exponential function exponential growth asymptote growth factor exponential decay decay factor

Size: px
Start display at page:

Download "exponential function exponential growth asymptote growth factor exponential decay decay factor"

Transcription

1

2 exponential function exponential growth asymptote growth factor exponential decay decay factor

3

4 Answer: Graph Exponential Growth Functions Graph of y = 4 x. State the domain and range. Domain = {all real numbers} Range = {y y > 0}

5 Graph of y = 3 x. State the domain and range. A. B. C. D. Domain = {all real numbers} Range = {y y > 0} A. A B. B C. C D. D

6

7 Graph Transformations A. Graph the function y = 3 x 2. State the domain and range. The equation represents a translation of the graph y = 3 x down 2 units.

8 Graph Transformations Answer: Domain = {all real numbers} Range = {y y > 2}

9 A. Graph the function y = 2 x 4. State the domain and range. A. B. The equation represents a translation of the graph y = 2 x down 4 units. C. D. Domain = {all real numbers} Range = {y y -3} A. A B. B C. C D. D

10 Graph Transformations B. Graph the function y = 2 x 1. State the domain and range. The equation represents a translation of the graph y = 2 x right 1 unit.

11 Graph Transformations Answer: Domain = {all real numbers} Range = {y y 0}

12 B. Graph the function y = 4 x State the domain and range. A. B. Domain = {all real numbers} Range = {y y 3} The equation represents a translation of the graph y = 4 x 2 units right and 3 units up. C. D. A. A B. C C. D

13 Graph Exponential Growth Functions INTERNET In 2006, there were 1,020,000,000 people worldwide using the Internet. At that time, the number of users was growing by 19.5% annually. Draw a graph showing how the number of users would grow from 2006 to 2016 if that rate continued. First, write an equation using a = (in billions), and r = y = 1.020(1.195) t Then graph the equation.

14 Answer: Graph Exponential Growth Functions

15 CELLULAR PHONES In 2006, there were about 2,000,000,000 people worldwide using cellular phones. At that time, the number of users was growing by 11% annually. Which graph shows how the number of users would grow from 2006 to 2014 if that rate continued? A. B. C. D. A B A. A B. B C. C 0% D. D 0% 0% 0% C D

16

17 Graph Exponential Decay Functions A. Graph the function State the domain and range.

18 Graph Exponential Decay Functions Answer: Domain = {all real numbers} Range = {y y > 0}

19 Graph Exponential Decay Functions B. Graph the function State the domain and range. The equation represents a transformation of the graph of Examine each parameter. There is a negative sign in front of the function: The graph is reflected on the y-axis.

20 Graph Exponential Decay Functions h = 1: The graph is translated 1 unit right. k = 2: The graph is translated 2 units up. Answer: Domain = {all real numbers} Range = {y y < 2}

21 A. Graph the function A. B. C. D. A B A. A B. B C. C 0% D. D 0% 0% 0% C D

22 B. Graph the function State the domain and range. A. B. Domain = {all real numbers} Range = {y y < -3} C. D. Examine each parameter. There is a negative sign in front of the function: The graph is reflected on the y-axis. The graph is translated 2 units right. The graph is translated 3 units down. A. A B. B C. C D. D

23 Graph Exponential Decay Functions A. AIR PRESSURE The pressure of the atmosphere is 14.7 lb/in 2 at Earth s surface. It decreases by about 20% for each mile of altitude up to about 50 miles. Draw a graph to represent atmospheric pressure for altitude from 0 to 20 miles. y = a(1 r) t = 14.7(1 0.20) t = 14.7(0.80) t

24 Graph the equation. Graph Exponential Decay Functions Answer:

25 Graph Exponential Decay Functions B. AIR PRESSURE The pressure of the atmosphere is 14.7 lb/in 2 at Earth s surface. It decreases by about 20% for each mile of altitude up to about 50 miles. Estimate the atmospheric pressure at an altitude of 10 miles. y = 14.7(0.80) t Equation from part a. = 14.7(0.80) 10 Replace t with lb/in 2 Use a calculator. Answer: The atmospheric pressure at an altitude of about 10 miles will be approximately 1.6 lb/in 2.

26 A. AIR PRESSURE The pressure of a car tire with a bent rim is 34.7 lb/in 2 at the start of a road trip. It decreases by about 3% for each mile driven due to a leaky seal. Draw a graph to represent the air pressure for a trip from 0 to 40 miles. A. B. C. D. A. A B. B C. C 0% D. D 0% 0% 0% A B C D

27 B. AIR PRESSURE The pressure of a car tire with a bent rim is 34.7 lb/in 2 at the start of a road trip. It decreases by about 3% for each mile driven due to a leaky seal. Estimate the air pressure of the tire after 20 miles. A lb/in 2 B lb/in 2 C lb/in 2 A. A B. B C. C 0% D. D 0% 0% 0% A B C D D lb/in 2

28

1. What is the domain and range of the function? 2. Any asymptotes?

1. What is the domain and range of the function? 2. Any asymptotes? Section 8.1 Eponential Functions Goals: 1. To simplify epressions and solve eponential equations involving real eponents. I. Definition of Eponential Function An function is in the form, where and. II.

