Predictive Control of a Single Link Flexible Joint Robot Based on Neural Network and Feedback Linearization

Size: px
Start display at page:

Download "Predictive Control of a Single Link Flexible Joint Robot Based on Neural Network and Feedback Linearization"

Transcription

1 Australian Journal of Basic and Applied Sciences, 3(3): , 2009 ISSN Predictive Control of a Single Link Flexible Joint Robot Based on Neural Network and Feedback Linearization S. Shams Shams Abad Frahani, M.A. Nekouei, Mehdi Nikzad 1 Department of electrical engineering, Azad Islamic University, Eslamshahr,Iran. 2 Department of electrical engineering, K.N Toosi University, Tehran, Iran. Abstract: This paper deals wi control of a single link flexible joint Robot. First, a neural network based predictive controller using Multi Layer Perceptron (MLP) is designed to govern e dynamics of e proposed Robot en e performance of e controller is compared wi at of Feedback Linearization rough simulation studies. Key words: Neural network control, Multi Layer Perceptron, Feedback Linearization, predictive control INTRODUCTION Predictive control is now widely used in industry and a large number of implementation algorims. Most of e control algorims use an explicit process model to predict e future behavior of a plant and because of is, e term model predictive control (MPC) is often utilized (Camacho, E.F., 1998; Garcia, C.E., D.M). The most important advantage of e MPC technology comes from e process model itself, which allows e controller to deal wi an exact replica of e real process dynamics, implying a much better control quality. The inclusion of e constraints is e feature at most clearly distinguishes MPC from oer process control techniques, leading to a tighter control and a more reliable controller. Anoer important characteristic, which contributes to e success of e MPC technology, is at e MPC algorims consider plant behavior over a future horizon in time. Thus, e effects of bo feedforward and feedback disturbances can be anticipated and eliminated e fact, which permits e controller to drive e process output more closely to e reference trajectory. It is clear at e task of obtaining a high-fidelity model is more difficult to build for nonlinear processes. Recently, neural networks have become an attractive tool in e construction of models for complex nonlinear systems (Nelles, O., 2001; Narendra, K.S. and K. Parasaray, 1990). A large number of control structures based on neural networks have been proposed (Arahal, M.R., M. Berenguelm, 1998; Gomm, J.B., J.T. Evans, 1997). Most of e nonlinear predictive control algorims imply e minimization of a cost function, by using computational meods for obtaining e optimal command to be applied to e process. The implementation of e nonlinear predictive control algorims becomes very difficult for real-time control because e minimization algorim must converge at least to a sub-optimal solution and e operations involved must be completed in a very short time (corresponding to e sampling period). In is paper we analyze an artificial neural network based nonlinear predictive controller for a single link flexible joint Robot. The procedure is based on construction of a neural network model for e process and e proper use of at in e optimization process. The meod eliminates a neural predictor and providing a rapid, reliable solution for e control algorim. Using e proposed controller, e tracking behavior of e plant is studied. Also, e performance of e proposed neural network based predictive controller is compared wi at of Feedback Linearization, which e latter leads to better performance. The organization of is paper is as follows: In Section 2 and 3 e predictive control meodology based on MLP and e simulation results in a single link flexible joint Robot is briefly presented. Section 4 and 5 present e predictive control meodology based on Feedback Linearization and e simulation results for e proposed Robot, finally e paper is concluded in section 6. Corresponding Auor: S. Shams Shams Abad Frahani, Department of electrical engineering, Azad Islamic University, Eslamshahr,Iran s: Shoorangiz_shams@yahoo.com, Manekoui@eetd.kntu.ac.ir, mehdi.nikzad@yahoo.com 2322

2 Predictive Control Meodology Based on Multi Layer Perceptron: This section presents e role and architecture of e neural predictors resulting from e following nonlinear modeling techniques based on neural network principles.(hunt, K.J., D. Sbarbaro, 1992; Montague, G.A., M.J. Willis, 1991). A network wi k+1 layers and n 0,n 1, n k points in each layer is recognized. Where, is e bias in e weigh vector of k layer. In zero and first layers, we mention x as input layer vector, w 1 as weight vector, z as state vector and y as output vector. Thus we obtain: 1 k (1) f is a function which is considered to be: (2) to implement BP algorim we have to minimize e following cost function: (3) w is a vector including bias and weights. Using steepest descent algorim to minimize at cost function, we have: (4) where ì is e learning rate. In a Multi Layer Perceptron (MLP) wi Back propagation as training meod wi just one hidden layer, h neurons in hidden layer and p neurons in input layer, e output of MLP network becomes: (5) (6) and y(i) is e output of e i neuron, f j output function of j neuron in hidden layer, z(j) Output function of j neuron, h e neuron number in hidden layer, p e number of input neurons, w j e connecting weigh of j neuron of hidden layer to output neuron, w j,k connecting weigh of i input neuron to j neuron of hidden layer, b j e bias of j neuron in hidden layer and b as e bias in output neuron. A quadratic cost function is utilized to compute e prediction error and to derive e optimal predictive control strategy. 2323

3 (7) (8) Where ë and ë are weighting matrixes and N 1, N,N 2 u are e minimum, maximum of prediction horizon and control horizon, respectively. Minimization of e cost function (j) occurs in each sampling time and ends in a control signal. But wi e aim of receding horizon only e first element of it will be used as control signal. Using steepest descent strategy we have: (9) + Where á R is e optimization step. This algorim is continued until e variation of u(t) becomes less an a small value of. The derivation of å. The cost function (j) in time of t+h,(h=1,2...,n ) is as follows: u (10) Possibly we write in e form of Kronecker delta function and we have: (11) While Kronecker delta function is (12) So, we have: (13) In accordance to (5) and (6), we have: 2324

4 (14) And can be written as: (15) Using Chain rule we obtain: (16) Can be calculated using output function deviation. is depended on inpu t,delayed inputs,,, and output, delayed output,,,. Suppose having k neurons as input while e first neurons from1 to q introduce Neurons from q+1 to K show. So we have: (17) and can be calculated as follows: (18) Then, (19) can be calculated rough a repetitive calculation considering e case of ending in zero as a result. 2325

