Akaike Information Criterion

Size: px
Start display at page:

Download "Akaike Information Criterion"

Transcription

1 Akaike Information Criterion Shuhua Hu Center for Research in Scientific Computation North Carolina State University Raleigh, NC February 7,

2 background Background Model statistical model: Y j = h(t j ;q)+e j, j = 1,2,...,n h(t j ;q): corresponds to the observed part of the solution of a mathematical model (e.g., described by system of ODE, or PDE) with model parameter q at the measurement time point t j. E j : measurement error at measurement time point t j (random variable). Y j : observation at measurement time point t j ( random variable). Under the assumption of E j being i.i.d N(0,σ 2 ), we have n [ 1 probability distribution model: g(y θ) = j=1 )] 2πσ exp ( (y j h(t j ;q)) 2 2σ 2 g: probability density function of Y = (Y 1,Y 2,...,Y n ) T given parameter θ. θ includes mathematical model parameter q and statistical model parameter σ, i.e., θ = (q,σ) T. y = (y 1,y 2,...,y n ) T is a realization of Y. February 7,

3 background Risk Modeling error (in terms of uncertainty assumption) Specified inappropriate parametric probability distribution for the data at hand. Estimation error ϑ ˆθ 2 = ϑ θ 2 }{{} bias + θ ˆθ 2 }{{} variance ϑ: parameter vector for the full reality model. θ: is the projection of ϑ onto the parameter space Θ k of the approximating model. ˆθ: the maximum likelihood estimate of θ in Θ k. February 7,

4 background Principle of Parsimony (with same data set) Variance For sufficiently large sample size n, we have n θ ˆθ 2 assym. χ 2 k, where E(χ2 k ) = k. Akaike Information Criterion February 7,

5 K-L information Kullback-Leibler Information Information lost when approximating model is used to approximate the full reality. Continuous Case I(f,g( θ)) = = Ω Ω f(x)log ( ) f(x) dx g(x θ) f(x)log(f(x))dx f(x) log(g(x θ))dx } Ω {{} relative K-L information f: full reality or truth in terms of a probability distribution. g: approximating model in terms of a probability distribution. θ: parameter vector in the approximating model g. Remark I(f,g) 0, with I(f,g) = 0 if and only if f = g almost everywhere. I(f,g) I(g,f),whichimpliesK-L information is not the real distance. February 7,

6 AIC Akaike Information Criterion (1973) Motivation The truth f is unknown. The parameter θ in g must be estimated from the empirical data {y j } n j=1. y = (y 1,y 2,...,y n ) T is a realization of Y, which is the random sample from the density function f(y). θ (Y): estimator of θ. It is a random variable. I(f,g( θ (Y))) is a random variable. Remark We need to use expected K-L information E Y [I(f,g( θ (Y)))] to measure the distance between g and f. February 7,

7 AIC Selection Target Minimizing E Y [I(f,g( θ (Y)))] g G E Y [I(f,g( θ (Y)))] = [ ] Ω f(x)log(f(x))dx f(y) f(x)log(g(x θ (y)))dx dy. Ω Ω }{{} E Y E X [log(g(x θ (Y)))] G: collection of admissible models (in terms of probability density functions). θ (y) is MLE estimate based on model g and data {y j } n j=1. Model Selection Criterion Maximizing g G E Y E X [log(g(x θ (Y)))] February 7,

8 AIC Key Result An approximately unbiased estimate of E Y E X [log(g(x θ (Y)))] for large sample and good model is log(l(ˆθ y)) k L(ˆθ y) represents likelihood of ˆθ given data {y j } n j=1, that is, L(ˆθ y) = g(y ˆθ). ˆθ: maximum likelihood estimate of θ given data {y j } n j=1, that is, ˆθ = θ (y). k: number of estimated parameters (including mathematical model parameters and statistical model parameters). Remark Large sample: used to ensure that the estimate ˆθ provides a good approximation to the true value θ 0 (consistency property of maximum likelihood estimator). Good model: the model that is close to f in the sense of having a small K-L value. February 7,

9 AIC Maximum Likelihood Case AIC = 2logL(ˆθ y) ւ bias + 2k ց variance CalculateAICvalueforeachmodelwiththesame data set,andthe best model is the one with minimum AIC value. The value of AIC depends on data {y j } n j=1, which leads to model selection uncertainty. Least-Squares Case Assumption: i.i.d. normally distributed errors ( ) RSS AIC = nlog +2k n RSS denotes residual sum of squares of fitted model. February 7,

10 TIC Takeuchi s Information Criterion (1976) useful in cases where the model is not particular close to truth. Model Selection Criterion Maximizing g G E Y E X [log(g(x θ (Y)))] Key Result An approximately unbiased estimator of E Y E X [log(g(x θ (Y)))] for large sample is log(l(ˆθ y)) tr(j(θ 0 )I(θ 0 ) 1 ) { ( J(θ 0 ) = E f θ log(g(x θ 0)) )( θ log(g(x θ 0)) ) } T ( } I(θ 0 ) = E f { 2 log(g(x θ 0 )) θ i θ j )k k Remark If g f, then I(θ 0 ) = J(θ 0 ). Hence tr(j(θ 0 )I(θ 0 ) 1 ) = k. If g is close to f, then tr(j(θ 0 )I(θ 0 ) 1 ) k. February 7,