More information

8.3 GRAPH AND WRITE EQUATIONS OF CIRCLES

8.3 GRAPH AND WRITE EQUATIONS OF CIRCLES 8.3 GRAPH AND WRITE EQUATIONS OF CIRCLES What is the standard form equation for a circle? Why do you use the distance formula when writing the equation of a circle? What general equation of a circle is

More information

Rewrite logarithmic equations 2 3 = = = 12

Rewrite logarithmic equations 2 3 = = = 12 EXAMPLE 1 Rewrite logarithmic equations Logarithmic Form a. log 2 8 = 3 Exponential Form 2 3 = 8 b. log 4 1 = 0 4 0 = 1 log 12 = 1 c. 12 12 1 = 12 log 4 = 1 d. 1/4 1 4 1 = 4 GUIDED PRACTICE for Example

More information

Exponential and Logarithmic Functions. 3. Pg #17-57 column; column and (need graph paper)

Exponential and Logarithmic Functions. 3. Pg #17-57 column; column and (need graph paper) Algebra 2/Trig Unit 6 Notes Packet Name: Period: # Exponential and Logarithmic Functions 1. Worksheet 2. Worksheet 3. Pg 483-484 #17-57 column; 61-73 column and 76-77 (need graph paper) 4. Pg 483-484 #20-60

More information

Reteach Multiplying and Dividing Rational Expressions

Reteach Multiplying and Dividing Rational Expressions 8-2 Multiplying and Dividing Rational Expressions Examples of rational expressions: 3 x, x 1, and x 3 x 2 2 x 2 Undefined at x 0 Undefined at x 0 Undefined at x 2 When simplifying a rational expression:

More information

Exponential Growth and Decay Functions (Exponent of t) Read 6.1 Examples 1-3

Exponential Growth and Decay Functions (Exponent of t) Read 6.1 Examples 1-3 CC Algebra II HW #42 Name Period Row Date Section 6.1 1. Vocabulary In the eponential growth model Eponential Growth and Decay Functions (Eponent of t) Read 6.1 Eamples 1-3 y = 2.4(1.5), identify the initial

More information

Concept Category 2. Exponential and Log Functions

Concept Category 2. Exponential and Log Functions Concept Category 2 Exponential and Log Functions Concept Category 2 Check List *Find the inverse and composition of functions *Identify an exponential from a table, graph and equation *Identify the difference

More information

1) [3pts] 2. Simplify the expression. Give your answer as a reduced fraction. No credit for decimal answers. ( ) 2) [4pts] ( 3 2 ) 1

1) [3pts] 2. Simplify the expression. Give your answer as a reduced fraction. No credit for decimal answers. ( ) 2) [4pts] ( 3 2 ) 1 Math 097 Winter 2018 Final Exam (Form A) Name: Instructor s Name: Score: /100 (+ 3 bonus) 1. Evaluate 2(x h) 3 when x = 2 and h = 5. 1) 2. Simplify the expression. Give your answer as a reduced fraction.

More information

Practice Problems for Exam 1

Practice Problems for Exam 1 Practice Problems for Exam 1 Basic Linear Functions: 1. Find the equation of the line that has slope 2 and y-intercept equal to 100. 2. Find the equation of the line that has slope 1.5 and passes through

More information

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16.

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16. MA109 College Algebra Fall 2018 Practice Final Exam 2018-12-12 Name: Sec.: Do not remove this answer page you will turn in the entire exam. You have two hours to do this exam. No books or notes may be

More information

Math 10 Chapter 6.10: Solving Application Problems Objectives: Exponential growth/growth models Using logarithms to solve

Math 10 Chapter 6.10: Solving Application Problems Objectives: Exponential growth/growth models Using logarithms to solve Math 10 Chapter 6.10: Solving Application Problems Objectives: Exponential growth/growth models Using logarithms to solve Exponential Growth Models Steps for Solving Application Problems: 1. Read, throw

More information

O5C1: Graphing Exponential Functions

O5C1: Graphing Exponential Functions Name: Class Period: Date: Algebra 2 Honors O5C1-4 REVIEW O5C1: Graphing Exponential Functions Graph the exponential function and fill in the table to the right. You will need to draw in the x- and y- axis.

More information

Name Date. Answers 1.

Name Date. Answers 1. Name Date Honors Algebra 2 Summer Work Due at Meet the Teacher Night Show all work. You will be graded on accuracy and completion. Partial credit will be given on problems where work is not shown. 1. Plot

More information

8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions.