5 Fig. 1: The scheme of neural network based predictive control Simulation Results of Predictive Control in e Single Link Flexible Joint Robot wi e Use of MLP: To implement e algorim, a network wi one hidden layer and ten neurons is considered. The set point tracking results of e simulation on e plant and e corresponding input signal are depicted in Figures 2 and 3. Clearly e system could track e set points wi satisfactory performance using a numerical optimization also e prediction and control horizons are 7 and 2, respectively also ë i is Next, e cost function J is constructed (20) The minimization algorim gives e control input vector U=[u(t),u(t-1),u(t-2),y(t),y(t-1),y(t-2)] to be applied to e plant. Clearly e system could track e set points wi satisfactory performance. Fig. 2: Tracking 2326

6 Fig. 3: Control signal Predictive Control Meodology Based on Feedback Linearization (Ljung, L., 1992): The idea of feedback linearization can be simply applied to a class of nonlinear systems described by: (21) Using e following control input And This section presents e design of generalized predictive control in parts A and B as follows: A.System Model and Prediction Consider a system described by e linear state equations: (22) (23) (24) Where, are e state, output and control, respectively; also A,B and H,matrixes wi appropriate dimensions. The structure of e given model is used for formulating e predictive controllers. First, define a state prediction model of e form: (25) 2327

7 Where v denotes e state vector prediction at instant t for instant t+j and u(0 t ) denotes e sequence of control vectors wiin e prediction interval. This model is redefined at each sampling instant t from e actual state vector and e controls previously applied, (26) Applying e state prediction model recursively to e initial conditions, e following equations can be obtained: (27) (28) B. Minimization of e performance criterion The predictive control law is usually formulated to minimize a cost function, also called e performance criterion. A simple performance criterion at can be used in predictive control design is given by : Or (29) Linear Where y d(t+j) j=1,2...,p 1 is a reference trajectory for e output vector which may be redefined at each instant t, also Q is a non-negative definite matrix and R is a symmetric matrix. This performance criterion is used in many predictive controllers. To cope wi control increments instead of e control input, e composite equation may be written as: Where (30) (31) (32) (33) 2328

8 (34), (35) The solution minimizing e performance index may en be obtained by solving: (36) From which direct computations may be obtained: Alough (36) gives e complete control sequence minimizing j over e prediction horizon, only e first row values are actually applied to e system as e control signal. 5- Simulation Results of Predictive control in e Single Link Flexible Joint Robot wi e use of Feedback Linearization The proposed Robot has e following dynamics: (37) (38) where x is e link of Robot, z is e momentum across e joint of Robot and u is e momentum of Robot. considering u as input and x as output e nonlinear dynamics of Robot will be: (39) writing em in e standard form of: (40) 2329

9 We have: (41) using z=t(x) e system can be easily changed to companion form: (42) so (43) where (44) Considering we have: (45) finally e companion state dynamics will be linearized as follows: (46) Wi 2330

10 ,, (47) now using Z.O.H. meod wi e sampling time equal to 1 we can obtain:,, (48) And using state feedback in e form of, (49) The linear system will be stabled. If For e mentioned stable discrete system we can easily use predictive control strategy. The following diagram is made in simulink and e tracking results will be later presented. (50) Fig. 4: System output and reference signal considering prediction and control horizon 45 and 44 respectively wi e sampling time equal to 1 e tracking result using feedback linearization for K=(1.0296, ,3.0148, ) will be as follows 2331

11 Fig. 5: System output and reference signal Fig. 6: Control signal Clearly e system could track e setpoints wi more satisfactory performance comparing wi at of MLP. Based upon e above simulations, e following table is presented and we can conclude at Feedback Linearization algorim provides a better performance. 2332

12 Table 1: Comparison between MLP and Feedback Linearization Meod Mean square error Over shoot percentage Settling time MLP %14 22 Feedback Linearization % It can be concluded from e table at e mean square error, overshoot percentage and e settling time have been significantly decreased in Feedback Linearization comparing wi MLP resulting from e fact at in Feedback Linearization an analytical optimization is used however a numerical optimization is used in MLP. Conclusions: A neural network based predictive control strategy was applied to a single link flexible joint Robot. Using e neural predictive controller, e output of e plant tracked e desired set points. A neural network model for e plant was constructed. Once having such a model, i-step ahead predictions were obtained and a quadratic form cost function was utilized to compute e prediction error and to derive e optimal predictive control strategy. The performance of e proposed control strategy was compared wi at of Feedback Linearization strategy when dealing wi e tracking problem, simulation results showed at e latter strategy performs much better an e former one in case of mean square error, e percent overshoot and e settling time. ACKNOWLEDGMENTS This work was implemented in Process Laboratory in K.N. Toosi University of Technology. REFERENCES Arahal, M.R., M. Berenguel and E.F. Camacho, Neural identification applied to predictive control of a solar plant, Con. Eng. Prac, 6(3): Camacho, E.F., Model predictive control, Springer Verlag. Draeger, A., S. Engel and H. Ranke, Model predictive control using neural networks, IEEE Control System Magazine, 15: Garcia, C.E., D.M. Prett and M. Morari, Model predictive control: eory and practice- a survey, Automatica, 25(3): Gomm, J.B., J.T. Evans and D. Williams, Development and performance of a neural network predictive controller. Control Engineering Practice, 5(1): Hunt, K.J., D. Sbarbaro, R. Zbikowski, P.J. Gawrop, Neural networks for control system A survey. Automatica, 28: Montague, G.A., M.J. Willis, M.T. Tham, A.J. Morris, Artificial neural network based control. International Conference on Control, pp: Nelles, O., Nonlinear system identification: from classical approach to neuro-fuzzy identification, Springer Verlag. Narendra, K.S. and K. Parasaray, Identification and control of dynamic systems using neural networks. IEEE Transactions on Neural Networks, 1: Lennox, B. and G. Montague, Neural network control of a gasoline engine wi rapid sampling, In Nonlinear predictive control eory and practice, Kouvaritakis, B, Cannon, M (Eds.), IEE Control Series, pp: Ljung, L., (System Identification :Theory For The User,)Prentice Hall. Petrovic, I., Z. Rac and N. Peric, Neural network based predictive control of electrical drives wi elastic transmission and backlash, Proc. EPE2001, Graz, Austria. Takahashi, Y., Adaptive predictive control of nonlinear time varying system using neural network, in Proc. IEEE International Symposium on Neural Networks, pp: Tan, Y. and A. Cauwenberghe, Non-linear one step ahead control using neural networks: control strategy and stability design, Automatica, 32(12): Temeng, H., P. Schenelle and T. McAvoy, 195. Model predictive control of an industrial packed bed reactor using neural networks, J. Proc. Control, 5(1): Zamarrano, J.M., P. Vega, Neural predictive control. Application to a highly nonlinear system, Engineering Application of Artificial Intelligence, 12(2):