11 TIC TIC TIC = 2log(L(ˆθ y))+2tr(ĵ(ˆθ)[î(ˆθ)] 1 ), where Î(ˆθ) and Ĵ(ˆθ) are both k k matrix, and ( ) 2 log(g(y ˆθ)) Î(ˆθ) = estimate of I(θ 0 ) θ i θ j k k Ĵ(ˆθ) = [ θ log(g(y ˆθ)) ][ θ log(g(y ˆθ)) ] T estimate of J(θ 0 ) Remark Attractive in theory. Rarely used in practice because we need a very large sample size to obtain good estimates for both I(θ 0 ) and J(θ 0 ). February 7,

12 AIC c A Small Sample AIC use in the case where the sample size is small relative to the number of parameters rule of thumb: n/k < 40 Univariate Case Assumption: i.i.d normal error distribution with the truth contained in the model set. 2k(k +1) AIC c = AIC + } n k {{ 1} bias-correction Remark Thebias-correctiontermvariesbytypeofmodel(e.g.,normal,exponential,Poisson). Inpractice, AIC c isgenerallysuitableunlesstheunderlyingprobabilitydistribution is extremely nonnormal, especially in terms of being strongly skewed. February 7,

13 AIC c Multivariate Case Assumption: each row of E is i.i.d N(0,Σ) with the truth contained in the model set. Applying to the multivariate case: AIC c = AIC +2 k( k +1+p) n k 1 p Y = TB +E, where Y R n p,t R n k,b R k p. p: total number of components. n: number of independent multivariate observations, each with p nonindependent components. k: total number of unknown parameters and k = kp+p(p+1)/2. Remark Bedrick and Tsai in [1] claimed that this result can be extended to the multivariate nonlinear regression model. February 7,

14 AIC difference AIC Differences, Likelihood of a Model, Akaike Weights AIC differences Information loss when fitted model is used rather than the best approximating model i = AIC i AIC min AIC min : AIC values for the best model in the set. Likelihood of a Model Useful in making inference concerning the relative strength of evidence for each of the models in the set ( L(g i y) exp 1 ) 2 i, where means is proportional to. Akaike Weights Weight of evidence in favor of model i being the best approximating model in the set exp( 1 2 w i = i) R r=1 exp( 1 2 r) February 7,

15 confidence set Confidence Set for K-L Best Model Three Heuristic Approaches (see [4]) Based on the Akaike weights w i To obtain a 95% confidence set on the actual K-L best model, summing the Akaike weights from largest to smallest until that sum is just 0.95, and the corresponding subset of models is the confidence set on the K-L best model. Based on AIC difference i 0 i 2, substantial support, 4 i 7, considerable less support, i > 10, essentially no support. Remark Particularly useful for nested models, may break down when the model set is large. The guideline values may be somewhat larger for nonnested models. February 7,

16 confidence set Motivated by likelihood-based inference The confidence set of models is all models for which the ratio L(g i y) L(g min y) > α, where α might be chosen as 1 8. February 7,

17 multimodel inference Multimodel Inference Unconditional Variance Estimator [ R var(ˆ θ) = w i var(ˆθ i g i )+(ˆθ i ˆ θ) 2 i=1 θ is a parameter in common to all R models. ˆθ i means that the parameter θ is estimated based on model g i, ˆ θ is a model-averaged estimate ˆ θ = R i=1 w iˆθ i. Remark Unconditional meansnotconditionalonanyparticularmodel,butstillconditional on the full set of models considered. If θ is a parameter in common to only a subset of the R models, then w i must be recalculated based on just these models (thus these new weights must satisfy wi = 1). Use unconditional variance unless the selected model is strongly supported (for example, w min > 0.9). February 7, ] 2

18 summary Summary of Akaike Information Criteria Advantages Valid for both nested and nonnested models. Compare models with different error distribution. Avoid multiple testing issues. Selected Model The model with minimum AIC value. Specific to given data set. Pitfall in Using Akaike Information Criteria Can not be used to compare models of different data sets. For example, if nonlinear regression model g 1 is fitted to a data set with n = 140 observations,onecannotvalidlycompareitwithmodelg 2 when7outliershavebeen deleted, leaving only n = 133. February 7,

