CHAPTER 6 BOLTZMANN'S H-THEOREM

Size: px
Start display at page:

Download "CHAPTER 6 BOLTZMANN'S H-THEOREM"

Transcription

1 6-1 CHAPTER 6 BOLTZMANN'S H-THEOREM In the atter part o the nneteenth century, Ludwg Botzmann amost snge-handedy estabshed the ed now nown as statstca mechancs. One o hs maor contrbutons, and undoubtedy the most controversa, was hs H-theorem. Ths wor was pubshed n 1872 wth the ntent o showng that the second aw o thermodynamcs derves rom the aws o mechancs. Whe t s now generay agreed that the attempted proo was unsuccessu, the controversy attendng ths wor was utmatey beneca to the burgeonng ed o statstca mechancs because t orced the worers to thn through and rene the statstca and probabstc concepts that were ntroduced by Botzmann. 6.1 THE H-THEOREM H = n δx δy δz δp δp δp (6-1) Botzmann began by denng the uncton H or a dute gas comprsed o spherca partces 1 where s a dstrbuton uncton whch determnes the number o partces n ocated n the spata regon δx δy δz and havng momentum n the range δp x δp y δp z through the reaton n = (x, y, z, x y z p, p, p,t) δ x δ y δ z δ p δ p δ p (6-2) x y z The term δx δy δz δp x δp y δp z s denoted δv µ and s reerred to as the "voume" o a ce n 6-dmensona µ-space. The ces occupy equa "voumes" o µ-space. Each partce has sx degrees o reedom and coud be competey speced by a pont n µ-space. Thus, a quantty o gas contanng N partces can be represented by a swarm o N ponts n µ-space and the dstrbuton uncton tes us how these N ponts are parttoned among the ces o µ-space. The summaton n Eq. (6-1) s taen over a o the ces n µ-space. As ndcated n x y z 1 Ths dervaton cosey oows R. C. Toman, The Prncpes o Statstca Mechancs, Oxord Unversty Press, London, 1938, pp

2 Eq. (6-2), the dstrbuton uncton coud depend upon poston, momentum, and tme. The uncton H can be restated as 2 n n H = N n + constant (6-3) N N I n /N coud be taen as the probabty o a partce beng ound n the th ce o µ-space, we coud wrte Eq. (6-3) as H = N P n P constant (6-4) + The rst rght-hand term o Eq. (6-4) woud appear to be reated to the statstca mechanca entropy 3, but t must be remembered that the atter quantty reers to an equbrum state and thereore the P 's shoud be the ce occupaton probabtes when the equbrum dstrbuton prevas. Our substtuton o n /N or P mpes that the oowng reatonshp between H and S s vad ony as equbrum s approached 6-2 or S H = - + constant (6-5) dh ds - = (6-6) The tme dervatve o S can thereore be obtaned rom the tme dervatve o H whch n turn depends on the change n wth tme. Partce cosons provde the mechansm or changes n and when moecuar chaos s assumed, t can be shown that 4 d H d t 0 (6-7) See Appendx 6A or detas. Compare wth Eq. (2-10). For detas see Appendx 6B.

3 6-3 As per Eq. (6-6) ths resuts n d S 0 (6-8) d t Thus, H can never ncrease and Eq. (6-5) s vad, S can never decrease. These dervatves become zero at equbrum where together orward and reverse cosons zero out and the Maxwe-Botzmann dstrbuton prevas THE PARADOXES The scentc communty was ntay septca o Botzmann's resut and a engthy controversy ensued. 6 For the most part, the attacs on the H-theorem centered on two eatures whch are now nown as paradoxes assocated wth the names o Zermeo and Loschmdt. Zermeo's paradox, aso nown as the recurrence paradox, cas Botzmann's resut nto queston because, accordng to a theorem proved by Poncaré: any mechanca system o xed energy and voume obeyng the aws o cassca mechancs (the type o system consdered by Botzmann) must eventuay return arbtrary cose to ts nta state. Thus, Botzmann's H shoud eventuay ncrease as the system returns to ts nta state and thereore H can not be sad to never ncrease. It turns out that the ey word here s eventuay; Poncaré's theorem speces a nte recurrence tme, but estmates show ths tme to be astronomcay arge. Thus, whe acceptng the vadty o Zermeo's cam, Botzmann was abe to argue that because o very ong recurrence tmes, no one woud ever observe a system wth ncreasng H and thereore hs H-theorem woud not conct wth experence. Botzmann aso used the argument that the Second Law s statstca n nature and stated that whe systems wth ncreasng H were possbe, ther occurrence coud be assgned an extremey ow probabty. There does not seem to be a snge precse statement o the paradox attrbuted to Loschmdt. In hs ony pubshed statement on the subect, 5 Dened by Eq. (2-4). 6 A detaed account s provded by S.G. Brush, The Knd o Moton We Ca Heat, North-Hoand Pubshng Co., Amsterdam, 1976, pp