8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions. 8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions. 2. Use powers to model real life problems. Multiplication Properties of Exponents

More information

12 Rates of Change Average Rates of Change. Concepts: Average Rates of Change

12 Rates of Change Average Rates of Change. Concepts: Average Rates of Change 12 Rates of Change Concepts: Average Rates of Change Calculating the Average Rate of Change of a Function on an Interval Secant Lines Difference Quotients Approximating Instantaneous Rates of Change (Section

More information

We want to determine what the graph of the logarithmic function. y = log a. (x) looks like for values of a such that a > 1

We want to determine what the graph of the logarithmic function. y = log a. (x) looks like for values of a such that a > 1 Section 9 A: Graphs of Increasing Logarithmic Functions We want to determine what the graph of the logarithmic function y = log a looks like for values of a such that a > We will select a value a such

More information

3.3 rate of change ink.notebook. October 24, page 105. page Rates of Change. page 107. Standards. Lesson Objectives

3.3 rate of change ink.notebook. October 24, page 105. page Rates of Change. page 107. Standards. Lesson Objectives 3.3 rate of change ink.notebook page 105 page 106 3.3 Rates of Change Lesson Objectives Standards page 107 3.3 Rates of Change Press the tabs to view details. 1 Standards Lesson Notes Lesson Objectives

More information

3.3 rate of change ink.notebook. October 26, page 124. page Rates of Change. page 126. Standards. Lesson Objectives

3.3 rate of change ink.notebook. October 26, page 124. page Rates of Change. page 126. Standards. Lesson Objectives 3.3 rate of change ink.notebook page 124 page 125 3.3 Rates of Change Lesson Objectives Standards page 126 3.3 Rates of Change Press the tabs to view details. 1 Standards Lesson Notes Lesson Objectives

More information

Unit 1 Study Guide Answers. 1a. Domain: 2, -3 Range: -3, 4, -4, 0 Inverse: {(-3,2), (4, -3), (-4, 2), (0, -3)}

Unit 1 Study Guide Answers. 1a. Domain: 2, -3 Range: -3, 4, -4, 0 Inverse: {(-3,2), (4, -3), (-4, 2), (0, -3)} Unit 1 Study Guide Answers 1a. Domain: 2, -3 Range: -3, 4, -4, 0 Inverse: {(-3,2), (4, -3), (-4, 2), (0, -3)} 1b. x 2-3 2-3 y -3 4-4 0 1c. no 2a. y = x 2b. y = mx+ b 2c. 2e. 2d. all real numbers 2f. yes

More information

College Algebra. Word Problems

College Algebra. Word Problems College Algebra Word Problems Example 2 (Section P6) The table shows the numbers N (in millions) of subscribers to a cellular telecommunication service in the United States from 2001 through 2010, where

More information

Logarithmic and Exponential Equations and Inequalities College Costs

Logarithmic and Exponential Equations and Inequalities College Costs Logarithmic and Exponential Equations and Inequalities ACTIVITY 2.6 SUGGESTED LEARNING STRATEGIES: Summarize/ Paraphrase/Retell, Create Representations Wesley is researching college costs. He is considering

More information

SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer.

SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer. Math 131 Group Review Assignment (5.5, 5.6) Print Name SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer. Solve the logarithmic equation.

More information

Materials: Hw #9-6 answers handout; Do Now and answers overhead; Special note-taking template; Pair Work and answers overhead; hw #9-7

Materials: Hw #9-6 answers handout; Do Now and answers overhead; Special note-taking template; Pair Work and answers overhead; hw #9-7 Pre-AP Algebra 2 Unit 9 - Lesson 7 Compound Interest and the Number e Objectives: Students will be able to calculate compounded and continuously compounded interest. Students know that e is an irrational

More information

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS LEARNING OBJECTIVES In this section, you will: Evaluate exponential functions. Find the equation of an exponential function. Use compound interest formulas. Evaluate

More information

MATH 1020 TEST 1 VERSION A FALL 2018

MATH 1020 TEST 1 VERSION A FALL 2018 MULTIPLE CHOICE: 62 points Use a #2 pencil and completely fill each bubble on your scantron to answer each multiple choice question. (For future reference, circle your answers on this test paper.) There

More information

STAT 430/510 Probability Lecture 12: Central Limit Theorem and Exponential Distribution

STAT 430/510 Probability Lecture 12: Central Limit Theorem and Exponential Distribution STAT 430/510 Probability Lecture 12: Central Limit Theorem and Exponential Distribution Pengyuan (Penelope) Wang June 15, 2011 Review Discussed Uniform Distribution and Normal Distribution Normal Approximation

More information

Math 1311 Homework 9 (Section 5.1- Section 5.2) Record your answers to all the problems in the EMCF titled Homework 9.

Math 1311 Homework 9 (Section 5.1- Section 5.2) Record your answers to all the problems in the EMCF titled Homework 9. Math 3 Homework 9 (Section 5.- Section 5.2) Record your answers to all the problems in the EMCF titled Homework 9.. 794 Suppose a renewable population grows logistically according to N 0.02t 3e to the

More information

Comparing linear and exponential growth

Comparing linear and exponential growth Januar 16, 2009 Comparing Linear and Exponential Growth page 1 Comparing linear and exponential growth How does exponential growth, which we ve been studing this week, compare to linear growth, which we

More information

Graphs of Increasing Logarithmic Functions

Graphs of Increasing Logarithmic Functions Section 5 4A: Graphs of Increasing Logarithmic Functions We want to determine what the graph of the logarithmic function y = log a looks like for values of a such that a > We will select a value a such

More information

The driver then accelerates the car to 23 m/s in 4 seconds. Use the equation in the box to calculate the acceleration of the car.