19 summary Should use the same response variables for all the candidate models. For example, if there was interest in the normal and log-normal model forms, the models would have to be expressed, respectively, as g 1 (x µ,σ) = 1 2πσ exp instead of g 1 (x µ,σ) = 1 2πσ exp [ [ (x µ)2 2σ 2 (x µ)2 2σ 2 ] ], g 2 (x µ,σ) = [ ] 1 x 2πσ exp (log(x) µ)2, 2σ 2, g 2 (log(x) µ,σ) = 1 [ ] exp (log(x) µ)2. 2πσ 2σ 2 Do not mix null hypothesis testing with information criterion. Information criterion is not a test, so avoid use of significant and not significant, or rejected and not rejected in reporting results. Do not use AIC to rank models in the set and then test whether the best model is significantly better than the second-best model. Should retain all the components of each likelihood in comparing different probability distributions. February 7,

20 reference References [1] E.J. Bedrick and C.L. Tsai, Model Selection for Multivariate Regression in Small Samples, Biometrics, 50 (1994), [2] H. Bozdogan, Model Selection and Akaike s Information Criterion (AIC): The General Theory and Its Analytical Extensions, Psychometrika, 52 (1987), [3] H. Bozdogan, Akaike s Information Criterion and Recent Developments in Information Complexity, Journal of Mathematical Psychology, 44 (2000), [4] K.P. Burnham and D.R. Anderson, Model Selection and Inference: A Practical Information-Theoretical Approach, (1998), New York: Springer-Verlag. [5] K.P. Burnham and D.R. Anderson, Multimodel Inference: Understanding AIC and BIC in Model Selection, Sociological methods and research, 33 (2004), [6] C.M. Hurvich and C.L. Tsai, Regression and Time Series Model Selection in Small Samples, Biometrika, 76 (1989). February 7,

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

Bias Correction of Cross-Validation Criterion Based on Kullback-Leibler Information under a General Condition

Bias Correction of Cross-Validation Criterion Based on Kullback-Leibler Information under a General Condition Bias Correction of Cross-Validation Criterion Based on Kullback-Leibler Information under a General Condition Hirokazu Yanagihara 1, Tetsuji Tonda 2 and Chieko Matsumoto 3 1 Department of Social Systems

More information

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30 MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD Copyright c 2012 (Iowa State University) Statistics 511 1 / 30 INFORMATION CRITERIA Akaike s Information criterion is given by AIC = 2l(ˆθ) + 2k, where l(ˆθ)

More information

Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems

Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems Jeremy S. Conner and Dale E. Seborg Department of Chemical Engineering University of California, Santa Barbara, CA

More information

KULLBACK-LEIBLER INFORMATION THEORY A BASIS FOR MODEL SELECTION AND INFERENCE

KULLBACK-LEIBLER INFORMATION THEORY A BASIS FOR MODEL SELECTION AND INFERENCE KULLBACK-LEIBLER INFORMATION THEORY A BASIS FOR MODEL SELECTION AND INFERENCE Kullback-Leibler Information or Distance f( x) gx ( ±) ) I( f, g) = ' f( x)log dx, If, ( g) is the "information" lost when

More information

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures FE661 - Statistical Methods for Financial Engineering 9. Model Selection Jitkomut Songsiri statistical models overview of model selection information criteria goodness-of-fit measures 9-1 Statistical models

More information

A Study on the Bias-Correction Effect of the AIC for Selecting Variables in Normal Multivariate Linear Regression Models under Model Misspecification

A Study on the Bias-Correction Effect of the AIC for Selecting Variables in Normal Multivariate Linear Regression Models under Model Misspecification TR-No. 13-08, Hiroshima Statistical Research Group, 1 23 A Study on the Bias-Correction Effect of the AIC for Selecting Variables in Normal Multivariate Linear Regression Models under Model Misspecification

More information

Econometrics I, Estimation

Econometrics I, Estimation Econometrics I, Estimation Department of Economics Stanford University September, 2008 Part I Parameter, Estimator, Estimate A parametric is a feature of the population. An estimator is a function of the

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

Introduction to Estimation Methods for Time Series models Lecture 2

Introduction to Estimation Methods for Time Series models Lecture 2 Introduction to Estimation Methods for Time Series models Lecture 2 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 2 SNS Pisa 1 / 21 Estimators:

More information

Selection Criteria Based on Monte Carlo Simulation and Cross Validation in Mixed Models

Selection Criteria Based on Monte Carlo Simulation and Cross Validation in Mixed Models Selection Criteria Based on Monte Carlo Simulation and Cross Validation in Mixed Models Junfeng Shang Bowling Green State University, USA Abstract In the mixed modeling framework, Monte Carlo simulation

More information

Model Selection for Semiparametric Bayesian Models with Application to Overdispersion

Model Selection for Semiparametric Bayesian Models with Application to Overdispersion Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS020) p.3863 Model Selection for Semiparametric Bayesian Models with Application to Overdispersion Jinfang Wang and

More information

AIC under the Framework of Least Squares Estimation

AIC under the Framework of Least Squares Estimation AIC under the Framework of Least Squares Estimation H.T. Banks and Michele L. Joyner Center for Research in Scientific Computation orth Carolina State University Raleigh, C, United States and Dept of Mathematics

