B t Mathematics Methods--Differential Spreadsheet a = 1000 k = 1 da=-k A dt A = a - da B = a - A t da A B A B t Mathematics Methods--Integral Mathcad a := 1000 k:= 1 At ():= ae k t Bt ():= a 1 e k t ( ) 1000 At () Bt () t

5 Mathematics Methods--Differential k:= 1 Given Mathcad d dt At () k At () A0 ( ) 1000 A := Odesolve( t, 10) Given d dt Bt () ka () t B0 ( ) 0 B:= Odesolve( t, 10) 1000 At () Bt () t Mathematics Methods--Integral Mathematica Mathematics Methods--Differential Mathematica

6 Mathematics Methods--Integral Matlab db dt k Review of Rate Laws Consecutive First Order Reactions k 1 2 A B C A = a, B = C = 0 o o o da = ka A = ae kt dt ak1 = ka 1 kb 2 B = e k k 2 1 kt 1 kt 2 ( e ) dc dt = kb 2 C = a 1 kt ke 2 k k 2 1 ke 1 k k 1 kt Mathematics Methods--Integral k1 := 1 k2 := 0.5 a := 1000 At ():= ae k1 t ( ) Bt ():= ak1 e k1 t e k2 t k2 k1 k2 Ct () a 1 e k1 t k1 := e k2 t k2 k1 k1 k2 Note that k1 must be different than k2 in order for these integrated equations to work. Mathcad At () Bt () Ct () t 10

7 Mathematics Methods--Differential k1:= 1 k2:= 1 a := 1000 b := 0 c := 0 T:= 10 Mathcad Given d dt At () k1 At () A0 ( ) a 800 d dt Bt () k1 A() t k2 B() t B0 ( ) b NA() t 600 NB() t d dt Ct () k2 B() t C0 ( ) c NC() t 400 NA A NB := Odesolve B, t, T NC C t 10 Review of Rate Laws Several Consecutive First Order Reactions k k k k A B C D K Ao = a, Bo = CoK= 0 da = ka dt db = ka 1 kb 2 dt dc dt = kb 2 kc 3! Bateman solution: kt 1 kt 2 kt 3 N = c e + c e + c e + K+ c e c c c = = = n n kkklk a n n 1 ( k k )( k k ) L( k k ) kkklk a n n 2 ( k k )( k k ) L( k k ) kkklk a n n 3 ( k k )( k k )( k k ) L( k k )! kt n

8 Graphical Interface Differential Equation Solvers General P Model differential rate law P Software solves differential equations < Watch stiff P Tables and Graphs Graphical Interface Differential Equation Solvers Stella

9 Graphical Interface Differential Equation Solvers Berkeley Madonna Graphical Interface Differential Equation Solvers VisSim (Mathcad) Graphical Interface Differential Equation Solvers Simulink (Matlab)

10 Graphical Interface Differential Equation Solvers Simile Review of Rate Laws Simple Second Order Reactions k A+ B C A = a, B = b, C = 0 o o o da db dc = = kab = dt dt dt kab Graphical Interface Differential Equation Solvers Change of Paradigm

11 Introduction to STELLA Structural Thinking Experiential Learning Laboratory with Animation Commerical Products Graphical Interface Differential Equation Solvers (GIDES) PStella < Free run-time version P Berkeley Madonna < Free run-time version < Solves stiff differential equations P VisSim (Mathcad) P Simulink (Matlab) PSimile P Model Maker Stella Interface Stella Layers Modeling P Construct Model using Building Blocks, Tools, Objects P Outputs Layer Navigation Map/Model Toggle Change to P 2 (or else!) Run Controller

12 Stella Interface Stella Layers Mapping P Text P Output Tables and Graphs P Input using Slides and Dials P Pictures P Quick Time Movies Stella Interface Stella Layers Equation P Initial Values of Stocks P Connector Information P Differential Equations Representing the Time Dependence of Stocks Stella Interface Menu / Icons

13 Stella Interface Building Blocks Stocks Value Undergoing a Change Stella Interface Building Blocks Flow Change of Stock with Respect to Time Stella Interface Building Blocks Converter Constants Transformation Equations

14 Stella Interface Building Blocks Connectors Links Building Blocks Stella Interface Tools Hand General Purpose Editing Tool Cursor Pointer Stella Interface Tools Dynamite Delete (No Undo )

15 Stella Interface Objects Graph Pad Graphing Results Stella Interface Objects Table Pad Spreadsheet-like Table of Results

16 Solving of Differential Equations Taylor Series Solving of Differential Equations Euler Method First 2 terms

17 Solving of Differential Equations Runge-Kutta 2 First 3 Terms Solving of Differential Equations Runge-Kutta 4 First 5 Terms Simple Model Falling Calculator System y = height yn = velocity = (acceleration)(time) yo = acceleration = g = 9.8 m s -2