The driver then accelerates the car to 23 m/s in 4 seconds. Use the equation in the box to calculate the acceleration of the car. Q1.The diagram shows the forces acting on a car. The car is being driven along a straight, level road at a constant speed of 12 m/s. (a) The driver then accelerates the car to 23 m/s in 4 seconds. Use

More information

Ch 3 Exam Review. Plot the ordered pairs on the rectangular coordinate system provided. 3) A(1, 3), B(-5, 3)

Ch 3 Exam Review. Plot the ordered pairs on the rectangular coordinate system provided. 3) A(1, 3), B(-5, 3) Ch 3 Exam Review Note: These are only a sample of the type of problems that may appear on the exam. Keep in mind, anything covered in class can be covered on the exam. Solve the problem. 1) This bar graph

More information

Section 4.5. Using Exponential Functions to Model Data

Section 4.5. Using Exponential Functions to Model Data Section 4.5 Using Exponential Functions to Model Data Exponential Model, Exponential Related, Approximately Exponentially Related Using Base Multiplier Property to Find a Model Definition An exponential

More information

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS LEARNING OBJECTIVES In this section, you will: Evaluate exponential functions. Find the equation of an exponential function. Use compound interest formulas. Evaluate

More information

Algebra I - Study Guide for Final

Algebra I - Study Guide for Final Name: Date: Period: Algebra I - Study Guide for Final Multiple Choice Identify the choice that best completes the statement or answers the question. To truly study for this final, EXPLAIN why the answer

More information

) # ( 281). Give units with your answer.

) # ( 281). Give units with your answer. Math 120 Winter 2009 Handout 17: In-Class Review for Exam 2 The topics covered by Exam 2 in the course include the following: Implicit differentiation. Finding formulas for tangent lines using implicit

More information

Midterm. Multiple Choice Identify the choice that best completes the statement or answers the question.

Midterm. Multiple Choice Identify the choice that best completes the statement or answers the question. Midterm Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Factor completely. If the polynomial cannot be factored, say it is prime. 10x 2-95x + 225 2. Solve

More information

Exponential Growth. b.) What will the population be in 3 years?

Exponential Growth. b.) What will the population be in 3 years? 0 Eponential Growth y = a b a b Suppose your school has 4512 students this year. The student population is growing 2.5% each year. a.) Write an equation to model the student population. b.) What will the

More information

Unit 8: Exponential & Logarithmic Functions

Unit 8: Exponential & Logarithmic Functions Date Period Unit 8: Eponential & Logarithmic Functions DAY TOPIC ASSIGNMENT 1 8.1 Eponential Growth Pg 47 48 #1 15 odd; 6, 54, 55 8.1 Eponential Decay Pg 47 48 #16 all; 5 1 odd; 5, 7 4 all; 45 5 all 4

More information

Algebra 1 Fall Final Review

Algebra 1 Fall Final Review Standard: Determine Independent from Dependent Quantities. 1) Grissom draws different-sized spheres in a notebook. He knows there is a relationship between the volume of the sphere and the length of its

More information

Review of Exponential Relations

Review of Exponential Relations Review of Exponential Relations Integrated Math 2 1 Concepts to Know From Video Notes/ HW & Lesson Notes Zero and Integer Exponents Exponent Laws Scientific Notation Analyzing Data Sets (M&M Lab & HW/video

More information

9.1 Exponential Growth

9.1 Exponential Growth 9.1 Exponential Growth 1. Complete Activity 1 a. Complete the chart using the x formula y = 300 2 Advanced Algebra Chapter 9 - Note Taking Guidelines Complete each Now try problem after studying the previous

More information

What You Will Learn In This Chapter. Displacement Vector Distance Velocity Vectors Acceleration Vectors Motion with constant Acceleration

What You Will Learn In This Chapter. Displacement Vector Distance Velocity Vectors Acceleration Vectors Motion with constant Acceleration Chapter 2 What You Will Learn In This Chapter Displacement Vector Distance Velocity Vectors Acceleration Vectors Motion with constant Acceleration 2.1 Introduction to kinematics Kinematics is the study

More information

MT 1810 Calculus II Course Activity I.7: Velocity and Distance Travelled

MT 1810 Calculus II Course Activity I.7: Velocity and Distance Travelled MT 1810 Calculus II, CA I.7 P a g e 1 MT 1810 Calculus II Course Activity I.7: Velocity and Distance Travelled Name: Purpose: To investigate how to calculate the distance travelled by an object if you

More information

CHAPTER 5: Exponential and Logarithmic Functions

CHAPTER 5: Exponential and Logarithmic Functions MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 5: Exponential and Logarithmic Functions 5.1 Inverse Functions 5.2 Exponential Functions and Graphs 5.3 Logarithmic Functions

More information

a) Graph the equation by the intercepts method. Clearly label the axes and the intercepts. b) Find the slope of the line.