More information

Information Theory and Entropy

Information Theory and Entropy 3 Information Theory and Entropy Solomon Kullback (1907 1994) was born in Brooklyn, New York, USA, and graduated from the City College of New York in 1927, received an M.A. degree in mathematics in 1929,

More information

The degree distribution

The degree distribution Universitat Politècnica de Catalunya Version 0.5 Complex and Social Networks (2018-2019) Master in Innovation and Research in Informatics (MIRI) Instructors Argimiro Arratia, argimiro@cs.upc.edu, http://www.cs.upc.edu/~argimiro/

More information

Bias-corrected AIC for selecting variables in Poisson regression models

Bias-corrected AIC for selecting variables in Poisson regression models Bias-corrected AIC for selecting variables in Poisson regression models Ken-ichi Kamo (a), Hirokazu Yanagihara (b) and Kenichi Satoh (c) (a) Corresponding author: Department of Liberal Arts and Sciences,

More information

An Akaike Criterion based on Kullback Symmetric Divergence in the Presence of Incomplete-Data

An Akaike Criterion based on Kullback Symmetric Divergence in the Presence of Incomplete-Data An Akaike Criterion based on Kullback Symmetric Divergence Bezza Hafidi a and Abdallah Mkhadri a a University Cadi-Ayyad, Faculty of sciences Semlalia, Department of Mathematics, PB.2390 Marrakech, Moroco

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 02: Linear Methods for Regression Department of Statistics & Biostatistics Rutgers University September 13 2011 Regression Problem Quantitative generic output variable Y. Generic

More information

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata Maura Department of Economics and Finance Università Tor Vergata Hypothesis Testing Outline It is a mistake to confound strangeness with mystery Sherlock Holmes A Study in Scarlet Outline 1 The Power Function

More information

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1,

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1, Economics 520 Lecture Note 9: Hypothesis Testing via the Neyman-Pearson Lemma CB 8., 8.3.-8.3.3 Uniformly Most Powerful Tests and the Neyman-Pearson Lemma Let s return to the hypothesis testing problem

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 21 Model selection Choosing the best model among a collection of models {M 1, M 2..., M N }. What is a good model? 1. fits the data well (model

More information

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation Yujin Chung November 29th, 2016 Fall 2016 Yujin Chung Lec13: MLE Fall 2016 1/24 Previous Parametric tests Mean comparisons (normality assumption)

More information

The Behaviour of the Akaike Information Criterion when Applied to Non-nested Sequences of Models

The Behaviour of the Akaike Information Criterion when Applied to Non-nested Sequences of Models The Behaviour of the Akaike Information Criterion when Applied to Non-nested Sequences of Models Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School of Population Health

More information

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach

Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Statistical Methods for Handling Incomplete Data Chapter 2: Likelihood-based approach Jae-Kwang Kim Department of Statistics, Iowa State University Outline 1 Introduction 2 Observed likelihood 3 Mean Score

More information

Review. December 4 th, Review

Review. December 4 th, Review December 4 th, 2017 Att. Final exam: Course evaluation Friday, 12/14/2018, 10:30am 12:30pm Gore Hall 115 Overview Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 6: Statistics and Sampling Distributions Chapter

More information

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Revision Class for Midterm Exam AMS-UCSC Th Feb 9, 2012 Winter 2012. Session 1 (Revision Class) AMS-132/206 Th Feb 9, 2012 1 / 23 Topics Topics We will

More information

Distributions of Maximum Likelihood Estimators and Model Comparisons

Distributions of Maximum Likelihood Estimators and Model Comparisons Distributions of Maximum Likelihood Estimators and Model Comparisons Peter Hingley Abstract Experimental data need to be assessed for purposes of model identification, estimation of model parameters and

More information

Regression I: Mean Squared Error and Measuring Quality of Fit

Regression I: Mean Squared Error and Measuring Quality of Fit Regression I: Mean Squared Error and Measuring Quality of Fit -Applied Multivariate Analysis- Lecturer: Darren Homrighausen, PhD 1 The Setup Suppose there is a scientific problem we are interested in solving

More information

Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model

Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School of Population

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7

MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 MA 575 Linear Models: Cedric E. Ginestet, Boston University Midterm Review Week 7 1 Random Vectors Let a 0 and y be n 1 vectors, and let A be an n n matrix. Here, a 0 and A are non-random, whereas y is

More information

Central Limit Theorem ( 5.3)

Central Limit Theorem ( 5.3) Central Limit Theorem ( 5.3) Let X 1, X 2,... be a sequence of independent random variables, each having n mean µ and variance σ 2. Then the distribution of the partial sum S n = X i i=1 becomes approximately

More information

7. Estimation and hypothesis testing. Objective. Recommended reading

7. Estimation and hypothesis testing. Objective. Recommended reading 7. Estimation and hypothesis testing Objective In this chapter, we show how the election of estimators can be represented as a decision problem. Secondly, we consider the problem of hypothesis testing