4 Loschmdt wrote 7 "...the entre course o events w be retraced at some nstant the veoctes o a ts parts are reversed." Botzmann n hs response assocated the obecton wth Loschmdt and because the two were coeagues, there seems to be tte doubt that they had dscussed the matter. The gst o Loschmdt's obecton was that Botzmann had used Louve's equaton, whch s based on the cassca equatons o moton, to descrbe the behavor o hs system. Because these cassca equatons are symmetrc n tme and because the use o statstca methods ntroduces no asymmetry, t s not reasonabe to expect the asymmetrc behavor o Botzmann's H. Thus, Loschmdt's paradox mght be smped to: How s t possbe to obtan tme-asymmetrc behavor or a system that obeys tme-symmetrc equatons? Ths queston was not setted decsvey unt van Kampen 8 n 1962 stated that the moecuar chaos assumpton used by Botzmann n determnng coson requences provdes the source o the tme-asymmetrc behavor. Thus, moecuar cosons are represented by a Marovan process where the hstory o the system s orgotten or gnored and does not determne uture behavor. It s easy to demonstrate that a smpe Marovan process shows the same type o tme-asymmetrc behavor as Botzmann's H. We w use the amous dog-and-eas probem. There are two dogs A and B that share a tota o N eas seray numbered rom 1 to N. Aso, there s an urn contanng bas numbered rom 1 to N rom whch bas are drawn at random. When a ba s drawn, the number s read and the correspondng ea umps rom the dog t s on to the other dog. The ba s then returned to the urn, mxed wth the other bas, and the drawng contnues. The stuaton n whch a eas are ntay on dog A has been computed or the case o N=500. The progress o the game s shown on Fg. 6-1 where the number o eas on each dog s potted versus the number o events (draws). A random number generator smuated the drawng o bas. Aso potted on Fg. 6-1 s a quantty abeed "Entroea" dened as 6-4 "Entroea" = -( A n A + B n B ) 7 bd. 8 N.G. van Kampen n Fundamenta Probems n Statstca Mechancs, E.G.D. Cohen ed., North-Hoand Pubshng Co., Amsterdam, 1962, pp

5 6-5 Fgure 6-1. Dogs and eas a Marovan process. where A and B are the ractons o the tota number o eas on dogs A and B respectvey. As suggested by Eq. (6-3), "Entroea" s anaogous to -H. Note that despte mnor uctuatons, "Entroea" ncreases to an asymptotc vaue n much the same way as the H-theorem seems to predct or the entropy. Ths s characterstc o a Marovan process where each event s determned soey n terms o probabty, but there s no way "Entroea" can be reated to the thermodynamc entropy whch s dened n terms o a reversbe heat eect. Thus, rreversbty s not expaned by the H-theorem, but sneas nto the dervaton through the necessary but deceptvey nnocent assumpton o moecuar chaos.

6 COMMENTARY When consderng the mport o Botzmann's H-theorem, there are two maor areas o dsappontment: the nabty to drecty reate H to the entropy except very near the na or equbrum state, and the aure to denty the source o rreversbty. It has aready been noted that Eq. (6-5) s vad ony at equbrum, ater H has ceased to change. We can thereore expect that the resut ds/dt 0 appes ony near equbrum and may wsh to nqure as to the type o process or whch H (or rather dh/dt) has been evauated. In obtanng the resut stated by Eq. (6-7), the dstrbuton uncton was assumed ndependent o spata poston and thereore we must recognze that we have been consderng a macroscopcay homogeneous gas. We then as whether our cacuated change n H corresponds to an observabe change n state or whch we expect the entropy to change. We concude that a change o state, occurrng n an soated system n whch the gas remans macroscopcay homogeneous, s dcut to magne. In ths regard, ter Haar 9 n hs treatment o the H-theorem states that " a dstrbuton ders apprecaby rom the equbrum dstrbuton, the return to equbrum s qute rapd." Hs estmate o the reaxaton tme or ths process n a gas at 300 K and atmospherc pressure s 10-9 seconds whch ceary ndcates that the changes we have consdered or H do not correspond to observabe changes n entropy. Thus, the H-theorem has tte to do wth entropy and many demonstrates the stabty o the equbrum dstrbuton. An approach empoyng dstrbuton unctons and the moecuar chaos assumpton produces good resuts when apped to the cacuaton o transport propertes and t seems reasonabe that Botzmann's H, measurabe, woud ndeed be ound to never ncrease. Aso, t s we nown that the Sacur-Tetrode equaton, a resut o equbrum statstca mechancs, correcty predcts entropy changes between we-dened changes o state o an dea gas. Yet, n spte o these successes n the equbrum and non-equbrum reams, the orgn o or the contrbutve mechansm or rreversbty has not been ound. Some have proposed a cosmc rather than a oca orgn D. ter Haar, Eements o Thermostatstcs, Hot, Rnehart, and Wnston, New Yor, 1966, 2nd ed., pp See, or exampe, B. Ga-Or, n A Crtca Revew o Thermodynamcs, E.B. Stuart, A.J. Branard, and B. Ga-Or eds., Mono Boo Corp., Batmore, 1970, pp