18 Simple Model Falling Calculator Stella Model

19

20 Simple Model Falling Calculator Stella Model Equation Layer

21 Simple Model Falling Calculator Stella Model Accuracy P Air Friction PBounce Chemical Kinetics Sure looked like a natural fit to me!! Kinetics Model Dimerization of Cyclopentadiene 2nd Order Diels-Alder Reaction 2 dc 2 = kc dt 1 1 = + kt C C o

22 Kinetics Model

23

24

25 Michaelis-Menton Len Soltzberg (Simmons College) E + S º (ES) (ES) 6 P + E

26 Oscillating Reactions Criteria P Two or more coupled reactions P Autocatalytic

27 Oscillating Reactions Briggs-Rauscher P H2O2 P KIO3 and H2SO4 P HOOCCH2COOH, MnSO4, starch ~15 s for each cycle Oscillating Reactions Belousov-Zhabotinskii BrO3- + HBrO2 + H3O+ 6 2 BrO2 + 2 H2O 2 BrO2 + 2 Ce H3O+ 6 2 HBrO2 + 2 Ce H2O P 18 reversible steps P 21 different chemical species

28 Oregonator by Len Soltzberg (Simmons College) A + Y 6 X + P X + Y 6 2P A + X 6 2X + 2Z 2X 6 A + P B + Z 6 (f/2) Y where A = BrO 3 - X = HBrO 2 Z = Ce 4+ P = HOBr B = organic Y = Br -

29

30 Other Applications Rod Schluter (Formerly of CofC) Acid/Base Equilibrium H + + OH - 6 H 2 O

31 Other Applications Debye Theory for Monatomic Crystals D( θ / T) = D 3 3 u 3 x x e dx 1 U U = 3RTD 0 u Cv = 3R 4D 3 u e 1 4 S = 3R D e ln 3 u ( 1 ) u [ 3ln( 1 ) ] A U = RT e D 0

Computational Study of System Dynamics (Chemical Kinetics)

Computational Study of System Dynamics (Chemical Kinetics) Computational Study of System Dynamics (Chemical Kinetics) 1 Review of Rate Laws J. Andraos, J. Chem. Ed., 76 (11), 1578-1583 (1999). 2 Computational Methods PDynamics Methods < Chemical Kinetics Simlulator

More information

Computational Study of Chemical Kinetics (GIDES)

Computational Study of Chemical Kinetics (GIDES) Computational Study of Chemical Kinetics (GIDES) Software Introduction Berkeley Madonna (http://www.berkeleymadonna.com) is a dynamic modeling program in which relational diagrams are created using a graphical

More information

CHEM-UA 652: Thermodynamics and Kinetics

CHEM-UA 652: Thermodynamics and Kinetics CHEM-UA 65: Thermodynamics and Kinetics Notes for Lecture I. THE COMPLEXITY OF MULTI-STEP CHEMICAL REACTIONS It should be clear by now that chemical kinetics is governed by the mathematics of systems of

More information

Chem 1 Kinetics. Objectives. Concepts

Chem 1 Kinetics. Objectives. Concepts Chem 1 Kinetics Objectives 1. Learn some basic ideas in chemical kinetics. 2. Understand how the computer visualizations can be used to benefit the learning process. 3. Understand how the computer models

More information

1. Introduction to Chemical Kinetics

1. Introduction to Chemical Kinetics 1. Introduction to Chemical Kinetics objectives of chemical kinetics 1) Determine empirical rate laws H 2 + I 2 2HI How does the concentration of H 2, I 2, and HI change with time? 2) Determine the mechanism

More information

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature Chapter 13 - Chemical Kinetics II Integrated Rate Laws Reaction Rates and Temperature Reaction Order - Graphical Picture A ->Products Integrated Rate Laws Zero Order Reactions Rate = k[a] 0 = k (constant

More information

Advanced Physical Chemistry CHAPTER 18 ELEMENTARY CHEMICAL KINETICS

Advanced Physical Chemistry CHAPTER 18 ELEMENTARY CHEMICAL KINETICS Experimental Kinetics and Gas Phase Reactions Advanced Physical Chemistry CHAPTER 18 ELEMENTARY CHEMICAL KINETICS Professor Angelo R. Rossi http://homepages.uconn.edu/rossi Department of Chemistry, Room

More information

Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry

Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry Junping Shi College of William and Mary, USA Molecular biology and Biochemical kinetics Molecular biology is one of

More information

Chemical Kinetics-II Order of Reaction Order, Molecularity, Determination of Order of Reaction The rate of a given chemical reaction at constant temperature depends on the product of the concentration