More information

Statistical Practice. Selecting the Best Linear Mixed Model Under REML. Matthew J. GURKA

Statistical Practice. Selecting the Best Linear Mixed Model Under REML. Matthew J. GURKA Matthew J. GURKA Statistical Practice Selecting the Best Linear Mixed Model Under REML Restricted maximum likelihood (REML) estimation of the parameters of the mixed model has become commonplace, even

More information

Bootstrap Variants of the Akaike Information Criterion for Mixed Model Selection

Bootstrap Variants of the Akaike Information Criterion for Mixed Model Selection Bootstrap Variants of the Akaike Information Criterion for Mixed Model Selection Junfeng Shang, and Joseph E. Cavanaugh 2, Bowling Green State University, USA 2 The University of Iowa, USA Abstract: Two

More information

Composite Hypotheses and Generalized Likelihood Ratio Tests

Composite Hypotheses and Generalized Likelihood Ratio Tests Composite Hypotheses and Generalized Likelihood Ratio Tests Rebecca Willett, 06 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve

More information

Multimodel Inference: Understanding AIC relative variable importance values. Kenneth P. Burnham Colorado State University Fort Collins, Colorado 80523

Multimodel Inference: Understanding AIC relative variable importance values. Kenneth P. Burnham Colorado State University Fort Collins, Colorado 80523 November 6, 2015 Multimodel Inference: Understanding AIC relative variable importance values Abstract Kenneth P Burnham Colorado State University Fort Collins, Colorado 80523 The goal of this material

More information

Model Selection and Geometry

Model Selection and Geometry Model Selection and Geometry Pascal Massart Université Paris-Sud, Orsay Leipzig, February Purpose of the talk! Concentration of measure plays a fundamental role in the theory of model selection! Model

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Akaike criterion: Kullback-Leibler discrepancy

Akaike criterion: Kullback-Leibler discrepancy Model choice. Akaike s criterion Akaike criterion: Kullback-Leibler discrepancy Given a family of probability densities {f ( ; ψ), ψ Ψ}, Kullback-Leibler s index of f ( ; ψ) relative to f ( ; θ) is (ψ

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

1. Introduction Over the last three decades a number of model selection criteria have been proposed, including AIC (Akaike, 1973), AICC (Hurvich & Tsa

1. Introduction Over the last three decades a number of model selection criteria have been proposed, including AIC (Akaike, 1973), AICC (Hurvich & Tsa On the Use of Marginal Likelihood in Model Selection Peide Shi Department of Probability and Statistics Peking University, Beijing 100871 P. R. China Chih-Ling Tsai Graduate School of Management University

More information

Comparison of New Approach Criteria for Estimating the Order of Autoregressive Process

Comparison of New Approach Criteria for Estimating the Order of Autoregressive Process IOSR Journal of Mathematics (IOSRJM) ISSN: 78-578 Volume 1, Issue 3 (July-Aug 1), PP 1- Comparison of New Approach Criteria for Estimating the Order of Autoregressive Process Salie Ayalew 1 M.Chitti Babu,

More information

An Information Criteria for Order-restricted Inference

An Information Criteria for Order-restricted Inference An Information Criteria for Order-restricted Inference Nan Lin a, Tianqing Liu 2,b, and Baoxue Zhang,2,b a Department of Mathematics, Washington University in Saint Louis, Saint Louis, MO 633, U.S.A. b

More information

Ken-ichi Kamo Department of Liberal Arts and Sciences, Sapporo Medical University, Hokkaido, Japan

Ken-ichi Kamo Department of Liberal Arts and Sciences, Sapporo Medical University, Hokkaido, Japan A STUDY ON THE BIAS-CORRECTION EFFECT OF THE AIC FOR SELECTING VARIABLES IN NOR- MAL MULTIVARIATE LINEAR REGRESSION MOD- ELS UNDER MODEL MISSPECIFICATION Authors: Hirokazu Yanagihara Department of Mathematics,

More information

2.2 Classical Regression in the Time Series Context

2.2 Classical Regression in the Time Series Context 48 2 Time Series Regression and Exploratory Data Analysis context, and therefore we include some material on transformations and other techniques useful in exploratory data analysis. 2.2 Classical Regression

More information

Model Fitting, Bootstrap, & Model Selection

Model Fitting, Bootstrap, & Model Selection Model Fitting, Bootstrap, & Model Selection G. Jogesh Babu Penn State University http://www.stat.psu.edu/ babu http://astrostatistics.psu.edu Model Fitting Non-linear regression Density (shape) estimation

More information

Model comparison: Deviance-based approaches

Model comparison: Deviance-based approaches Model comparison: Deviance-based approaches Patrick Breheny February 19 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/23 Model comparison Thus far, we have looked at residuals in a fairly

More information

EIE6207: Estimation Theory

EIE6207: Estimation Theory EIE6207: Estimation Theory Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: Steven M.

More information

Model Fitting and Model Selection. Model Fitting in Astronomy. Model Selection in Astronomy.