7 6-7 The aure o moecuar theory to provde a proo or expanaton o the second aw may be due to ncompatbe descrptons o reaty. 11 In the moecuar vew, deaty s ound n the moton o partces whch, as we have seen, s reversbe and operates n a tmeess ashon ndependent o human presence. On the other hand, deaty n thermodynamcs s represented by the reversbe process whch never occurs naturay and can be approached ony through the nterventon o a human agent n reducng rcton and potenta gradents. Thus, Botzmann's H-theorem may have aed because congruence s not possbe n the mappng o one vew o reaty onto the other. 11 See Sec. 9.3

8 6-8 APPENDIX 6A Smpcaton o H The uncton H can be shown to be reated to the statstca mechanca entropy. We begn by rewrtng Eq. (6-2) = n / δ v µ and substtutng ths resut nto Eq. (6-1) to obtan H n = δv µ n n δv µ δv µ whch reduces to or ( n n n n nδv ) H = µ ( n n n N nδv ) H = µ Because the ce voume δv µ s constant, the second rght-hand term n ths equaton s constant. A bt o agebrac manpuaton yeds = N n n n + [ N n N N nδv ] H µ N N where the rght-hand braceted term s a constant.

9 6-9 APPENDIX 6B The eect o bnary cosons upon H Beore determnng dh/dt, t s convenent to regard as a contnuous uncton n µ-space and restate Eq. (6-1) H =... n dvµ Because ntegraton s over a sx coordnates o µ-space, the ntegra s a uncton ony o tme. Thus, we may wrte dh d d =... + dvµ dt n (6-9) Rememberng that dv µ s the number o partces n a ce o derenta sze and notng that the ntegra o over a o µ-space smpy resuts n the tota number o partces, we nd the second term o the ntegra to be zero and wrte Eq. (6-9) as dh d =... n dvµ (6-10) Further, we assume to be ndependent o poston, we can ntegrate over the spata coordnates x, y, and z to obtan dh d =V n dω (6-11) where dω s the range o momenta, dp x dp y dp z. In order to determne the sgn o dh/dt, we must attempt a descrpton o the coson process and begn by rewrtng Eq. (6-2). n = δ vδ ω (6-12) We have assumed to be ndependent o poston and may sum over a voume eements, δv, to obtan the number o partces, N, n the contaner that have momentum n the range δω. N =V δ ω (6-13) We now consder a coson between two partces wth nta momenta n the ranges δω and δω to produce partces wth momenta ranges δω and δω 1.

10 6-10 Ths type o coson, whe conservng momentum, w decrease N and N and ncrease N and N and w occur wth a requency proportona to the product N N. Thus, rom Eq. (6-13) we wrte the requency, Z, as Z = C (6-14) where C s the coson constant. From Z we can determne the rate o change o the number o partces n these momentum ranges dn dn = dn = - = dn C = - (6-15) Usng Eq. (6-13) to evauate these dervatves we obtan dn d - = -V δ ω = C dn d - = -V δ ω = C dn d = V δ ω = C dn d = V δ ω = C We now wrte Eq. (6-11) as a summaton (6-16) dh dt = d n V δω (6-17) dt Usng Eq. (6-16) to repace the term n parenthess, we nd the contrbuton o cosons to the summaton to be or - C n - C n +C n +C n C n Next, we consder the reverse coson where partces wth nta momenta n the ranges δω and δω code to produce partces wth momenta n the ranges δω and δω. The requency o these cosons, Z, s Z = C