a) Graph the equation by the intercepts method. Clearly label the axes and the intercepts. b) Find the slope of the line. Math 71 Spring 2009 TEST 1 @ 120 points Name: Write in a neat and organized fashion. Write your complete solutions on SEPARATE PAPER. You should use a pencil. For an exercise to be complete there needs

More information

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers Algebra 2 Notes Section 7.1: Graph Exponential Growth Functions Objective(s): To graph and use exponential growth functions. Vocabulary: I. Exponential Function: An equation of the form y = ab x where

More information

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

Exponential Functions and Their Graphs (Section 3-1)

Exponential Functions and Their Graphs (Section 3-1) Exponential Functions and Their Graphs (Section 3-1) Essential Question: How do you graph an exponential function? Students will write a summary describing the steps for graphing an exponential function.

More information

y = b x Exponential and Logarithmic Functions LESSON ONE - Exponential Functions Lesson Notes Example 1 Set-Builder Notation

y = b x Exponential and Logarithmic Functions LESSON ONE - Exponential Functions Lesson Notes Example 1  Set-Builder Notation y = b x Exponential and Logarithmic Functions LESSON ONE - Exponential Functions Example 1 Exponential Functions Graphing Exponential Functions For each exponential function: i) Complete the table of values

More information

Name: Period: Unit 3 Modeling with Radical and Rational Functions

Name: Period: Unit 3 Modeling with Radical and Rational Functions Name: Period: Unit Modeling with Radical and Rational Functions 1 Equivalent Forms of Exponential Expressions Before we begin today s lesson, how much do you remember about exponents? Use expanded form

More information

Mathematics Level D: Lesson 2 Representations of a Line

Mathematics Level D: Lesson 2 Representations of a Line Mathematics Level D: Lesson 2 Representations of a Line Targeted Student Outcomes Students graph a line specified by a linear function. Students graph a line specified by an initial value and rate of change

More information

Mathematics High School Functions

Mathematics High School Functions Mathematics High School Functions Functions describe situations where one quantity determines another. For example, the return on $10,000 invested at an annualized percentage rate of 4.25% is a function

More information

Solve the equation. 1) x + 1 = 2 x. Use a method of your choice to solve the equation. 2) x2 + 3x - 28 = 0

Solve the equation. 1) x + 1 = 2 x. Use a method of your choice to solve the equation. 2) x2 + 3x - 28 = 0 Precalculus Final Exam Review Sheet Solve the equation. 1) x + 1 = 2 x Use a method of your choice to solve the equation. 2) x2 + 3x - 28 = 0 Write the sum or difference in the standard form a + bi. 3)

More information

WORD: EXAMPLE(S): COUNTEREXAMPLE(S): EXAMPLE(S): COUNTEREXAMPLE(S): WORD: EXAMPLE(S): COUNTEREXAMPLE(S): EXAMPLE(S): COUNTEREXAMPLE(S): WORD:

WORD: EXAMPLE(S): COUNTEREXAMPLE(S): EXAMPLE(S): COUNTEREXAMPLE(S): WORD: EXAMPLE(S): COUNTEREXAMPLE(S): EXAMPLE(S): COUNTEREXAMPLE(S): WORD: Bivariate Data DEFINITION: In statistics, data sets using two variables. Scatter Plot DEFINITION: a bivariate graph with points plotted to show a possible relationship between the two sets of data. Positive

More information

In 1 6, match each scatterplot with the appropriate correlation coefficient. a) +1 b) +0.8 c) +0.3 d) 0 e) -0.6 f) -0.9

In 1 6, match each scatterplot with the appropriate correlation coefficient. a) +1 b) +0.8 c) +0.3 d) 0 e) -0.6 f) -0.9 Homework 11.1 In 1 6, match each scatterplot with the appropriate correlation coefficient. a) +1 b) +0.8 c) +0.3 d) 0 e) -0.6 f) -0.9 1. 2. 3. 4. 5. 6. Match each graph with a description of its correlation

More information

UNIFORM DISTRIBUTIONS The allows us to see two very important properties: 1. The under the of a distribution is equal. (or frequency), so some

UNIFORM DISTRIBUTIONS The allows us to see two very important properties: 1. The under the of a distribution is equal. (or frequency), so some Example 2: In a study of 420,095 cell phone users in Denmark, it was found that 135 developed cancer of the brain or nervous system. If we assume that the use of cell phones has no effect on developing

More information

Topic 1 Test: Linear Relations and Functions. Name: Date: 1. When Antonio first joined the swim team, he swam the race in 8 minutes.

Topic 1 Test: Linear Relations and Functions. Name: Date: 1. When Antonio first joined the swim team, he swam the race in 8 minutes. Name: Date: 1. When Antonio first joined the swim team, he swam the race in 8 minutes. But now he can swim the race in that time. Henry swims the course in 4 minutes. Let T be the difference between Henry

More information

Algebra II Double Period Final Exam Review. 3. Solve. 4. Solve.