Identification of two-mass system parameters using neural networks

Identification of two-mass system parameters using neural networks 3ème conférence Internationale des énergies renouvelables CIER-2015 Proceedings of Engineering and Technology - PET Identification of two-mass system parameters using neural networks GHOZZI Dorsaf 1,NOURI

More information

NEURAL PREDICTIVE CONTROL TOOLBOX FOR CACSD IN MATLAB ENVIRONMENT

NEURAL PREDICTIVE CONTROL TOOLBOX FOR CACSD IN MATLAB ENVIRONMENT Copyright 2002 IFAC 15th Triennial World Congress, Barcelona, Spain NEURAL PREDICTIVE CONTROL TOOLBOX FOR CACSD IN MATLAB ENVIRONMENT Jesús M. Zamarreño Dpt. System Engineering and Automatic Control. University

More information

Introduction to Model Predictive Control. Dipartimento di Elettronica e Informazione

Introduction to Model Predictive Control. Dipartimento di Elettronica e Informazione Introduction to Model Predictive Control Riccardo Scattolini Riccardo Scattolini Dipartimento di Elettronica e Informazione Finite horizon optimal control 2 Consider the system At time k we want to compute

More information

4. Multilayer Perceptrons

4. Multilayer Perceptrons 4. Multilayer Perceptrons This is a supervised error-correction learning algorithm. 1 4.1 Introduction A multilayer feedforward network consists of an input layer, one or more hidden layers, and an output

More information

NONLINEAR PLANT IDENTIFICATION BY WAVELETS

NONLINEAR PLANT IDENTIFICATION BY WAVELETS NONLINEAR PLANT IDENTIFICATION BY WAVELETS Edison Righeto UNESP Ilha Solteira, Department of Mathematics, Av. Brasil 56, 5385000, Ilha Solteira, SP, Brazil righeto@fqm.feis.unesp.br Luiz Henrique M. Grassi

More information

Neural Modelling and Control of a Diesel Engine with Pollution Constraints

Neural Modelling and Control of a Diesel Engine with Pollution Constraints Neural Modelling and Control of a Diesel Engine with Pollution Constraints Mustapha Ouladsine*, Gérard Bloch**, Xavier Dovifaaz** * LSIS, Domaine Universitaire de Saint-Jérôme (UMR CNRS 6168) Avenue de

More information

( t) Identification and Control of a Nonlinear Bioreactor Plant Using Classical and Dynamical Neural Networks

( t) Identification and Control of a Nonlinear Bioreactor Plant Using Classical and Dynamical Neural Networks Identification and Control of a Nonlinear Bioreactor Plant Using Classical and Dynamical Neural Networks Mehmet Önder Efe Electrical and Electronics Engineering Boðaziçi University, Bebek 80815, Istanbul,

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 3, Issue 4, April 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Application of

More information

ANN Control of Non-Linear and Unstable System and its Implementation on Inverted Pendulum

ANN Control of Non-Linear and Unstable System and its Implementation on Inverted Pendulum Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet ANN

More information

Using Neural Networks for Identification and Control of Systems

Using Neural Networks for Identification and Control of Systems Using Neural Networks for Identification and Control of Systems Jhonatam Cordeiro Department of Industrial and Systems Engineering North Carolina A&T State University, Greensboro, NC 27411 jcrodrig@aggies.ncat.edu

More information

Learning Model Predictive Control for Iterative Tasks: A Computationally Efficient Approach for Linear System

Learning Model Predictive Control for Iterative Tasks: A Computationally Efficient Approach for Linear System Learning Model Predictive Control for Iterative Tasks: A Computationally Efficient Approach for Linear System Ugo Rosolia Francesco Borrelli University of California at Berkeley, Berkeley, CA 94701, USA

More information

ECE Introduction to Artificial Neural Network and Fuzzy Systems

ECE Introduction to Artificial Neural Network and Fuzzy Systems ECE 39 - Introduction to Artificial Neural Network and Fuzzy Systems Wavelet Neural Network control of two Continuous Stirred Tank Reactors in Series using MATLAB Tariq Ahamed Abstract. With the rapid

More information

On the convergence speed of artificial neural networks in the solving of linear systems

On the convergence speed of artificial neural networks in the solving of linear systems Available online at http://ijimsrbiauacir/ Int J Industrial Mathematics (ISSN 8-56) Vol 7, No, 5 Article ID IJIM-479, 9 pages Research Article On the convergence speed of artificial neural networks in

More information

Neural Networks and the Back-propagation Algorithm

Neural Networks and the Back-propagation Algorithm Neural Networks and the Back-propagation Algorithm Francisco S. Melo In these notes, we provide a brief overview of the main concepts concerning neural networks and the back-propagation algorithm. We closely

More information

PROPORTIONAL-Integral-Derivative (PID) controllers

PROPORTIONAL-Integral-Derivative (PID) controllers Multiple Model and Neural based Adaptive Multi-loop PID Controller for a CSTR Process R.Vinodha S. Abraham Lincoln and J. Prakash Abstract Multi-loop (De-centralized) Proportional-Integral- Derivative

More information

Principles of Optimal Control Spring 2008

Principles of Optimal Control Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 6.33 Principles of Optimal Control Spring 8 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 6.33 Lecture 6 Model