11 6-11 where the coson constant C s the same as or the orward coson as can be shown by the appcaton o Louve's equaton. By the same reasonng we can wrte or the contrbuton o reverse cosons to Eq. (6-17) C n For ths par o orward and reverse cosons, the contrbuton to the summaton s C ( - ) n Ths expresson has the orm, C(x-y)n y/x, whch can be shown to aways be negatve or zero or postve vaues o x and y. Because the 's are aways postve, the contrbuton to the summaton due to a par o orward and reverse cosons w be zero or negatve. Because t can be shown or spherca partces that a possbe bnary cosons occur n orward and reverse pars, the summaton o Eq. (6-17) w be comprsed o a arge number o terms that are ether negatve or zero. We can then state that dh 0 dt

G : Statistical Mechanics

G : Statistical Mechanics G25.2651: Statstca Mechancs Notes for Lecture 11 I. PRINCIPLES OF QUANTUM STATISTICAL MECHANICS The probem of quantum statstca mechancs s the quantum mechanca treatment of an N-partce system. Suppose the

More information

3. Stress-strain relationships of a composite layer

3. Stress-strain relationships of a composite layer OM PO I O U P U N I V I Y O F W N ompostes ourse 8-9 Unversty of wente ng. &ech... tress-stran reatonshps of a composte ayer - Laurent Warnet & emo Aerman.. tress-stran reatonshps of a composte ayer Introducton

More information

Remark: Positive work is done on an object when the point of application of the force moves in the direction of the force.

Remark: Positive work is done on an object when the point of application of the force moves in the direction of the force. Unt 5 Work and Energy 5. Work and knetc energy 5. Work - energy theore 5.3 Potenta energy 5.4 Tota energy 5.5 Energy dagra o a ass-sprng syste 5.6 A genera study o the potenta energy curve 5. Work and

More information

Note 2. Ling fong Li. 1 Klein Gordon Equation Probablity interpretation Solutions to Klein-Gordon Equation... 2

Note 2. Ling fong Li. 1 Klein Gordon Equation Probablity interpretation Solutions to Klein-Gordon Equation... 2 Note 2 Lng fong L Contents Ken Gordon Equaton. Probabty nterpretaton......................................2 Soutons to Ken-Gordon Equaton............................... 2 2 Drac Equaton 3 2. Probabty nterpretaton.....................................

More information

Lowest-Order e + e l + l Processes in Quantum Electrodynamics. Sanha Cheong

Lowest-Order e + e l + l Processes in Quantum Electrodynamics. Sanha Cheong Lowest-Order e + e + Processes n Quantum Eectrodynamcs Sanha Cheong Introducton In ths short paper, we w demonstrate some o the smpest cacuatons n quantum eectrodynamcs (QED), eadng to the owest-order

More information

MARKOV CHAIN AND HIDDEN MARKOV MODEL

MARKOV CHAIN AND HIDDEN MARKOV MODEL MARKOV CHAIN AND HIDDEN MARKOV MODEL JIAN ZHANG JIANZHAN@STAT.PURDUE.EDU Markov chan and hdden Markov mode are probaby the smpest modes whch can be used to mode sequenta data,.e. data sampes whch are not

More information

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak Thermodynamcs II Department o Chemca ngneerng ro. Km, Jong Hak .5 Fugacty & Fugacty Coecent : ure Speces µ > provdes undamenta crteron or phase equbrum not easy to appy to sove probem Lmtaton o gn (.9

More information

LECTURE 21 Mohr s Method for Calculation of General Displacements. 1 The Reciprocal Theorem

LECTURE 21 Mohr s Method for Calculation of General Displacements. 1 The Reciprocal Theorem V. DEMENKO MECHANICS OF MATERIALS 05 LECTURE Mohr s Method for Cacuaton of Genera Dspacements The Recproca Theorem The recproca theorem s one of the genera theorems of strength of materas. It foows drect

More information

A finite difference method for heat equation in the unbounded domain

A finite difference method for heat equation in the unbounded domain Internatona Conerence on Advanced ectronc Scence and Technoogy (AST 6) A nte derence method or heat equaton n the unbounded doman a Quan Zheng and Xn Zhao Coege o Scence North Chna nversty o Technoogy

More information

Chapter 3 Differentiation and Integration

Chapter 3 Differentiation and Integration MEE07 Computer Modelng Technques n Engneerng Chapter Derentaton and Integraton Reerence: An Introducton to Numercal Computatons, nd edton, S. yakowtz and F. zdarovsky, Mawell/Macmllan, 990. Derentaton

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Solution Thermodynamics

Solution Thermodynamics Soluton hermodynamcs usng Wagner Notaton by Stanley. Howard Department of aterals and etallurgcal Engneerng South Dakota School of nes and echnology Rapd Cty, SD 57701 January 7, 001 Soluton hermodynamcs