More information

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics Reaction rated are fractions of a second for fireworks to explode. Reaction Rates takes years for a metal

More information

Chapter 1, Section 1.2, Example 9 (page 13) and Exercise 29 (page 15). Use the Uniqueness Tool. Select the option ẋ = x

Chapter 1, Section 1.2, Example 9 (page 13) and Exercise 29 (page 15). Use the Uniqueness Tool. Select the option ẋ = x Use of Tools from Interactive Differential Equations with the texts Fundamentals of Differential Equations, 5th edition and Fundamentals of Differential Equations and Boundary Value Problems, 3rd edition

More information

ES.1803 Topic 13 Notes Jeremy Orloff

ES.1803 Topic 13 Notes Jeremy Orloff ES.1803 Topic 13 Notes Jeremy Orloff 13 Vector Spaces, matrices and linearity 13.1 Goals 1. Know the definition of a vector space and how to show that a given set is a vector space. 2. Know the meaning

More information

Typical kinetics Time. 1. What happens to the concentration of A over time? a. Increases b. Decreases c.

Typical kinetics Time. 1. What happens to the concentration of A over time? a. Increases b. Decreases c. Cheryl Coolidge Guided Inquiry Activity Enzyme Kinetics, Part One Why? Understanding the rate behavior of enzyme catalyzed reactions can help to explain how these biologically important reactions are controlled

More information

Section 11.1 What is a Differential Equation?

Section 11.1 What is a Differential Equation? 1 Section 11.1 What is a Differential Equation? Example 1 Suppose a ball is dropped from the top of a building of height 50 meters. Let h(t) denote the height of the ball after t seconds, then it is known

More information

1 What is a differential equation

1 What is a differential equation Math 10B - Calculus by Hughes-Hallett, et al. Chapter 11 - Differential Equations Prepared by Jason Gaddis 1 What is a differential equation Remark 1.1. We have seen basic differential equations already

More information

Chemical Kinetics I: The Dry Lab. Up until this point in our study of physical chemistry we have been interested in

Chemical Kinetics I: The Dry Lab. Up until this point in our study of physical chemistry we have been interested in Chemical Kinetics I: The Dry Lab Up until this point in our study of physical chemistry we have been interested in equilibrium properties; now we will begin to investigate non-equilibrium properties and

More information

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc. Chapter 13 Lecture Essential University Physics Richard Wolfson nd Edition Oscillatory Motion Slide 13-1 In this lecture you ll learn To describe the conditions under which oscillatory motion occurs To

More information

CEE 3510 ENVIRONMENTAL QUALITY ENGINEERING. STELLA Exercise #1

CEE 3510 ENVIRONMENTAL QUALITY ENGINEERING. STELLA Exercise #1 Stock Flow Converter Action Connector Graph Table Text Selector Arrow Selector Arrow Paint Brush Dynamite Ghost Paint Brush Dynamite Ghost CEE 3510 ENVIRONMENTAL QUALITY ENGINEERING STELLA Exercise #1

More information

Physical Chemistry. Chemical Kinetics

Physical Chemistry. Chemical Kinetics Physical Chemistry Chemical Kinetics This chapter introduces the principles of chemical kinetics, the study of reaction rates,by showing how the rates of reactions may be measured and interpreted. The

More information

UNIT 2: KINETICS RATES of Chemical Reactions (TEXT: Chap 13-pg 573)

UNIT 2: KINETICS RATES of Chemical Reactions (TEXT: Chap 13-pg 573) UNIT 2: KINETICS RATES of Chemical Reactions (TEXT: Chap 13-pg 573) UNIT 2: LAB 1. A Brief Introductory Kinetics Investigation A) Set up 4 test tubes containing about 5 ml of 0.1 M sodium oxalate sol n.

More information

Review of Lecture 5. F = GMm r 2. = m dv dt Expressed in terms of altitude x = r R, we have. mv dv dx = GMm. (R + x) 2. Max altitude. 2GM v 2 0 R.

Review of Lecture 5. F = GMm r 2. = m dv dt Expressed in terms of altitude x = r R, we have. mv dv dx = GMm. (R + x) 2. Max altitude. 2GM v 2 0 R. Review of Lecture 5 Models could involve just one or two equations (e.g. orbit calculation), or hundreds of equations (as in climate modeling). To model a vertical cannon shot: F = GMm r 2 = m dv dt Expressed

More information

ENGI 3424 First Order ODEs Page 1-01

ENGI 3424 First Order ODEs Page 1-01 ENGI 344 First Order ODEs Page 1-01 1. Ordinary Differential Equations Equations involving only one independent variable and one or more dependent variables, together with their derivatives with respect

More information

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates KINETICS Kinetics Study of the speed or rate of a reaction under various conditions Thermodynamically favorable reactions DO NOT mean fast reactions Some reactions take fraction of a second (explosion)