More information

PSO Based Predictive Nonlinear Automatic Generation Control

PSO Based Predictive Nonlinear Automatic Generation Control PSO Based Predictive Nonlinear Automatic Generation Control MUHAMMAD S. YOUSUF HUSSAIN N. AL-DUWAISH Department of Electrical Engineering ZAKARIYA M. AL-HAMOUZ King Fahd University of Petroleum & Minerals,

More information

CSTR CONTROL USING MULTIPLE MODELS

CSTR CONTROL USING MULTIPLE MODELS CSTR CONTROL USING MULTIPLE MODELS J. Novák, V. Bobál Univerzita Tomáše Bati, Fakulta aplikované informatiky Mostní 39, Zlín INTRODUCTION Almost every real process exhibits nonlinear behavior in a full

More information

ADAPTIVE TEMPERATURE CONTROL IN CONTINUOUS STIRRED TANK REACTOR

ADAPTIVE TEMPERATURE CONTROL IN CONTINUOUS STIRRED TANK REACTOR INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 6545(Print), ISSN 0976 6545(Print) ISSN 0976 6553(Online)

More information

A Comparison Between Multilayer Perceptron and Fuzzy ARTMAP Neural Network in Power System Dynamic Stability

A Comparison Between Multilayer Perceptron and Fuzzy ARTMAP Neural Network in Power System Dynamic Stability A Comparison Between Multilayer Perceptron and Fuzzy ARTMAP Neural Network in Power System Dynamic Stability SHAHRAM JAVADI Electrical Engineering Department AZAD University Centeral Tehran Branch Moshanir

More information

Hybrid predictive controller based on Fuzzy-Neuro model

Hybrid predictive controller based on Fuzzy-Neuro model 1 Portál pre odborné publikovanie ISSN 1338-0087 Hybrid predictive controller based on Fuzzy-Neuro model Paulusová Jana Elektrotechnika, Informačné technológie 02.08.2010 In this paper a hybrid fuzzy-neuro

More information

Identification of Non-Linear Systems, Based on Neural Networks, with Applications at Fuzzy Systems

Identification of Non-Linear Systems, Based on Neural Networks, with Applications at Fuzzy Systems Proceedings of the 0th WSEAS International Conference on AUTOMATION & INFORMATION Identification of Non-Linear Systems, Based on Neural Networks, with Applications at Fuzzy Systems CONSTANTIN VOLOSENCU

More information

Virtual Reference Feedback Tuning for non-linear systems

Virtual Reference Feedback Tuning for non-linear systems Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 25 Seville, Spain, December 2-5, 25 ThA9.6 Virtual Reference Feedback Tuning for non-linear systems

More information

Estimation of the Pre-Consolidation Pressure in Soils Using ANN method

Estimation of the Pre-Consolidation Pressure in Soils Using ANN method Current World Environment Vol. 11(Special Issue 1), 83-88 (2016) Estimation of the Pre-Consolidation Pressure in Soils Using ANN method M. R. Motahari Department of Civil Engineering, Faculty of Engineering,

More information

Lazy learning for control design

Lazy learning for control design Lazy learning for control design Gianluca Bontempi, Mauro Birattari, Hugues Bersini Iridia - CP 94/6 Université Libre de Bruxelles 5 Bruxelles - Belgium email: {gbonte, mbiro, bersini}@ulb.ac.be Abstract.

More information

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties Australian Journal of Basic and Applied Sciences, 3(1): 308-322, 2009 ISSN 1991-8178 Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties M.R.Soltanpour, M.M.Fateh

More information

Robust multi objective H2/H Control of nonlinear uncertain systems using multiple linear model and ANFIS

Robust multi objective H2/H Control of nonlinear uncertain systems using multiple linear model and ANFIS Robust multi objective H2/H Control of nonlinear uncertain systems using multiple linear model and ANFIS Vahid Azimi, Member, IEEE, Peyman Akhlaghi, and Mohammad Hossein Kazemi Abstract This paper considers

More information

JUSTIFICATION OF INPUT AND OUTPUT CONSTRAINTS INCORPORATION INTO PREDICTIVE CONTROL DESIGN

JUSTIFICATION OF INPUT AND OUTPUT CONSTRAINTS INCORPORATION INTO PREDICTIVE CONTROL DESIGN JUSTIFICATION OF INPUT AND OUTPUT CONSTRAINTS INCORPORATION INTO PREDICTIVE CONTROL DESIGN J. Škultéty, E. Miklovičová, M. Mrosko Slovak University of Technology, Faculty of Electrical Engineering and

More information

Adaptive Predictive Observer Design for Class of Uncertain Nonlinear Systems with Bounded Disturbance

Adaptive Predictive Observer Design for Class of Uncertain Nonlinear Systems with Bounded Disturbance International Journal of Control Science and Engineering 2018, 8(2): 31-35 DOI: 10.5923/j.control.20180802.01 Adaptive Predictive Observer Design for Class of Saeed Kashefi *, Majid Hajatipor Faculty of

More information

Predictive Control Design Based on Neural Model of a Non-linear System

Predictive Control Design Based on Neural Model of a Non-linear System Acta Polytechnica Hungarica Vol. 5, No. 4, 008 Predictive Control Design Based on Neural Model of a Non-linear System Anna Jadlovská, Nikola Kabakov, Ján Sarnovský Department of Cybernetics and Artificial

More information

STABILISING SOLUTIONS TO A CLASS OF NONLINEAR OPTIMAL STATE TRACKING PROBLEMS USING RADIAL BASIS FUNCTION NETWORKS

STABILISING SOLUTIONS TO A CLASS OF NONLINEAR OPTIMAL STATE TRACKING PROBLEMS USING RADIAL BASIS FUNCTION NETWORKS Int. J. Appl. Math. Comput. Sci., 2005, Vol. 15, No. 3, 369 381 STABILISING SOLUTIONS TO A CLASS OF NONLINEAR OPTIMAL STATE TRACKING PROBLEMS USING RADIAL BASIS FUNCTION NETWORKS ZAHIR AHMIDA,ABDELFETTAH