More information

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen omplex Varables hapter 8 Integraton n the omplex Plane March, Lecturer: Shh-Yuan hen Except where otherwse noted, content s lcensed under a BY-N-SA. TW Lcense. ontents ontour ntegrals auchy-goursat theorem

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

Quantum Runge-Lenz Vector and the Hydrogen Atom, the hidden SO(4) symmetry

Quantum Runge-Lenz Vector and the Hydrogen Atom, the hidden SO(4) symmetry Quantum Runge-Lenz ector and the Hydrogen Atom, the hdden SO(4) symmetry Pasca Szrftgser and Edgardo S. Cheb-Terrab () Laboratore PhLAM, UMR CNRS 85, Unversté Le, F-59655, France () Mapesoft Let's consder

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Associative Memories

Associative Memories Assocatve Memores We consder now modes for unsupervsed earnng probems, caed auto-assocaton probems. Assocaton s the task of mappng patterns to patterns. In an assocatve memory the stmuus of an ncompete

More information

Work is the change in energy of a system (neglecting heat transfer). To examine what could

Work is the change in energy of a system (neglecting heat transfer). To examine what could Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes

More information

Physics 2A Chapters 6 - Work & Energy Fall 2017

Physics 2A Chapters 6 - Work & Energy Fall 2017 Physcs A Chapters 6 - Work & Energy Fall 017 These notes are eght pages. A quck summary: The work-energy theorem s a combnaton o Chap and Chap 4 equatons. Work s dened as the product o the orce actng on

More information

Computational Biology Lecture 8: Substitution matrices Saad Mneimneh

Computational Biology Lecture 8: Substitution matrices Saad Mneimneh Computatonal Bology Lecture 8: Substtuton matrces Saad Mnemneh As we have ntroduced last tme, smple scorng schemes lke + or a match, - or a msmatch and -2 or a gap are not justable bologcally, especally

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Spring Force and Power

Spring Force and Power Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

More information

arxiv: v1 [physics.comp-ph] 17 Dec 2018

arxiv: v1 [physics.comp-ph] 17 Dec 2018 Pressures nsde a nano-porous medum. The case of a snge phase fud arxv:1812.06656v1 [physcs.comp-ph] 17 Dec 2018 Oav Gateand, Dck Bedeaux, and Sgne Kjestrup PoreLab, Department of Chemstry, Norwegan Unversty

More information

Force = F Piston area = A

Force = F Piston area = A CHAPTER III Ths chapter s an mportant transton between the propertes o pure substances and the most mportant chapter whch s: the rst law o thermodynamcs In ths chapter, we wll ntroduce the notons o heat,

More information

APPENDIX 2 FITTING A STRAIGHT LINE TO OBSERVATIONS

APPENDIX 2 FITTING A STRAIGHT LINE TO OBSERVATIONS Unversty of Oulu Student Laboratory n Physcs Laboratory Exercses n Physcs 1 1 APPEDIX FITTIG A STRAIGHT LIE TO OBSERVATIOS In the physcal measurements we often make a seres of measurements of the dependent

More information

ON AUTOMATIC CONTINUITY OF DERIVATIONS FOR BANACH ALGEBRAS WITH INVOLUTION

ON AUTOMATIC CONTINUITY OF DERIVATIONS FOR BANACH ALGEBRAS WITH INVOLUTION European Journa of Mathematcs and Computer Scence Vo. No. 1, 2017 ON AUTOMATC CONTNUTY OF DERVATONS FOR BANACH ALGEBRAS WTH NVOLUTON Mohamed BELAM & Youssef T DL MATC Laboratory Hassan Unversty MORO CCO

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015 Lecture 2. 1/07/15-1/09/15 Unversty of Washngton Department of Chemstry Chemstry 453 Wnter Quarter 2015 We are not talkng about truth. We are talkng about somethng that seems lke truth. The truth we want

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 16 8/4/14 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 214. Real Vapors and Fugacty Henry s Law accounts or the propertes o extremely dlute soluton. s shown n Fgure

More information

22.51 Quantum Theory of Radiation Interactions

22.51 Quantum Theory of Radiation Interactions .51 Quantum Theory of Radaton Interactons Fna Exam - Soutons Tuesday December 15, 009 Probem 1 Harmonc oscator 0 ponts Consder an harmonc oscator descrbed by the Hamtonan H = ω(nˆ + ). Cacuate the evouton