More information

Modeling and Experimentation: Compound Pendulum

Modeling and Experimentation: Compound Pendulum Modeling and Experimentation: Compound Pendulum Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin Fall 2014 Overview This lab focuses on developing a mathematical

More information

A. One-Substrate Reactions (1) Kinetic concepts

A. One-Substrate Reactions (1) Kinetic concepts A. One-Substrate Reactions (1) Kinetic concepts (2) Kinetic analysis (a) Briggs-Haldane steady-state treatment (b) Michaelis constant (K m ) (c) Specificity constant (3) Graphical analysis (4) Practical

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section 12.1 Reaction Rates Section

More information

Computational Physics (6810): Session 8

Computational Physics (6810): Session 8 Computational Physics (6810): Session 8 Dick Furnstahl Nuclear Theory Group OSU Physics Department February 24, 2014 Differential equation solving Session 7 Preview Session 8 Stuff Solving differential

More information

4 A mass-spring oscillating system undergoes SHM with a period T. What is the period of the system if the amplitude is doubled?

4 A mass-spring oscillating system undergoes SHM with a period T. What is the period of the system if the amplitude is doubled? Slide 1 / 52 1 A block with a mass M is attached to a spring with a spring constant k. The block undergoes SHM. Where is the block located when its velocity is a maximum in magnitude? A 0 B + or - A C

More information

Physics 326 Lab 6 10/18/04 DAMPED SIMPLE HARMONIC MOTION

Physics 326 Lab 6 10/18/04 DAMPED SIMPLE HARMONIC MOTION DAMPED SIMPLE HARMONIC MOTION PURPOSE To understand the relationships between force, acceleration, velocity, position, and period of a mass undergoing simple harmonic motion and to determine the effect

More information

9.3: Separable Equations

9.3: Separable Equations 9.3: Separable Equations An equation is separable if one can move terms so that each side of the equation only contains 1 variable. Consider the 1st order equation = F (x, y). dx When F (x, y) = f (x)g(y),

More information

Comparing Data from Mathematical Models and Data from Real Experiments

Comparing Data from Mathematical Models and Data from Real Experiments Comparing Data from Mathematical Models and Data from Real Experiments Building Models with VENSIM Hildegard Urban-Woldron Ogólnopolska konferencja, 28 th of October, 2011, Warsaw, Poland Overview Introduction

More information

10A. EVALUATION OF REACTION RATE FORMS IN STIRRED TANK. Most of the problems associated with evaluation and determination of proper rate forms from

10A. EVALUATION OF REACTION RATE FORMS IN STIRRED TANK. Most of the problems associated with evaluation and determination of proper rate forms from UPDATED 04/0/05 0A. EVALUATIO OF REACTIO RATE FORMS I STIRRED TAK REACTORS Most of the problems associated with evaluation and determination of proper rate forms from batch data are related to the difficulties

More information

The first aspects forms the subject matter of chemical equilibrium. The second aspects forms the subject matter of chemical kinetics.

The first aspects forms the subject matter of chemical equilibrium. The second aspects forms the subject matter of chemical kinetics. Chemical Kinetics Introduction In a chemical reaction two important aspects are: (a) How far the reaction will go? and (b) How fast the reaction will occur? The first aspects forms the subject matter of

More information

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place.

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. The study of. Kinetics - Chapter 14 reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. Factors that Affect Rx Rates 1. The more readily

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Section 12.1 Reaction Rates Reaction Rate Change in concentration of a reactant or product per unit time. Rate = concentration of A at time t t 2 1 2 1 concentration of A at

More information

Chem 6 Sample exam 1 (150 points total) NAME:

Chem 6 Sample exam 1 (150 points total) NAME: Chem 6 Sample exam 1 (150 points total) @ This is a closed book exam to which the Honor Principle applies. @ The last page contains equations and physical constants; you can detach it for easy reference.

More information

Computational models: Reaction Diffusion. Matthias Vigelius Week 6

Computational models: Reaction Diffusion. Matthias Vigelius Week 6 Computational models: Reaction Diffusion Matthias Vigelius Week 6 Reactions (Chemical) reactions Reaction is a transformation from reactants into products: A + 2B D + 3E + k k [ ] Reactions occur with

More information

Kinematics Lab. 1 Introduction. 2 Equipment. 3 Procedures

Kinematics Lab. 1 Introduction. 2 Equipment. 3 Procedures Kinematics Lab 1 Introduction An object moving in one dimension and undergoing constant or uniform acceleration has a position given by: x(t) =x 0 +v o t +1/2at 2 where x o is its initial position (its