Algebra II Double Period Final Exam Review. 3. Solve. 4. Solve. Algebra II Double Period Final Exam Review Name: Chapter 5 Quadratic Equations and Parabolas 1. Solve. 3. Solve. 2. Solve. 4. Solve. 5. Graph each function. Identify the vertex and zeros for each function.

More information

Honors Algebra II 2 nd Semester Review Sheet ) Perform the indicated operation.!! = 3!!!!! =!!! 4) Verify that f and g are inverse functions.

Honors Algebra II 2 nd Semester Review Sheet ) Perform the indicated operation.!! = 3!!!!! =!!! 4) Verify that f and g are inverse functions. Name Honors Algebra II nd Semester Review Sheet Chapter ) Evaluate. + 5 96 ) Perform the indicated operation. = = () () g() *f() ) Find the inverse. = = + ) Verify that f and g are inverse functions. 5)

More information

MATH 121: EXTRA PRACTICE FOR TEST 2. Disclaimer: Any material covered in class and/or assigned for homework is a fair game for the exam.

MATH 121: EXTRA PRACTICE FOR TEST 2. Disclaimer: Any material covered in class and/or assigned for homework is a fair game for the exam. MATH 121: EXTRA PRACTICE FOR TEST 2 Disclaimer: Any material covered in class and/or assigned for homework is a fair game for the exam. 1 Linear Functions 1. Consider the functions f(x) = 3x + 5 and g(x)

More information

Road Weather Management Program

Road Weather Management Program Road Weather Management Program AASHTO/TRB Joint Maintenance Conference: Highway Safety & Reliability (Winter Maintenance and Highway Safety and Reliability) 7/22/2015 Gabe Guevara. P.E. FHWA Office of

More information

Chapter 9. Conic Sections and Analytic Geometry. 9.2 The Hyperbola. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 9. Conic Sections and Analytic Geometry. 9.2 The Hyperbola. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 9 Conic Sections and Analytic Geometry 9. The Hyperbola Copyright 014, 010, 007 Pearson Education, Inc. 1 Objectives: Locate a hyperbola s vertices and foci. Write equations of hyperbolas in standard

More information

Sec. 4.2 Logarithmic Functions

Sec. 4.2 Logarithmic Functions Sec. 4.2 Logarithmic Functions The Logarithmic Function with Base a has domain all positive real numbers and is defined by Where and is the inverse function of So and Logarithms are inverses of Exponential

More information

Five-Minute Check (over Lesson 8 3) CCSS Then/Now New Vocabulary Key Concept: Vertical and Horizontal Asymptotes Example 1: Graph with No Horizontal

Five-Minute Check (over Lesson 8 3) CCSS Then/Now New Vocabulary Key Concept: Vertical and Horizontal Asymptotes Example 1: Graph with No Horizontal Five-Minute Check (over Lesson 8 3) CCSS Then/Now New Vocabulary Key Concept: Vertical and Horizontal Asymptotes Example 1: Graph with No Horizontal Asymptote Example 2: Real-World Example: Use Graphs

More information

Exponential Functions

Exponential Functions Exponential Functions MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: recognize and evaluate exponential functions with base a,

More information

Algebra II CP Final Exam Review Packet. Calculator Questions

Algebra II CP Final Exam Review Packet. Calculator Questions Name: Algebra II CP Final Exam Review Packet Calculator Questions 1. Solve the equation. Check for extraneous solutions. (Sec. 1.6) 2 8 37 2. Graph the inequality 31. (Sec. 2.8) 3. If y varies directly

More information

Algebra II: Chapter 4 Semester Review Multiple Choice: Select the letter that best answers the question. D. Vertex: ( 1, 3.5) Max. Value: 1.

Algebra II: Chapter 4 Semester Review Multiple Choice: Select the letter that best answers the question. D. Vertex: ( 1, 3.5) Max. Value: 1. Algebra II: Chapter Semester Review Name Multiple Choice: Select the letter that best answers the question. 1. Determine the vertex and axis of symmetry of the. Determine the vertex and the maximum or

More information

Graphing and Writing Linear Equations Review 3.1, 3.3, & 4.4. Name: Date: Period:

Graphing and Writing Linear Equations Review 3.1, 3.3, & 4.4. Name: Date: Period: Graphing and Writing Linear Equations Review.1,., 4.1-4. & 4.4 Algebra I Name: Date: Period: Quest Topics Section.1 linear versus nonlinear rewrite linear equations in standard form: Ax By C find and use

More information

AFDA Unit 1 Practice Test

AFDA Unit 1 Practice Test F Unit 1 Practice Test Name: ate: 1. Which inequality is represented by the accompanying graph? 4 3 1 0 1 3 4. < x 3. x 3. x < 3. < x < 3. Which inequality is represented by the accompanying graph? 1 0

More information

Section 11.1 Distance and Displacement (pages )

Section 11.1 Distance and Displacement (pages ) Name Class Date Section 11.1 Distance and Displacement (pages 328 331) This section defines distance and displacement. Methods of describing motion are presented. Vector addition and subtraction are introduced.