More information

A STATE-SPACE NEURAL NETWORK FOR MODELING DYNAMICAL NONLINEAR SYSTEMS

A STATE-SPACE NEURAL NETWORK FOR MODELING DYNAMICAL NONLINEAR SYSTEMS A STATE-SPACE NEURAL NETWORK FOR MODELING DYNAMICAL NONLINEAR SYSTEMS Karima Amoura Patrice Wira and Said Djennoune Laboratoire CCSP Université Mouloud Mammeri Tizi Ouzou Algeria Laboratoire MIPS Université

More information

A Hybrid Model of Wavelet and Neural Network for Short Term Load Forecasting

A Hybrid Model of Wavelet and Neural Network for Short Term Load Forecasting International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 4 (2014), pp. 387-394 International Research Publication House http://www.irphouse.com A Hybrid Model of

More information

Artifical Neural Networks

Artifical Neural Networks Neural Networks Artifical Neural Networks Neural Networks Biological Neural Networks.................................. Artificial Neural Networks................................... 3 ANN Structure...........................................

More information

ADAPTIVE NEURAL NETWORK CONTROL OF MECHATRONICS OBJECTS

ADAPTIVE NEURAL NETWORK CONTROL OF MECHATRONICS OBJECTS acta mechanica et automatica, vol.2 no.4 (28) ADAPIE NEURAL NEWORK CONROL OF MECHARONICS OBJECS Egor NEMSE *, Yuri ZHUKO * * Baltic State echnical University oenmeh, 985, St. Petersburg, Krasnoarmeyskaya,

More information

Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive

Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 6, January-June 2005 p. 1-16 Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive

More information

Neural networks. Chapter 20. Chapter 20 1

Neural networks. Chapter 20. Chapter 20 1 Neural networks Chapter 20 Chapter 20 1 Outline Brains Neural networks Perceptrons Multilayer networks Applications of neural networks Chapter 20 2 Brains 10 11 neurons of > 20 types, 10 14 synapses, 1ms

More information

A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation

A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation 1 Introduction A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation J Wesley Hines Nuclear Engineering Department The University of Tennessee Knoxville, Tennessee,

More information

Keywords- Source coding, Huffman encoding, Artificial neural network, Multilayer perceptron, Backpropagation algorithm

Keywords- Source coding, Huffman encoding, Artificial neural network, Multilayer perceptron, Backpropagation algorithm Volume 4, Issue 5, May 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Huffman Encoding

More information

Transactions on Information and Communications Technologies vol 19, 1997 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 19, 1997 WIT Press,   ISSN Neural Network Self-Tuning Control Of Hot- Spot Temperature In A Fixed-Bed Catalytic Reactor N. Mazana, M. Nzama@ # Department of Chemical Engineering, Department of Electronic Engineering, National Universig

More information

Approximate solutions of dual fuzzy polynomials by feed-back neural networks

Approximate solutions of dual fuzzy polynomials by feed-back neural networks Available online at wwwispacscom/jsca Volume 2012, Year 2012 Article ID jsca-00005, 16 pages doi:105899/2012/jsca-00005 Research Article Approximate solutions of dual fuzzy polynomials by feed-back neural

More information

Negatively Correlated Echo State Networks

Negatively Correlated Echo State Networks Negatively Correlated Echo State Networks Ali Rodan and Peter Tiňo School of Computer Science, The University of Birmingham Birmingham B15 2TT, United Kingdom E-mail: {a.a.rodan, P.Tino}@cs.bham.ac.uk

More information

ADAPTIVE NEURAL NETWORK MODEL PREDICTIVE CONTROL. Ramdane Hedjar. Received January 2012; revised May 2012

ADAPTIVE NEURAL NETWORK MODEL PREDICTIVE CONTROL. Ramdane Hedjar. Received January 2012; revised May 2012 International Journal of Innovative Computing, Information and Control ICIC International c 13 ISSN 1349-4198 Volume 9, Number 3, March 13 pp. 145 157 ADAPTIVE NEURAL NETWORK MODEL PREDICTIVE CONTROL Ramdane

More information

Unit III. A Survey of Neural Network Model

Unit III. A Survey of Neural Network Model Unit III A Survey of Neural Network Model 1 Single Layer Perceptron Perceptron the first adaptive network architecture was invented by Frank Rosenblatt in 1957. It can be used for the classification of

More information

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD WHAT IS A NEURAL NETWORK? The simplest definition of a neural network, more properly referred to as an 'artificial' neural network (ANN), is provided

More information

Towards a Volterra series representation from a Neural Network model

Towards a Volterra series representation from a Neural Network model Towards a Volterra series representation from a Neural Network model GEORGINA STEGMAYER, MARCO PIROLA Electronics Department Politecnico di Torino Cso. Duca degli Abruzzi 4 9 Torino ITALY GIANCARLO ORENGO

More information

Analysis of Fast Input Selection: Application in Time Series Prediction

Analysis of Fast Input Selection: Application in Time Series Prediction Analysis of Fast Input Selection: Application in Time Series Prediction Jarkko Tikka, Amaury Lendasse, and Jaakko Hollmén Helsinki University of Technology, Laboratory of Computer and Information Science,

More information

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer.

Mark Gales October y (x) x 1. x 2 y (x) Inputs. Outputs. x d. y (x) Second Output layer layer. layer. University of Cambridge Engineering Part IIB & EIST Part II Paper I0: Advanced Pattern Processing Handouts 4 & 5: Multi-Layer Perceptron: Introduction and Training x y (x) Inputs x 2 y (x) 2 Outputs x

More information

Artificial Neural Network : Training

Artificial Neural Network : Training Artificial Neural Networ : Training Debasis Samanta IIT Kharagpur debasis.samanta.iitgp@gmail.com 06.04.2018 Debasis Samanta (IIT Kharagpur) Soft Computing Applications 06.04.2018 1 / 49 Learning of neural

More information

POWER SYSTEM DYNAMIC SECURITY ASSESSMENT CLASSICAL TO MODERN APPROACH

POWER SYSTEM DYNAMIC SECURITY ASSESSMENT CLASSICAL TO MODERN APPROACH Abstract POWER SYSTEM DYNAMIC SECURITY ASSESSMENT CLASSICAL TO MODERN APPROACH A.H.M.A.Rahim S.K.Chakravarthy Department of Electrical Engineering K.F. University of Petroleum and Minerals Dhahran. Dynamic

More information

Longshore current velocities prediction: using a neural networks approach

Longshore current velocities prediction: using a neural networks approach Coastal Processes II 189 Longshore current velocities prediction: using a neural networks approach T. M. Alaboud & M. S. El-Bisy Civil Engineering Dept., College of Engineering and Islamic Architecture,

More information

This is the published version.