More information

Mechanical Energy and Simple Harmonic Oscillator

Mechanical Energy and Simple Harmonic Oscillator Mechanical Energy and Simple Harmonic Oscillator Simple Harmonic Motion Hooke s Law Define system, choose coordinate system. Draw free-body diagram. Hooke s Law! F spring =!kx ˆi! kx = d x m dt Checkpoint

More information

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring 17 Investigating a Mass Oscillating on a Spring A spring that is hanging vertically from a support with no mass at the end of the spring has a length L (called its rest length). When a mass is added to

More information

LAB 2 - ONE DIMENSIONAL MOTION

LAB 2 - ONE DIMENSIONAL MOTION Name Date Partners L02-1 LAB 2 - ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity

More information

Mon Jan Improved acceleration models: linear and quadratic drag forces. Announcements: Warm-up Exercise:

Mon Jan Improved acceleration models: linear and quadratic drag forces. Announcements: Warm-up Exercise: Math 2250-004 Week 4 notes We will not necessarily finish the material from a given day's notes on that day. We may also add or subtract some material as the week progresses, but these notes represent

More information

144 Chapter 3. Second Order Linear Equations

144 Chapter 3. Second Order Linear Equations 144 Chapter 3. Second Order Linear Equations PROBLEMS In each of Problems 1 through 8 find the general solution of the given differential equation. 1. y + 2y 3y = 0 2. y + 3y + 2y = 0 3. 6y y y = 0 4.

More information

July 19 - Work and Energy 1. Name Date Partners

July 19 - Work and Energy 1. Name Date Partners July 19 - Work and Energy 1 Name Date Partners WORK AND ENERGY Energy is the only life and is from the Body; and Reason is the bound or outward circumference of energy. Energy is eternal delight. William

More information

Due Date: First day of school if you miss the first day of school, you must send a scanned/pdf copy to Mr. Mejia:

Due Date: First day of school if you miss the first day of school, you must send a scanned/pdf copy to Mr. Mejia: Name: Date: AP Chemistry Summer Assignment Due Date: First day of school if you miss the first day of school, you must send a scanned/pdf copy to Mr. Mejia: jmejia@cboek12.org Assessment: Within the first

More information

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0 Math 2250 Lab 4 Name/Unid: 1. (35 points) Leslie Leroy Irvin bails out of an airplane at the altitude of 16,000 ft, falls freely for 20 s, then opens his parachute. Assuming linear air resistance ρv ft/s

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2009 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2009 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 Spring 2009 POP QUIZ

More information

What we learn from Chap. 15

What we learn from Chap. 15 Chemical Kinetics Chapter 15 What we learn from Chap. 15 15. The focus of this chapter is the rates and mechanisms of chemical reactions. The applications center around pesticides, beginning with the opening

More information

Math Numerical Analysis Homework #4 Due End of term. y = 2y t 3y2 t 3, 1 t 2, y(1) = 1. n=(b-a)/h+1; % the number of steps we need to take

Math Numerical Analysis Homework #4 Due End of term. y = 2y t 3y2 t 3, 1 t 2, y(1) = 1. n=(b-a)/h+1; % the number of steps we need to take Math 32 - Numerical Analysis Homework #4 Due End of term Note: In the following y i is approximation of y(t i ) and f i is f(t i,y i ).. Consider the initial value problem, y = 2y t 3y2 t 3, t 2, y() =.

More information

Dynamic Systems. Simulation of. with MATLAB and Simulink. Harold Klee. Randal Allen SECOND EDITION. CRC Press. Taylor & Francis Group

Dynamic Systems. Simulation of. with MATLAB and Simulink. Harold Klee. Randal Allen SECOND EDITION. CRC Press. Taylor & Francis Group SECOND EDITION Simulation of Dynamic Systems with MATLAB and Simulink Harold Klee Randal Allen CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis

More information

Introduction to First Order Equations Sections

Introduction to First Order Equations Sections A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Introduction to First Order Equations Sections 2.1-2.3 Dr. John Ehrke Department of Mathematics Fall 2012 Course Goals The

More information

General Physics I Lab. M1 The Atwood Machine

General Physics I Lab. M1 The Atwood Machine Purpose General Physics I Lab In this experiment, you will learn the basic operation of computer interfacing and use it in an experimental study of Newton s second law. Equipment and components Science

More information

AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION

AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION AP CHEMISTRY NOTES 7-1 KINETICS AND RATE LAW AN INTRODUCTION CHEMICAL KINETICS the study of rates of chemical reactions and the mechanisms by which they occur FACTORS WHICH AFFECT REACTION RATES 1. Nature

More information

Modern Physics (PHY 3305) - Lecture Notes. Modern Physics (PHY 3305) Lecture Notes

Modern Physics (PHY 3305) - Lecture Notes. Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Bound States II (Ch. 5.6-5.8) SteveSekula, 25 February 2010 (created 13 December 2009) tags: lecture 1 of 10 02/25/2010 11:56