More information

Chapter Seven - Potential Energy and Conservation of Energy

Chapter Seven - Potential Energy and Conservation of Energy Chapter Seven - Potental Energy and Conservaton o Energy 7 1 Potental Energy Potental energy. e wll nd that the potental energy o a system can only be assocated wth specc types o orces actng between members

More information

Lecture 7: Boltzmann distribution & Thermodynamics of mixing

Lecture 7: Boltzmann distribution & Thermodynamics of mixing Prof. Tbbtt Lecture 7 etworks & Gels Lecture 7: Boltzmann dstrbuton & Thermodynamcs of mxng 1 Suggested readng Prof. Mark W. Tbbtt ETH Zürch 13 März 018 Molecular Drvng Forces Dll and Bromberg: Chapters

More information

Chapter 6. Rotations and Tensors

Chapter 6. Rotations and Tensors Vector Spaces n Physcs 8/6/5 Chapter 6. Rotatons and ensors here s a speca knd of near transformaton whch s used to transforms coordnates from one set of axes to another set of axes (wth the same orgn).

More information

Endogenous timing in a mixed oligopoly consisting of a single public firm and foreign competitors. Abstract

Endogenous timing in a mixed oligopoly consisting of a single public firm and foreign competitors. Abstract Endogenous tmng n a mxed olgopoly consstng o a sngle publc rm and oregn compettors Yuanzhu Lu Chna Economcs and Management Academy, Central Unversty o Fnance and Economcs Abstract We nvestgate endogenous

More information

TREATMENT OF THE TURNING POINT IN ADK-THEORY INCLUDING NON-ZERO INITIAL MOMENTA

TREATMENT OF THE TURNING POINT IN ADK-THEORY INCLUDING NON-ZERO INITIAL MOMENTA 41 Kragujevac J. Sc. 5 (00) 41-46. TREATMENT OF THE TURNING POINT IN ADK-THEORY INCLUDING NON-ZERO INITIAL MOMENTA Vladmr M. Rstć a and Tjana Premovć b a Faculty o Scence, Department o Physcs, Kragujevac

More information

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors.

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors. SCALARS AND ECTORS All phscal uanttes n engneerng mechancs are measured usng ether scalars or vectors. Scalar. A scalar s an postve or negatve phscal uantt that can be completel specfed b ts magntude.

More information

( ) r! t. Equation (1.1) is the result of the following two definitions. First, the bracket is by definition a scalar product.

( ) r! t. Equation (1.1) is the result of the following two definitions. First, the bracket is by definition a scalar product. Chapter. Quantum Mechancs Notes: Most of the matera presented n ths chapter s taken from Cohen-Tannoudj, Du, and Laoë, Chap. 3, and from Bunker and Jensen 5), Chap... The Postuates of Quantum Mechancs..

More information

Research on Complex Networks Control Based on Fuzzy Integral Sliding Theory

Research on Complex Networks Control Based on Fuzzy Integral Sliding Theory Advanced Scence and Technoogy Letters Vo.83 (ISA 205), pp.60-65 http://dx.do.org/0.4257/ast.205.83.2 Research on Compex etworks Contro Based on Fuzzy Integra Sdng Theory Dongsheng Yang, Bngqng L, 2, He

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Thermodynamics Second Law Entropy

Thermodynamics Second Law Entropy Thermodynamcs Second Law Entropy Lana Sherdan De Anza College May 8, 2018 Last tme the Boltzmann dstrbuton (dstrbuton of energes) the Maxwell-Boltzmann dstrbuton (dstrbuton of speeds) the Second Law of

More information

A Simple Research of Divisor Graphs

A Simple Research of Divisor Graphs The 29th Workshop on Combnatoral Mathematcs and Computaton Theory A Smple Research o Dvsor Graphs Yu-png Tsao General Educaton Center Chna Unversty o Technology Tape Tawan yp-tsao@cuteedutw Tape Tawan

More information

Lecture Note 3. Eshelby s Inclusion II

Lecture Note 3. Eshelby s Inclusion II ME340B Elastcty of Mcroscopc Structures Stanford Unversty Wnter 004 Lecture Note 3. Eshelby s Incluson II Chrs Wenberger and We Ca c All rghts reserved January 6, 004 Contents 1 Incluson energy n an nfnte

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 12 7/25/14 ERD: 7.1-7.5 Devoe: 8.1.1-8.1.2, 8.2.1-8.2.3, 8.4.1-8.4.3 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 2014 A. Free Energy and Changes n Composton: The