Model Fitting and Model Selection. Model Fitting in Astronomy. Model Selection in Astronomy. Model Fitting and Model Selection G. Jogesh Babu Penn State University http://www.stat.psu.edu/ babu http://astrostatistics.psu.edu Model Fitting Non-linear regression Density (shape) estimation Parameter

More information

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Why uncertainty? Why should data mining care about uncertainty? We

More information

Chapter 7. Hypothesis Testing

Chapter 7. Hypothesis Testing Chapter 7. Hypothesis Testing Joonpyo Kim June 24, 2017 Joonpyo Kim Ch7 June 24, 2017 1 / 63 Basic Concepts of Testing Suppose that our interest centers on a random variable X which has density function

More information

Akaike criterion: Kullback-Leibler discrepancy

Akaike criterion: Kullback-Leibler discrepancy Model choice. Akaike s criterion Akaike criterion: Kullback-Leibler discrepancy Given a family of probability densities {f ( ; ), 2 }, Kullback-Leibler s index of f ( ; ) relativetof ( ; ) is Z ( ) =E

More information

Practical Econometrics. for. Finance and Economics. (Econometrics 2)

Practical Econometrics. for. Finance and Economics. (Econometrics 2) Practical Econometrics for Finance and Economics (Econometrics 2) Seppo Pynnönen and Bernd Pape Department of Mathematics and Statistics, University of Vaasa 1. Introduction 1.1 Econometrics Econometrics

More information

Testing Restrictions and Comparing Models

Testing Restrictions and Comparing Models Econ. 513, Time Series Econometrics Fall 00 Chris Sims Testing Restrictions and Comparing Models 1. THE PROBLEM We consider here the problem of comparing two parametric models for the data X, defined by

More information

Lecture 3. Inference about multivariate normal distribution

Lecture 3. Inference about multivariate normal distribution Lecture 3. Inference about multivariate normal distribution 3.1 Point and Interval Estimation Let X 1,..., X n be i.i.d. N p (µ, Σ). We are interested in evaluation of the maximum likelihood estimates

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Resampling techniques for statistical modeling

Resampling techniques for statistical modeling Resampling techniques for statistical modeling Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Resampling techniques p.1/33 Beyond the empirical error

More information

2018 2019 1 9 sei@mistiu-tokyoacjp http://wwwstattu-tokyoacjp/~sei/lec-jhtml 11 552 3 0 1 2 3 4 5 6 7 13 14 33 4 1 4 4 2 1 1 2 2 1 1 12 13 R?boxplot boxplotstats which does the computation?boxplotstats

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models Lecture 3. Hypothesis testing. Goodness of Fit. Model diagnostics GLM (Spring, 2018) Lecture 3 1 / 34 Models Let M(X r ) be a model with design matrix X r (with r columns) r n

More information

Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices

Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices Article Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices Fei Jin 1,2 and Lung-fei Lee 3, * 1 School of Economics, Shanghai University of Finance and Economics,

More information

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Fall, 2013 Page 1 Random Variable and Probability Distribution Discrete random variable Y : Finite possible values {y

More information

Model selection in penalized Gaussian graphical models

Model selection in penalized Gaussian graphical models University of Groningen e.c.wit@rug.nl http://www.math.rug.nl/ ernst January 2014 Penalized likelihood generates a PATH of solutions Consider an experiment: Γ genes measured across T time points. Assume

More information

Variable Selection in Multivariate Linear Regression Models with Fewer Observations than the Dimension

Variable Selection in Multivariate Linear Regression Models with Fewer Observations than the Dimension Variable Selection in Multivariate Linear Regression Models with Fewer Observations than the Dimension (Last Modified: November 3 2008) Mariko Yamamura 1, Hirokazu Yanagihara 2 and Muni S. Srivastava 3

More information

DYNAMIC ECONOMETRIC MODELS Vol. 9 Nicolaus Copernicus University Toruń Mariola Piłatowska Nicolaus Copernicus University in Toruń

DYNAMIC ECONOMETRIC MODELS Vol. 9 Nicolaus Copernicus University Toruń Mariola Piłatowska Nicolaus Copernicus University in Toruń DYNAMIC ECONOMETRIC MODELS Vol. 9 Nicolaus Copernicus University Toruń 2009 Mariola Piłatowska Nicolaus Copernicus University in Toruń Combined Forecasts Using the Akaike Weights A b s t r a c t. The focus

More information

1. Hypothesis testing through analysis of deviance. 3. Model & variable selection - stepwise aproaches

1. Hypothesis testing through analysis of deviance. 3. Model & variable selection - stepwise aproaches Sta 216, Lecture 4 Last Time: Logistic regression example, existence/uniqueness of MLEs Today s Class: 1. Hypothesis testing through analysis of deviance 2. Standard errors & confidence intervals 3. Model