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 14.1 Factors that Affect Reaction Rates 14.2 Reaction Rates 14.3 Concentration and Rate Laws 14.4 The Change of Concentration with Time 14.5 Temperature and Rate 14.6 Reaction Mechanisms 14.7

More information

Chapter 3 - First Law of Thermodynamics

Chapter 3 - First Law of Thermodynamics Chapter 3 - dynamics The ideal gas law is a combination of three intuitive relationships between pressure, volume, temp and moles. David J. Starling Penn State Hazleton Fall 2013 When a gas expands, it

More information

Mechanics. Reversible pendulum Dynamics. What you need: Complete Equipment Set, Manual on CD-ROM included. What you can learn about

Mechanics. Reversible pendulum Dynamics. What you need: Complete Equipment Set, Manual on CD-ROM included. What you can learn about Dynamics Mechanics What you can learn about Physical pendulum Moment of inertia Steiner s law Reduced length of pendulum Terrestrial gravitational acceleration Principle: By means of a reversible pendulum,

More information

Center of Mass. Evaluation copy

Center of Mass. Evaluation copy Center of Mass Experiment 19 INTRODUCTION In the most of the previous experiments you have examined the motion of a single object as it underwent a variety of motions. You learned that an object subject

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Thermodynamics tells us what can happen and how far towards completion a reaction will proceed. Kinetics tells us how fast the reaction will go. Study of rates of reactions

More information

Energy Analysis of a Mass Oscillating on a Spring Masses and Springs Simulation

Energy Analysis of a Mass Oscillating on a Spring Masses and Springs Simulation Energy Analysis of a Mass Oscillating on a Spring Masses and Springs Simulation Using FIREFOX only, go to http://www.colorado.edu/physics/phet (or Google phet ) Click on Simulations, then Masses and Springs

More information

Transport of Chemicals, Kinetics, and Equilibrium

Transport of Chemicals, Kinetics, and Equilibrium Transport of Chemicals, Kinetics, and Equilibrium Module 1: Basic Concepts, Lecture Chemical Fate and Transport in the Environment, nd edition. H.F. Hemond and E.J. Fechner-Levy. Academic Press. London.

More information

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D Lesson seven What is a chemical reaction? Science Constructing Explanations, Engaging in Argument and Obtaining, Evaluating, and Communicating Information ENGLISH LANGUAGE ARTS Reading Informational Text,

More information

Simple Harmonic Motion ===============================================

Simple Harmonic Motion =============================================== PHYS 1105 Last edit: May 25, 2017 SMU Physics Dept. Simple Harmonic Motion =============================================== Goal To determine the spring constant k and effective mass m eff of a real spring.

More information

Advanced Placement. Chemistry. Integrated Rates

Advanced Placement. Chemistry. Integrated Rates Advanced Placement Chemistry Integrated Rates 204 47.90 9.22 78.49 (26) 50.94 92.9 80.95 (262) 52.00 93.94 83.85 (263) 54.938 (98) 86.2 (262) 55.85 0. 90.2 (265) 58.93 02.9 92.2 (266) H Li Na K Rb Cs Fr

More information

Chapter 3 Engineering Solutions. 3.4 and 3.5 Problem Presentation

Chapter 3 Engineering Solutions. 3.4 and 3.5 Problem Presentation Chapter 3 Engineering Solutions 3.4 and 3.5 Problem Presentation Organize your work as follows (see book): Problem Statement Theory and Assumptions Solution Verification Tools: Pencil and Paper See Fig.

More information

3.1 Derivative Formulas for Powers and Polynomials

3.1 Derivative Formulas for Powers and Polynomials 3.1 Derivative Formulas for Powers and Polynomials First, recall that a derivative is a function. We worked very hard in 2.2 to interpret the derivative of a function visually. We made the link, in Ex.

More information

AP Physics B Syllabus

AP Physics B Syllabus AP Physics B Syllabus Course Overview Advanced Placement Physics B is a rigorous course designed to be the equivalent of a college introductory Physics course. The focus is to provide students with a broad

More information

LAB 6: WORK AND ENERGY

LAB 6: WORK AND ENERGY 89 Name Date Partners LAB 6: WORK AND ENERGY OBJECTIVES Energy is the only life and is from the Body; and Reason is the bound or outward circumference of energy. Energy is eternal delight. William Blake

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Physics 8.01L IAP Experiment 3: Momentum and Collisions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Physics 8.01L IAP Experiment 3: Momentum and Collisions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.01L IAP 2011 Experiment 3: Momentum and Collisions Purpose of the Experiment: In this experiment you collide a cart with a spring that

More information

C H E M I C N E S C I

C H E M I C N E S C I C H E M I C A L K I N E T S C I 4. Chemical Kinetics Introduction Average and instantaneous Rate of a reaction Express the rate of a reaction in terms of change in concentration Elementary and Complex

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations CHAPTER 5 Numerical Methods for Differential Equations In this chapter we will discuss a few of the many numerical methods which can be used to solve initial value problems and one-dimensional boundary

More information

Kinetics. Mary J. Bojan Chem Rate: change that occurs in a given interval of time.