This is the published version. Li, A.J., Khoo, S.Y., Wang, Y. and Lyamin, A.V. 2014, Application of neural network to rock slope stability assessments. In Hicks, Michael A., Brinkgreve, Ronald B.J.. and Rohe, Alexander. (eds), Numerical

More information

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Contents 2 What is ANN? Biological Neuron Structure of Neuron Types of Neuron Models of Neuron Analogy with human NN Perceptron OCR Multilayer Neural Network Back propagation

More information

Available online at ScienceDirect. Procedia Computer Science 102 (2016 )

Available online at   ScienceDirect. Procedia Computer Science 102 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 102 (2016 ) 309 316 12th International Conference on Application of Fuzzy Systems and Soft Computing, ICAFS 2016, 29-30

More information

A NEURO-FUZZY MODEL PREDICTIVE CONTROLLER APPLIED TO A PH-NEUTRALIZATION PROCESS. Jonas B. Waller and Hannu T. Toivonen

A NEURO-FUZZY MODEL PREDICTIVE CONTROLLER APPLIED TO A PH-NEUTRALIZATION PROCESS. Jonas B. Waller and Hannu T. Toivonen Copyright 22 IFAC 15th Triennial World Congress, Barcelona, Spain A NEURO-FUZZY MODEL PREDICTIVE CONTROLLER APPLIED TO A PH-NEUTRALIZATION PROCESS Jonas B. Waller and Hannu T. Toivonen Department of Chemical

More information

Intelligent Modular Neural Network for Dynamic System Parameter Estimation

Intelligent Modular Neural Network for Dynamic System Parameter Estimation Intelligent Modular Neural Network for Dynamic System Parameter Estimation Andrzej Materka Technical University of Lodz, Institute of Electronics Stefanowskiego 18, 9-537 Lodz, Poland Abstract: A technique

More information

Application of Artificial Neural Networks in Evaluation and Identification of Electrical Loss in Transformers According to the Energy Consumption

Application of Artificial Neural Networks in Evaluation and Identification of Electrical Loss in Transformers According to the Energy Consumption Application of Artificial Neural Networks in Evaluation and Identification of Electrical Loss in Transformers According to the Energy Consumption ANDRÉ NUNES DE SOUZA, JOSÉ ALFREDO C. ULSON, IVAN NUNES

More information

A FUZZY NEURAL NETWORK MODEL FOR FORECASTING STOCK PRICE

A FUZZY NEURAL NETWORK MODEL FOR FORECASTING STOCK PRICE A FUZZY NEURAL NETWORK MODEL FOR FORECASTING STOCK PRICE Li Sheng Institute of intelligent information engineering Zheiang University Hangzhou, 3007, P. R. China ABSTRACT In this paper, a neural network-driven

More information

A Black-Box Approach in Modeling Valve Stiction

A Black-Box Approach in Modeling Valve Stiction Vol:4, No:8, A Black-Box Approach in Modeling Valve Stiction H. Zabiri, N. Mazuki International Science Index, Mechanical and Mechatronics Engineering Vol:4, No:8, waset.org/publication/46 Abstract Several

More information

Identification and Control of Mechatronic Systems

Identification and Control of Mechatronic Systems Identification and Control of Mechatronic Systems Philadelphia University, Jordan NATO - ASI Advanced All-Terrain Autonomous Systems Workshop August 15 24, 2010 Cesme-Izmir, Turkey Overview Mechatronics

More information

Type-2 Fuzzy Logic Control of Continuous Stirred Tank Reactor

Type-2 Fuzzy Logic Control of Continuous Stirred Tank Reactor dvance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 2 (2013), pp. 169-178 Research India Publications http://www.ripublication.com/aeee.htm Type-2 Fuzzy Logic Control of Continuous

More information

Automatic Structure and Parameter Training Methods for Modeling of Mechanical System by Recurrent Neural Networks

Automatic Structure and Parameter Training Methods for Modeling of Mechanical System by Recurrent Neural Networks Automatic Structure and Parameter Training Methods for Modeling of Mechanical System by Recurrent Neural Networks C. James Li and Tung-Yung Huang Department of Mechanical Engineering, Aeronautical Engineering

More information

Neural-based Monitoring of a Debutanizer. Distillation Column

Neural-based Monitoring of a Debutanizer. Distillation Column Neural-based Monitoring of a Debutanizer Distillation Column L. Fortuna*, S. Licitra, M. Sinatra, M. G. Xibiliaº ERG Petroli ISAB Refinery, 96100 Siracusa, Italy e-mail: slicitra@ergpetroli.it *University

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

y(x n, w) t n 2. (1)

y(x n, w) t n 2. (1) Network training: Training a neural network involves determining the weight parameter vector w that minimizes a cost function. Given a training set comprising a set of input vector {x n }, n = 1,...N,

More information

Model Predictive Controller of Boost Converter with RLE Load

Model Predictive Controller of Boost Converter with RLE Load Model Predictive Controller of Boost Converter with RLE Load N. Murali K.V.Shriram S.Muthukumar Nizwa College of Vellore Institute of Nizwa College of Technology Technology University Technology Ministry

More information

Adaptive Inverse Control

Adaptive Inverse Control TA1-8:30 Adaptive nverse Control Bernard Widrow Michel Bilello Stanford University Department of Electrical Engineering, Stanford, CA 94305-4055 Abstract A plant can track an input command signal if it