More information

EXPERIMENT AND THEORISATION: AN APPLICATION OF THE HYDROSTATIC EQUATION AND ARCHIMEDES THEOREM

EXPERIMENT AND THEORISATION: AN APPLICATION OF THE HYDROSTATIC EQUATION AND ARCHIMEDES THEOREM EXPERIMENT AND THEORISATION: AN APPLICATION OF THE HYDROSTATIC EQUATION AND ARCHIMEDES THEOREM Santos Lucía, Taaa Máro, Departamento de Físca, Unversdade de Avero, Avero, Portuga 1. Introducton Today s

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

Spin-rotation coupling of the angularly accelerated rigid body

Spin-rotation coupling of the angularly accelerated rigid body Spn-rotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 E-mal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

AGC Introduction

AGC Introduction . Introducton AGC 3 The prmary controller response to a load/generaton mbalance results n generaton adjustment so as to mantan load/generaton balance. However, due to droop, t also results n a non-zero

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

Translational Equations of Motion for A Body Translational equations of motion (centroidal) for a body are m r = f.

Translational Equations of Motion for A Body Translational equations of motion (centroidal) for a body are m r = f. Lesson 12: Equatons o Moton Newton s Laws Frst Law: A artcle remans at rest or contnues to move n a straght lne wth constant seed there s no orce actng on t Second Law: The acceleraton o a artcle s roortonal

More information

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76 PHYS 1101 Practce problem set 1, Chapter 3: 1,, 4, 57, 61, 83 Chapter 33: 7, 1, 3, 38, 44, 49, 76 3.1. Vsualze: Please reer to Fgure Ex3.1. Solve: Because B s n the same drecton as the ntegraton path s

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 19 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 19 Group Theory For Crystals ECEN 5005 Crystals, Nanocrystals and Devce Applcatons Class 9 Group Theory For Crystals Dee Dagram Radatve Transton Probablty Wgner-Ecart Theorem Selecton Rule Dee Dagram Expermentally determned energy

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

Module III, Lecture 02: Correlation Functions and Spectral Densities

Module III, Lecture 02: Correlation Functions and Spectral Densities Modue III, Lecture : orreaton Functons and Spectra enstes The ony part of Boch Redfed Wangsness spn reaxaton theory that we coud say nothng about n the prevous ecture were the correaton functons. They

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

A DIMENSION-REDUCTION METHOD FOR STOCHASTIC ANALYSIS SECOND-MOMENT ANALYSIS

A DIMENSION-REDUCTION METHOD FOR STOCHASTIC ANALYSIS SECOND-MOMENT ANALYSIS A DIMESIO-REDUCTIO METHOD FOR STOCHASTIC AALYSIS SECOD-MOMET AALYSIS S. Rahman Department of Mechanca Engneerng and Center for Computer-Aded Desgn The Unversty of Iowa Iowa Cty, IA 52245 June 2003 OUTLIE

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017

Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017 17/0/017 Lecture 16 (Refer the text boo CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlnes) Knematcs of Fluds Last class, we started dscussng about the nematcs of fluds. Recall the Lagrangan and Euleran

More information

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy? Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F

More information

Hopfield Training Rules 1 N

Hopfield Training Rules 1 N Hopfeld Tranng Rules To memorse a sngle pattern Suppose e set the eghts thus - = p p here, s the eght beteen nodes & s the number of nodes n the netor p s the value requred for the -th node What ll the

More information

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

The Second Anti-Mathima on Game Theory

The Second Anti-Mathima on Game Theory The Second Ant-Mathma on Game Theory Ath. Kehagas December 1 2006 1 Introducton In ths note we wll examne the noton of game equlbrum for three types of games 1. 2-player 2-acton zero-sum games 2. 2-player

More information

Quantum Particle Motion in Physical Space

Quantum Particle Motion in Physical Space Adv. Studes Theor. Phys., Vol. 8, 014, no. 1, 7-34 HIKARI Ltd, www.-hkar.co http://dx.do.org/10.1988/astp.014.311136 Quantu Partcle Moton n Physcal Space A. Yu. Saarn Dept. of Physcs, Saara State Techncal

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

k p theory for bulk semiconductors

k p theory for bulk semiconductors p theory for bu seconductors The attce perodc ndependent partce wave equaton s gven by p + V r + V p + δ H rψ ( r ) = εψ ( r ) (A) 4c In Eq. (A) V ( r ) s the effectve attce perodc potenta caused by the

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

Thermodynamics and Gases

Thermodynamics and Gases hermodynamcs and Gases Last tme Knetc heory o Gases or smple (monatomc) gases Atomc nature o matter Demonstrate deal gas law Atomc knetc energy nternal energy Mean ree path and velocty dstrbutons From