Kinetics. Mary J. Bojan Chem Rate: change that occurs in a given interval of time. Kinetics Rates of reaction average rates instantaneous rates Dependence of rate on concentration rate constant rate laws order of the reaction Dependence of rate on time First order Second order Half-life

More information

5.111 Lecture Summary #30 Monday, November 24, 2014

5.111 Lecture Summary #30 Monday, November 24, 2014 5.111 Lecture Summary #30 Monday, November 24, 2014 Reading for Today: 14.114.5 in 5 th ed and 13.113.5 in 4 th ed. Reading for Lecture #31: 14.6, 17.7 in 5 th ed and 13.6, 17.7 in 4 th ed. Topic: Introduction

More information

Chemical Kinetics. What quantities do we study regarding chemical reactions? 15 Chemical Kinetics

Chemical Kinetics. What quantities do we study regarding chemical reactions? 15 Chemical Kinetics Chemical Kinetics Chemical kinetics: the study of reaction rate, a quantity conditions affecting it, the molecular events during a chemical reaction (mechanism), and presence of other components (catalysis).

More information

The Nonlinear Pendulum

The Nonlinear Pendulum The Nonlinear Pendulum Evan Sheridan 11367741 Feburary 18th 013 Abstract Both the non-linear linear pendulum are investigated compared using the pendulum.c program that utilizes the trapezoid method for

More information

Oregonator model of the Belousov-Zhabotinsky reaction Richard K. Herz,

Oregonator model of the Belousov-Zhabotinsky reaction Richard K. Herz, Oregonator model of the Belousov-Zhabotinsky reaction Richard K. Herz, rherz@ucsd.edu Boris Belousov in the 1950's discovered that a mixture of malonic acid, potassium bromate, and cerium sulfate an acidic

More information

The Chemistry Maths Book

The Chemistry Maths Book Solutions for Chapter The Chemistr Maths Book Erich Steiner Universit of Eeter Second Edition 008 Solutions Chapter. Differentiation. Concepts. The process of differentiation. Continuit. Limits.5 Differentiation

More information

Athena Visual Software, Inc. 1

Athena Visual Software, Inc. 1 Athena Visual Studio Visual Kinetics Tutorial VisualKinetics is an integrated tool within the Athena Visual Studio software environment, which allows scientists and engineers to simulate the dynamic behavior

More information

Numerical Algorithms for ODEs/DAEs (Transient Analysis)

Numerical Algorithms for ODEs/DAEs (Transient Analysis) Numerical Algorithms for ODEs/DAEs (Transient Analysis) Slide 1 Solving Differential Equation Systems d q ( x(t)) + f (x(t)) + b(t) = 0 dt DAEs: many types of solutions useful DC steady state: state no

More information

Lecture IV: Time Discretization

Lecture IV: Time Discretization Lecture IV: Time Discretization Motivation Kinematics: continuous motion in continuous time Computer simulation: Discrete time steps t Discrete Space (mesh particles) Updating Position Force induces acceleration.

More information

Assignment 1: Optimization and mathematical modeling

Assignment 1: Optimization and mathematical modeling Math 360 Winter 2017 Section 101 Assignment 1: Optimization and mathematical modeling 0.1 (Due Thursday Sept 28, 2017) Let P = (, y) be any point on the straight line y = 4 3. (a) Show that the distance

More information

Chemistry 112 Name Exam I Form A Section January 29,

Chemistry 112 Name Exam I Form A Section January 29, Chemistry 112 Name Exam I Form A Section January 29, 2013 email IMPORTANT: On the scantron (answer sheet), you MUST clearly fill your name, your student number, section number, and test form (white cover

More information

THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS PHYS2020 COMPUTATIONAL PHYSICS FINAL EXAM SESSION I Answer all questions

THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS PHYS2020 COMPUTATIONAL PHYSICS FINAL EXAM SESSION I Answer all questions THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS PHYS2020 COMPUTATIONAL PHYSICS FINAL EXAM SESSION I 2007 Answer all questions Time allowed =2 hours Total number of questions =5 Marks =40 The questions

More information

Rate of a chemical reaction = Change in concentration Change in time

Rate of a chemical reaction = Change in concentration Change in time 1) 2) 1) The nature of reactants and products 2) The concentration of reacting species 3) Temperature 4) Catalyst [A] Rate of a chemical reaction = Change in concentration Change in time [B] Rate of disappearance