More information

Intelligent Control. Module I- Neural Networks Lecture 7 Adaptive Learning Rate. Laxmidhar Behera

Intelligent Control. Module I- Neural Networks Lecture 7 Adaptive Learning Rate. Laxmidhar Behera Intelligent Control Module I- Neural Networks Lecture 7 Adaptive Learning Rate Laxmidhar Behera Department of Electrical Engineering Indian Institute of Technology, Kanpur Recurrent Networks p.1/40 Subjects

More information

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS RBFN and TS systems Equivalent if the following hold: Both RBFN and TS use same aggregation method for output (weighted sum or weighted average) Number of basis functions

More information

Weight Initialization Methods for Multilayer Feedforward. 1

Weight Initialization Methods for Multilayer Feedforward. 1 Weight Initialization Methods for Multilayer Feedforward. 1 Mercedes Fernández-Redondo - Carlos Hernández-Espinosa. Universidad Jaume I, Campus de Riu Sec, Edificio TI, Departamento de Informática, 12080

More information

A new method for short-term load forecasting based on chaotic time series and neural network

A new method for short-term load forecasting based on chaotic time series and neural network A new method for short-term load forecasting based on chaotic time series and neural network Sajjad Kouhi*, Navid Taghizadegan Electrical Engineering Department, Azarbaijan Shahid Madani University, Tabriz,

More information

Identification of Compliant Contact Force Parameters in Multibody Systems Based on the Neural Network Approach Related to Municipal Property Damages

Identification of Compliant Contact Force Parameters in Multibody Systems Based on the Neural Network Approach Related to Municipal Property Damages American Journal of Neural Networks and Applications 2017; 3(5): 49-55 http://www.sciencepublishinggroup.com/j/ajnna doi: 10.11648/j.ajnna.20170305.11 ISSN: 2469-7400 (Print); ISSN: 2469-7419 (Online)

More information

A New Look at Nonlinear Time Series Prediction with NARX Recurrent Neural Network. José Maria P. Menezes Jr. and Guilherme A.

A New Look at Nonlinear Time Series Prediction with NARX Recurrent Neural Network. José Maria P. Menezes Jr. and Guilherme A. A New Look at Nonlinear Time Series Prediction with NARX Recurrent Neural Network José Maria P. Menezes Jr. and Guilherme A. Barreto Department of Teleinformatics Engineering Federal University of Ceará,

More information

Reinforcement Learning, Neural Networks and PI Control Applied to a Heating Coil

Reinforcement Learning, Neural Networks and PI Control Applied to a Heating Coil Reinforcement Learning, Neural Networks and PI Control Applied to a Heating Coil Charles W. Anderson 1, Douglas C. Hittle 2, Alon D. Katz 2, and R. Matt Kretchmar 1 1 Department of Computer Science Colorado

More information

Neural Modelling of a Yeast Fermentation Process Using Extreme Learning Machines

Neural Modelling of a Yeast Fermentation Process Using Extreme Learning Machines Neural Modelling of a Yeast Fermentation Process Using Extreme Learning Machines Maciej Ławryńczu Abstract This wor details development of dynamic neural models of a yeast fermentation chemical reactor

More information

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Lecture - 27 Multilayer Feedforward Neural networks with Sigmoidal

More information

On-line Learning of Robot Arm Impedance Using Neural Networks

On-line Learning of Robot Arm Impedance Using Neural Networks On-line Learning of Robot Arm Impedance Using Neural Networks Yoshiyuki Tanaka Graduate School of Engineering, Hiroshima University, Higashi-hiroshima, 739-857, JAPAN Email: ytanaka@bsys.hiroshima-u.ac.jp

More information

One-Hour-Ahead Load Forecasting Using Neural Network

One-Hour-Ahead Load Forecasting Using Neural Network IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 17, NO. 1, FEBRUARY 2002 113 One-Hour-Ahead Load Forecasting Using Neural Network Tomonobu Senjyu, Member, IEEE, Hitoshi Takara, Katsumi Uezato, and Toshihisa Funabashi,

More information

Nonlinear PD Controllers with Gravity Compensation for Robot Manipulators

Nonlinear PD Controllers with Gravity Compensation for Robot Manipulators BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 4, No Sofia 04 Print ISSN: 3-970; Online ISSN: 34-408 DOI: 0.478/cait-04-00 Nonlinear PD Controllers with Gravity Compensation

More information

Design of a Genetic-Algorithm-Based Steam Temperature Controller in Thermal Power Plants

Design of a Genetic-Algorithm-Based Steam Temperature Controller in Thermal Power Plants Design of a Genetic-Algorithm-Based Steam Temperature Controller in Thermal Power Plants Ali Reza Mehrabian, Member, IAENG, and Morteza Mohammad-Zaheri Abstract This paper presents a systematic approach

More information

Adaptive Nonlinear Model Predictive Control with Suboptimality and Stability Guarantees

Adaptive Nonlinear Model Predictive Control with Suboptimality and Stability Guarantees Adaptive Nonlinear Model Predictive Control with Suboptimality and Stability Guarantees Pontus Giselsson Department of Automatic Control LTH Lund University Box 118, SE-221 00 Lund, Sweden pontusg@control.lth.se

More information

Chapter 4 Neural Networks in System Identification

Chapter 4 Neural Networks in System Identification Chapter 4 Neural Networks in System Identification Gábor HORVÁTH Department of Measurement and Information Systems Budapest University of Technology and Economics Magyar tudósok körútja 2, 52 Budapest,

More information

Neural Controller. Plant. Plant. Critic. evaluation signal. Reinforcement Learning Controller

Neural Controller. Plant. Plant. Critic. evaluation signal. Reinforcement Learning Controller Neural Control Theory: an Overview J.A.K. Suykens, H. Bersini Katholieke Universiteit Leuven Department of Electrical Engineering, ESAT-SISTA Kardinaal Mercierlaan 94, B-3001 Leuven (Heverlee), Belgium