More information

2.4 Exercises. Interval Notation Exercises 1 8: Express the following in interval notation. Solving Linear Inequalities Graphically

2.4 Exercises. Interval Notation Exercises 1 8: Express the following in interval notation. Solving Linear Inequalities Graphically _chpp7-8.qd //8 4: PM Page 4 4 CHAPTER Linear Functions and Equations.4 Eercises Interval Notation Eercises 8: Epress the following in interval notation... 7 -. Ú - 4. 7. { 8}. { - 4} 7. { } 8. { 7 } Solving

More information

For use after the chapter Graphing Linear Equations and Functions 3 D. 7. 4y 2 3x 5 4; (0, 1) x-intercept: 6 y-intercept: 3.

For use after the chapter Graphing Linear Equations and Functions 3 D. 7. 4y 2 3x 5 4; (0, 1) x-intercept: 6 y-intercept: 3. Chapter Test A Write the coordinates of the point.. A. B. D. C. A. D C B.... Tell whether the ordered pair is a solution of the equation.. ; (, ) 7.. ; (, ). 7. ; (, ). Draw the line that has the given

More information

Average rates of change May be used to estimate the derivative at a point

Average rates of change May be used to estimate the derivative at a point Derivatives Big Ideas Rule of Four: Numerically, Graphically, Analytically, and Verbally Average rate of Change: Difference Quotient: y x f( a+ h) f( a) f( a) f( a h) f( a+ h) f( a h) h h h Average rates

More information

1. Under certain conditions the number of bacteria in a particular culture doubles every 10 seconds as shown by the graph below.

1. Under certain conditions the number of bacteria in a particular culture doubles every 10 seconds as shown by the graph below. Exponential Functions Review Packet (from November Questions) 1. Under certain conditions the number of bacteria in a particular culture doubles every 10 seconds as shown by the graph below. 8 7 6 Number

More information

Worksheet: Introduction to Inverse Functions

Worksheet: Introduction to Inverse Functions Worksheet: Introduction to Inverse Functions Multiple Choice Identif the choice that best completes the statement or answers the question.. A pre-paid cellular phone charges $ for activation and $0.0 per

More information

Study Guide and Review - Chapter 7

Study Guide and Review - Chapter 7 Choose a word or term from the list above that best completes each statement or phrase. 1. A function of the form f (x) = b x where b > 1 is a(n) function. exponential growth 2. In x = b y, the variable

More information

Final Exam Study Guide

Final Exam Study Guide Algebra 2 Alei - Desert Academy 2011-12 Name: Date: Block: Final Exam Study Guide 1. Which of the properties of real numbers is illustrated below? a + b = b + a 2. Convert 6 yards to inches. 3. How long

More information

OBJECTIVES: By the end of today s lesson, you will be able to. SWBAT list the layers of the atmosphere and describe the characteristics of each one.

OBJECTIVES: By the end of today s lesson, you will be able to. SWBAT list the layers of the atmosphere and describe the characteristics of each one. 7 th Grade Science Unit: Water s Cycles and Patterns Lesson: WCP 10 Name: Date: Monday, September 12, 2016 Homeroom: OBJECTIVES: By the end of today s lesson, you will be able to SWBAT list the layers

More information

Equations. 2 3 x 1 4 = 2 3 (x 1 4 ) 4. Four times a number is two less than six times the same number minus ten. What is the number?

Equations. 2 3 x 1 4 = 2 3 (x 1 4 ) 4. Four times a number is two less than six times the same number minus ten. What is the number? Semester Exam Review Packet *This packet is not necessarily comprehensive. In other words, this packet is not a promise in terms of level of difficulty or full scope of material. Equations 1. 9 2(n 1)

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Exponential and Logarithmic Functions Learning Targets 1. I can evaluate, analyze, and graph exponential functions. 2. I can solve problems involving exponential growth & decay. 3. I can evaluate expressions

More information

Assumed the acceleration was constant and that the receiver could be modeled as a point particle.

Assumed the acceleration was constant and that the receiver could be modeled as a point particle. PUM Physics II - Kinematics Lesson 16 Solutions Page 1 of 7 16.1 Regular Problem v o = 10 m/s v = -2.0 m/s t = 0.020 s v = v o + at -2.0 m/s = (10 m/s) + a(0.020 s) a = (-12 m/s)/(0.020 s) = -600 m/s 2

More information

One-to-One Functions YouTube Video

One-to-One Functions YouTube Video Section 9. One-to-One Functions YouTue Video A function in which each element in the range corresponds to one and only one element in the domain. Determine if the following are One-to-one functions:,,

More information

Physics is about finding the simplest and least complicated explanation for things.