More information

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing STAT 135 Lab 5 Bootstrapping and Hypothesis Testing Rebecca Barter March 2, 2015 The Bootstrap Bootstrap Suppose that we are interested in estimating a parameter θ from some population with members x 1,...,

More information

Machine learning - HT Maximum Likelihood

Machine learning - HT Maximum Likelihood Machine learning - HT 2016 3. Maximum Likelihood Varun Kanade University of Oxford January 27, 2016 Outline Probabilistic Framework Formulate linear regression in the language of probability Introduce

More information

Hypothesis testing: theory and methods

Hypothesis testing: theory and methods Statistical Methods Warsaw School of Economics November 3, 2017 Statistical hypothesis is the name of any conjecture about unknown parameters of a population distribution. The hypothesis should be verifiable

More information

Brief Review on Estimation Theory

Brief Review on Estimation Theory Brief Review on Estimation Theory K. Abed-Meraim ENST PARIS, Signal and Image Processing Dept. abed@tsi.enst.fr This presentation is essentially based on the course BASTA by E. Moulines Brief review on

More information

Lecture 6: Model Checking and Selection

Lecture 6: Model Checking and Selection Lecture 6: Model Checking and Selection Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de May 27, 2014 Model selection We often have multiple modeling choices that are equally sensible: M 1,, M T. Which

More information

Bayesian Asymptotics

Bayesian Asymptotics BS2 Statistical Inference, Lecture 8, Hilary Term 2008 May 7, 2008 The univariate case The multivariate case For large λ we have the approximation I = b a e λg(y) h(y) dy = e λg(y ) h(y ) 2π λg (y ) {

More information

Discrepancy-Based Model Selection Criteria Using Cross Validation

Discrepancy-Based Model Selection Criteria Using Cross Validation 33 Discrepancy-Based Model Selection Criteria Using Cross Validation Joseph E. Cavanaugh, Simon L. Davies, and Andrew A. Neath Department of Biostatistics, The University of Iowa Pfizer Global Research

More information

Testing Statistical Hypotheses

Testing Statistical Hypotheses E.L. Lehmann Joseph P. Romano Testing Statistical Hypotheses Third Edition 4y Springer Preface vii I Small-Sample Theory 1 1 The General Decision Problem 3 1.1 Statistical Inference and Statistical Decisions

More information

EXAMINERS REPORT & SOLUTIONS STATISTICS 1 (MATH 11400) May-June 2009

EXAMINERS REPORT & SOLUTIONS STATISTICS 1 (MATH 11400) May-June 2009 EAMINERS REPORT & SOLUTIONS STATISTICS (MATH 400) May-June 2009 Examiners Report A. Most plots were well done. Some candidates muddled hinges and quartiles and gave the wrong one. Generally candidates

More information

Obtaining simultaneous equation models from a set of variables through genetic algorithms

Obtaining simultaneous equation models from a set of variables through genetic algorithms Obtaining simultaneous equation models from a set of variables through genetic algorithms José J. López Universidad Miguel Hernández (Elche, Spain) Domingo Giménez Universidad de Murcia (Murcia, Spain)

More information

Likelihood based Statistical Inference. Dottorato in Economia e Finanza Dipartimento di Scienze Economiche Univ. di Verona

Likelihood based Statistical Inference. Dottorato in Economia e Finanza Dipartimento di Scienze Economiche Univ. di Verona Likelihood based Statistical Inference Dottorato in Economia e Finanza Dipartimento di Scienze Economiche Univ. di Verona L. Pace, A. Salvan, N. Sartori Udine, April 2008 Likelihood: observed quantities,

More information

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain 0.1. INTRODUCTION 1 0.1 Introduction R. A. Fisher, a pioneer in the development of mathematical statistics, introduced a measure of the amount of information contained in an observaton from f(x θ). Fisher

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Advanced Econometrics I

Advanced Econometrics I Lecture Notes Autumn 2010 Dr. Getinet Haile, University of Mannheim 1. Introduction Introduction & CLRM, Autumn Term 2010 1 What is econometrics? Econometrics = economic statistics economic theory mathematics

More information

Introduction to Bayesian Statistics

Introduction to Bayesian Statistics Bayesian Parameter Estimation Introduction to Bayesian Statistics Harvey Thornburg Center for Computer Research in Music and Acoustics (CCRMA) Department of Music, Stanford University Stanford, California

More information

Likelihood inference in the presence of nuisance parameters

Likelihood inference in the presence of nuisance parameters Likelihood inference in the presence of nuisance parameters Nancy Reid, University of Toronto www.utstat.utoronto.ca/reid/research 1. Notation, Fisher information, orthogonal parameters 2. Likelihood inference

More information

Tube formula approach to testing multivariate normality and testing uniformity on the sphere

Tube formula approach to testing multivariate normality and testing uniformity on the sphere Tube formula approach to testing multivariate normality and testing uniformity on the sphere Akimichi Takemura 1 Satoshi Kuriki 2 1 University of Tokyo 2 Institute of Statistical Mathematics December 11,