More information

Linear Least-Squares Based Methods for Neural Networks Learning

Linear Least-Squares Based Methods for Neural Networks Learning Linear Least-Squares Based Methods for Neural Networks Learning Oscar Fontenla-Romero 1, Deniz Erdogmus 2, JC Principe 2, Amparo Alonso-Betanzos 1, and Enrique Castillo 3 1 Laboratory for Research and

More information

Non-linear Predictive Control with Multi Design Variables for PEM-FC

Non-linear Predictive Control with Multi Design Variables for PEM-FC Non-linear Predictive Control with Multi Design Variables for PEM-FC A. Shokuhi-Rad, M. Naghash-Zadegan, N. Nariman-Zadeh, A. Jamali, A.Hajilu Abstract Designing of a non-linear controller base on model

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

Computational statistics

Computational statistics Computational statistics Lecture 3: Neural networks Thierry Denœux 5 March, 2016 Neural networks A class of learning methods that was developed separately in different fields statistics and artificial

More information

AI Programming CS F-20 Neural Networks

AI Programming CS F-20 Neural Networks AI Programming CS662-2008F-20 Neural Networks David Galles Department of Computer Science University of San Francisco 20-0: Symbolic AI Most of this class has been focused on Symbolic AI Focus or symbols

More information

2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks. Todd W. Neller

2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks. Todd W. Neller 2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks Todd W. Neller Machine Learning Learning is such an important part of what we consider "intelligence" that

More information

SELF-ADAPTING BUILDING MODELS FOR MODEL PREDICTIVE CONTROL

SELF-ADAPTING BUILDING MODELS FOR MODEL PREDICTIVE CONTROL SELF-ADAPTING BUILDING MODELS FOR MODEL PREDICTIVE CONTROL Simon Herzog 1, Dennis Atabay 2, Johannes Jungwirth 2 and Vesna Mikulovic 3 1 Department of Building Climatology & Building Services, TU München,

More information

Automatic Noise Recognition Based on Neural Network Using LPC and MFCC Feature Parameters

Automatic Noise Recognition Based on Neural Network Using LPC and MFCC Feature Parameters Proceedings of the Federated Conference on Computer Science and Information Systems pp 69 73 ISBN 978-83-60810-51-4 Automatic Noise Recognition Based on Neural Network Using LPC and MFCC Feature Parameters

More information

Autonomous learning algorithm for fully connected recurrent networks

Autonomous learning algorithm for fully connected recurrent networks Autonomous learning algorithm for fully connected recurrent networks Edouard Leclercq, Fabrice Druaux, Dimitri Lefebvre Groupe de Recherche en Electrotechnique et Automatique du Havre Université du Havre,

More information

Temporal Backpropagation for FIR Neural Networks

Temporal Backpropagation for FIR Neural Networks Temporal Backpropagation for FIR Neural Networks Eric A. Wan Stanford University Department of Electrical Engineering, Stanford, CA 94305-4055 Abstract The traditional feedforward neural network is a static

More information

GMDH-type Neural Networks with a Feedback Loop and their Application to the Identification of Large-spatial Air Pollution Patterns.

GMDH-type Neural Networks with a Feedback Loop and their Application to the Identification of Large-spatial Air Pollution Patterns. GMDH-type Neural Networks with a Feedback Loop and their Application to the Identification of Large-spatial Air Pollution Patterns. Tadashi Kondo 1 and Abhijit S.Pandya 2 1 School of Medical Sci.,The Univ.of

More information

MODELLING ENERGY DEMAND FORECASTING USING NEURAL NETWORKS WITH UNIVARIATE TIME SERIES

MODELLING ENERGY DEMAND FORECASTING USING NEURAL NETWORKS WITH UNIVARIATE TIME SERIES MODELLING ENERGY DEMAND FORECASTING USING NEURAL NETWORKS WITH UNIVARIATE TIME SERIES S. Cankurt 1, M. Yasin 2 1&2 Ishik University Erbil, Iraq 1 s.cankurt@ishik.edu.iq, 2 m.yasin@ishik.edu.iq doi:10.23918/iec2018.26

More information

FEEDBACK GMDH-TYPE NEURAL NETWORK AND ITS APPLICATION TO MEDICAL IMAGE ANALYSIS OF LIVER CANCER. Tadashi Kondo and Junji Ueno

FEEDBACK GMDH-TYPE NEURAL NETWORK AND ITS APPLICATION TO MEDICAL IMAGE ANALYSIS OF LIVER CANCER. Tadashi Kondo and Junji Ueno International Journal of Innovative Computing, Information and Control ICIC International c 2012 ISSN 1349-4198 Volume 8, Number 3(B), March 2012 pp. 2285 2300 FEEDBACK GMDH-TYPE NEURAL NETWORK AND ITS

More information

Study on Dahlin algorithm of Brushless DC motor based on Neural. Network

Study on Dahlin algorithm of Brushless DC motor based on Neural. Network Joint International Mechanical, Electronic and Information Technology Conference (JIMET 205) Study on Dahlin algorithm of Brushless DC motor based on Neural Network ZILONG HUANG DAN WANG2, LELE XI 3, YANKAI

More information

Neural Networks DWML, /25

Neural Networks DWML, /25 DWML, 2007 /25 Neural networks: Biological and artificial Consider humans: Neuron switching time 0.00 second Number of neurons 0 0 Connections per neuron 0 4-0 5 Scene recognition time 0. sec 00 inference

More information

Confidence Estimation Methods for Neural Networks: A Practical Comparison

Confidence Estimation Methods for Neural Networks: A Practical Comparison , 6-8 000, Confidence Estimation Methods for : A Practical Comparison G. Papadopoulos, P.J. Edwards, A.F. Murray Department of Electronics and Electrical Engineering, University of Edinburgh Abstract.

More information

A recursive algorithm based on the extended Kalman filter for the training of feedforward neural models. Isabelle Rivals and Léon Personnaz

A recursive algorithm based on the extended Kalman filter for the training of feedforward neural models. Isabelle Rivals and Léon Personnaz In Neurocomputing 2(-3): 279-294 (998). A recursive algorithm based on the extended Kalman filter for the training of feedforward neural models Isabelle Rivals and Léon Personnaz Laboratoire d'électronique,

More information