Physics is about finding the simplest and least complicated explanation for things. WHAT IS PHYSICS Physics is about finding the simplest and least complicated explanation for things. It is about observing how things work and finding the connections between cause and effect that explain

More information

Accelerated Intermediate 2 Summer Math Packet

Accelerated Intermediate 2 Summer Math Packet Chapter 1: Expressions, Equations, and Functions For Questions 1-2, write an algebraic expression for each verbal expression. 1. the sum of the square of a number and 34 2. the product of 5 and twice a

More information

Transformation of functions

Transformation of functions Transformation of functions Translations Dilations (from the x axis) Dilations (from the y axis) Reflections (in the x axis) Reflections (in the y axis) Summary Applying transformations Finding equations

More information

Displacement and Total Distance Traveled

Displacement and Total Distance Traveled Displacement and Total Distance Traveled We have gone over these concepts before. Displacement: This is the distance a particle has moved within a certain time - To find this you simply subtract its position

More information

Algebra 1, Absolute Value Functions Review

Algebra 1, Absolute Value Functions Review Name: Class: Date: ID: A Algebra 1, Absolute Value Functions Review 3.7.1: I can solve absolute value equations. 1. (1 point) x + 10 = 1 2. (1 point) Starting from 1.5 miles away, a car drives towards

More information

notes.notebook April 08, 2014

notes.notebook April 08, 2014 Chapter 7: Exponential Functions graphs solving equations word problems Graphs (Section 7.1 & 7.2): c is the common ratio (can not be 0,1 or a negative) if c > 1, growth curve (graph will be increasing)

More information

Printed Name: Section #: Instructor:

Printed Name: Section #: Instructor: Printed Name: Section #: Instructor: Please do not ask questions during this eam. If you consider a question to be ambiguous, state your assumptions in the margin and do the best you can to provide the

More information

Concept Category 2. Exponential and Log Functions

Concept Category 2. Exponential and Log Functions Concept Category 2 Exponential and Log Functions Concept Category 2 Check List *Find the inverse and composition of functions *Identify an exponential from a table, graph and equation *Identify the difference

More information

EXPONENTIAL FUNCTIONS REVIEW PACKET FOR UNIT TEST TOPICS OF STUDY: MEMORIZE: General Form of an Exponential Function y = a b x-h + k

EXPONENTIAL FUNCTIONS REVIEW PACKET FOR UNIT TEST TOPICS OF STUDY: MEMORIZE: General Form of an Exponential Function y = a b x-h + k EXPONENTIAL FUNCTIONS REVIEW PACKET FOR UNIT TEST TOPICS OF STUDY: o Recognizing Eponential Functions from Equations, Graphs, and Tables o Graphing Eponential Functions Using a Table of Values o Identifying

More information

What s Your Mileage?

What s Your Mileage? Overview Math Concepts Materials Students use linear equations to model and solve real-world slope TI-30XS problems. Students also see the correlation between the fractions MultiView graph of an equation

More information

Introduction to Exponential Functions

Introduction to Exponential Functions MCR3U Unit 4: Exponential Relations Lesson 4 Date: Learning goal: I can graph and identify key properties of exponential functions. I can distinguish between a linear, quadratic, and exponential function

More information

Solving Exponential Equations

Solving Exponential Equations Solving Exponential Equations Exponential Equation: is an equation where the unknown variable is the exponent. You can write an exponential equation in the form: a x = b y. Example Steps: 1. If the bases

More information

f(x) = d(x) q(x) + r(x).

f(x) = d(x) q(x) + r(x). Section 5.4: Dividing Polynomials 1. The division algorithm states, given a polynomial dividend, f(x), and non-zero polynomial divisor, d(x), where the degree of d(x) is less than or equal to the degree

More information

ECM Final Exam Review. 6. Solve: 2x 3y =6 2x 6y =9

ECM Final Exam Review. 6. Solve: 2x 3y =6 2x 6y =9 Name: Date: 1. On January 1, 2000, a car had a value of $15,000. Each year after that, the car s value will decrease by 20 percent of the previous year s value. Which expression represents the car s value

More information

Calculator Inactive Write your answers in the spaces provided. Present clear, concise solutions

Calculator Inactive Write your answers in the spaces provided. Present clear, concise solutions 11/3/09 Chapter 8 Exponential & Logarithmic Functions Page 1 of 8 Calculator Inactive Write your answers in the spaces provided. Present clear, concise solutions 1. Convert 3 x 2 8 into log form: (1M)

More information

(a) If the half-life of carbon-14 is 5,730 years write the continuous growth formula.

(a) If the half-life of carbon-14 is 5,730 years write the continuous growth formula. Section 6.7: Exponential and Logarithmic Models In this text all application problems are going to be of the following form, where A 0 is the initial value, k is the growth/decay rate (if k > 0 it is growth,

More information

Lesson 5: Solving Linear Systems Problem Solving Assignment solutions

Lesson 5: Solving Linear Systems Problem Solving Assignment solutions Write inequalities to represent the following problem, and then solve to answer the question. 1. The Rent-A-Lemon Car Rental Company charges $60 a day to rent a car and an additional $0.40 per mile. Alex

More information

RADICAL AND RATIONAL FUNCTIONS REVIEW

RADICAL AND RATIONAL FUNCTIONS REVIEW RADICAL AND RATIONAL FUNCTIONS REVIEW Name: Block: Date: Total = % 2 202 Page of 4 Unit 2 . Sketch the graph of the following functions. State the domain and range. y = 2 x + 3 Domain: Range: 2. Identify

More information