More information

k 1 HBrO 2 + HOBr (2) k 2 2HOBr (3) 3 2 BrO 2 + 2H 2 O (4) Ce 4+ + HBrO 2 (5)

k 1 HBrO 2 + HOBr (2) k 2 2HOBr (3) 3 2 BrO 2 + 2H 2 O (4) Ce 4+ + HBrO 2 (5) Waldemar Nowici EXPERIMENT 2 The Belousov-Żabotyńsi reaction Basic notion: oscillating reaction Introduction Oscillating reactions are those in which the concentrations of reagents undergo periodical changes

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

This is. BC Calculus Review

This is. BC Calculus Review This is BC Calculus Review Math Jeopardy Convergence Tests Parametric Taylor/ Maclaurin Series Polar AB Obscurities Easy AB Stuff $100 $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $200 $300 $300 $300

More information

Theoretical Models for Chemical Kinetics

Theoretical Models for Chemical Kinetics Theoretical Models for Chemical Kinetics Thus far we have calculated rate laws, rate constants, reaction orders, etc. based on observations of macroscopic properties, but what is happening at the molecular

More information

Name Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y

Name Class. 5. Find the particular solution to given the general solution y C cos x and the. x 2 y 10 Differential Equations Test Form A 1. Find the general solution to the first order differential equation: y 1 yy 0. 1 (a) (b) ln y 1 y ln y 1 C y y C y 1 C y 1 y C. Find the general solution to the

More information

PHYSICS 211 LAB #8: Periodic Motion

PHYSICS 211 LAB #8: Periodic Motion PHYSICS 211 LAB #8: Periodic Motion A Lab Consisting of 6 Activities Name: Section: TA: Date: Lab Partners: Circle the name of the person to whose report your group printouts will be attached. Individual

More information

Stuff. ---Tonight: Lecture 3 July Assignment 1 has been posted. ---Presentation Assignment on Friday.

Stuff. ---Tonight: Lecture 3 July Assignment 1 has been posted. ---Presentation Assignment on Friday. Stuff ---Tonight: Lecture 3 July 0 ---Assignment 1 has been posted. Work from gravitational forces: h F gravity dx = h 0 0 mgh mg dx Where m (kg) and g is gravitational constant 9.8 m/s ---Presentation

More information

11/2/ and the not so familiar. Chemical kinetics is the study of how fast reactions take place.

11/2/ and the not so familiar. Chemical kinetics is the study of how fast reactions take place. Familiar Kinetics...and the not so familiar Reaction Rates Chemical kinetics is the study of how fast reactions take place. Some happen almost instantaneously, while others can take millions of years.

More information

EXPERIMENT 4 ONE DIMENSIONAL MOTION

EXPERIMENT 4 ONE DIMENSIONAL MOTION EXPERIMENT 4 ONE DIMENSIONAL MOTION INTRODUCTION This experiment explores the meaning of displacement; velocity, acceleration and the relationship that exist between them. An understanding of these concepts

More information

CHEM Chapter 14. Chemical Kinetics (Homework) Ky40

CHEM Chapter 14. Chemical Kinetics (Homework) Ky40 CHEM 1412. Chapter 14. Chemical Kinetics (Homework) Ky40 1. Chlorine dioxide reacts in basic water to form chlorite and chlorate according to the following chemical equation: 2ClO 2 (aq) + 2OH (aq) ClO

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations In this lecture, we will look at different options for coding simple differential equations. Start by considering bicycle riding as an example. Why does a bicycle move forward?

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

Advanced Chemistry Practice Problems

Advanced Chemistry Practice Problems Kinetics: Rate of Chemical Reactions The diagram below depicts the progress of a reaction. Each shape and color represents a different substance. The three boxes represent the concentrations of each substance

More information

1 The relation between a second order linear ode and a system of two rst order linear odes

1 The relation between a second order linear ode and a system of two rst order linear odes Math 1280 Spring, 2010 1 The relation between a second order linear ode and a system of two rst order linear odes In Chapter 3 of the text you learn to solve some second order linear ode's, such as x 00

More information

Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm.

Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm. 1 competing species Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm. This section and the next deal with the subject of population biology. You will already have seen examples of this. Most calculus

More information

Lecture 2. Chemical Kinetics. Chemical Kinetics 6/26/11. One (elementary) step reaction

Lecture 2. Chemical Kinetics. Chemical Kinetics 6/26/11. One (elementary) step reaction Lecture Chemical Kinetics 1 One (elementary) step reaction im i i M i is the number of species i, i are the stoichiometric coefficients i i Chemical Kinetics =0ifi is not a reactant =0ifi is not a product

More information