More information

Graduate Econometrics I: Unbiased Estimation

Graduate Econometrics I: Unbiased Estimation Graduate Econometrics I: Unbiased Estimation Yves Dominicy Université libre de Bruxelles Solvay Brussels School of Economics and Management ECARES Yves Dominicy Graduate Econometrics I: Unbiased Estimation

More information

Answer Key for STAT 200B HW No. 7

Answer Key for STAT 200B HW No. 7 Answer Key for STAT 200B HW No. 7 May 5, 2007 Problem 2.2 p. 649 Assuming binomial 2-sample model ˆπ =.75, ˆπ 2 =.6. a ˆτ = ˆπ 2 ˆπ =.5. From Ex. 2.5a on page 644: ˆπ ˆπ + ˆπ 2 ˆπ 2.75.25.6.4 = + =.087;

More information

1/24/2008. Review of Statistical Inference. C.1 A Sample of Data. C.2 An Econometric Model. C.4 Estimating the Population Variance and Other Moments

1/24/2008. Review of Statistical Inference. C.1 A Sample of Data. C.2 An Econometric Model. C.4 Estimating the Population Variance and Other Moments /4/008 Review of Statistical Inference Prepared by Vera Tabakova, East Carolina University C. A Sample of Data C. An Econometric Model C.3 Estimating the Mean of a Population C.4 Estimating the Population

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

For iid Y i the stronger conclusion holds; for our heuristics ignore differences between these notions.

For iid Y i the stronger conclusion holds; for our heuristics ignore differences between these notions. Large Sample Theory Study approximate behaviour of ˆθ by studying the function U. Notice U is sum of independent random variables. Theorem: If Y 1, Y 2,... are iid with mean µ then Yi n µ Called law of

More information

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given.

Final Exam. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. 1. (6 points) True/False. Please read the statements carefully, as no partial credit will be given. (a) If X and Y are independent, Corr(X, Y ) = 0. (b) (c) (d) (e) A consistent estimator must be asymptotically

More information

Bayesian Estimation of Prediction Error and Variable Selection in Linear Regression

Bayesian Estimation of Prediction Error and Variable Selection in Linear Regression Bayesian Estimation of Prediction Error and Variable Selection in Linear Regression Andrew A. Neath Department of Mathematics and Statistics; Southern Illinois University Edwardsville; Edwardsville, IL,

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 5, 2011 Lecture 13: Basic elements and notions in decision theory Basic elements X : a sample from a population P P Decision: an action

More information

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:.

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:. MATHEMATICAL STATISTICS Homework assignment Instructions Please turn in the homework with this cover page. You do not need to edit the solutions. Just make sure the handwriting is legible. You may discuss

More information

Size Distortion and Modi cation of Classical Vuong Tests

Size Distortion and Modi cation of Classical Vuong Tests Size Distortion and Modi cation of Classical Vuong Tests Xiaoxia Shi University of Wisconsin at Madison March 2011 X. Shi (UW-Mdsn) H 0 : LR = 0 IUPUI 1 / 30 Vuong Test (Vuong, 1989) Data fx i g n i=1.

More information

An Extended BIC for Model Selection

An Extended BIC for Model Selection An Extended BIC for Model Selection at the JSM meeting 2007 - Salt Lake City Surajit Ray Boston University (Dept of Mathematics and Statistics) Joint work with James Berger, Duke University; Susie Bayarri,

More information

Transformations The bias-variance tradeoff Model selection criteria Remarks. Model selection I. Patrick Breheny. February 17

Transformations The bias-variance tradeoff Model selection criteria Remarks. Model selection I. Patrick Breheny. February 17 Model selection I February 17 Remedial measures Suppose one of your diagnostic plots indicates a problem with the model s fit or assumptions; what options are available to you? Generally speaking, you

More information

MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM

MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM Eco517 Fall 2004 C. Sims MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM 1. SOMETHING WE SHOULD ALREADY HAVE MENTIONED A t n (µ, Σ) distribution converges, as n, to a N(µ, Σ). Consider the univariate

More information

Estimation of Dynamic Regression Models

Estimation of Dynamic Regression Models University of Pavia 2007 Estimation of Dynamic Regression Models Eduardo Rossi University of Pavia Factorization of the density DGP: D t (x t χ t 1, d t ; Ψ) x t represent all the variables in the economy.

More information

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8 Contents 1 Linear model 1 2 GLS for multivariate regression 5 3 Covariance estimation for the GLM 8 4 Testing the GLH 11 A reference for some of this material can be found somewhere. 1 Linear model Recall

More information

Nonconcave Penalized Likelihood with A Diverging Number of Parameters

Nonconcave Penalized Likelihood with A Diverging Number of Parameters Nonconcave Penalized Likelihood with A Diverging Number of Parameters Jianqing Fan and Heng Peng Presenter: Jiale Xu March 12, 2010 Jianqing Fan and Heng Peng Presenter: JialeNonconcave Xu () Penalized

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information