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11) Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng

More information

On the Power Function of the Likelihood Ratio Test for MANOVA

On the Power Function of the Likelihood Ratio Test for MANOVA Journa of Mutvarate Anayss 8, 416 41 (00) do:10.1006/jmva.001.036 On the Power Functon of the Lkehood Rato Test for MANOVA Dua Kumar Bhaumk Unversty of South Aabama and Unversty of Inos at Chcago and Sanat

More information

PHYS 1441 Section 002 Lecture #15

PHYS 1441 Section 002 Lecture #15 PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam

More information

Linear Momentum. Equation 1

Linear Momentum. Equation 1 Lnear Momentum OBJECTIVE Obsere collsons between two carts, testng or the conseraton o momentum. Measure energy changes durng derent types o collsons. Classy collsons as elastc, nelastc, or completely

More information

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation Nonl. Analyss and Dfferental Equatons, ol., 4, no., 5 - HIKARI Ltd, www.m-har.com http://dx.do.org/.988/nade.4.456 Asymptotcs of the Soluton of a Boundary alue Problem for One-Characterstc Dfferental Equaton

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Energy and Energy Transfer

Energy and Energy Transfer Energy and Energy Transer Chapter 7 Scalar Product (Dot) Work Done by a Constant Force F s constant over the dsplacement r 1 Denton o the scalar (dot) product o vectors Scalar product o unt vectors = 1

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Feb 14: Spatial analysis of data fields

Feb 14: Spatial analysis of data fields Feb 4: Spatal analyss of data felds Mappng rregularly sampled data onto a regular grd Many analyss technques for geophyscal data requre the data be located at regular ntervals n space and/or tme. hs s

More information

General Tips on How to Do Well in Physics Exams. 1. Establish a good habit in keeping track of your steps. For example, when you use the equation

General Tips on How to Do Well in Physics Exams. 1. Establish a good habit in keeping track of your steps. For example, when you use the equation General Tps on How to Do Well n Physcs Exams 1. Establsh a good habt n keepng track o your steps. For example when you use the equaton 1 1 1 + = d d to solve or d o you should rst rewrte t as 1 1 1 = d

More information

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum

More information

Calculus of Variations Basics

Calculus of Variations Basics Chapter 1 Calculus of Varatons Bascs 1.1 Varaton of a General Functonal In ths chapter, we derve the general formula for the varaton of a functonal of the form J [y 1,y 2,,y n ] F x,y 1,y 2,,y n,y 1,y

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform Ths chapter deals wth chemcal reactons (system) wth lttle or no consderaton on the surroundngs. Chemcal Equlbrum Chapter 6 Spontanety of eactve Mxtures (gases) eactants generatng products would proceed

More information

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn

More information

COXREG. Estimation (1)

COXREG. Estimation (1) COXREG Cox (972) frst suggested the modes n whch factors reated to fetme have a mutpcatve effect on the hazard functon. These modes are caed proportona hazards (PH) modes. Under the proportona hazards

More information

Strain Energy in Linear Elastic Solids

Strain Energy in Linear Elastic Solids Duke Unverst Department of Cv and Envronmenta Engneerng CEE 41L. Matr Structura Anass Fa, Henr P. Gavn Stran Energ n Lnear Eastc Sods Consder a force, F, apped gradua to a structure. Let D be the resutng

More information

Modeling motion with VPython Every program that models the motion of physical objects has two main parts:

Modeling motion with VPython Every program that models the motion of physical objects has two main parts: 1 Modelng moton wth VPython Eery program that models the moton o physcal objects has two man parts: 1. Beore the loop: The rst part o the program tells the computer to: a. Create numercal alues or constants

More information

10.40 Appendix Connection to Thermodynamics and Derivation of Boltzmann Distribution

10.40 Appendix Connection to Thermodynamics and Derivation of Boltzmann Distribution 10.40 Appendx Connecton to Thermodynamcs Dervaton of Boltzmann Dstrbuton Bernhardt L. Trout Outlne Cannoncal ensemble Maxmumtermmethod Most probable dstrbuton Ensembles contnued: Canoncal, Mcrocanoncal,

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by ES 5 (phy 40). a) Wrte the zeroth law o thermodynamcs. b) What s thermal conductvty? c) Identyng all es, draw schematcally a P dagram o the arnot cycle. d) What s the ecency o an engne and what s the coecent

More information

10. Canonical Transformations Michael Fowler

10. Canonical Transformations Michael Fowler 10. Canoncal Transformatons Mchael Fowler Pont Transformatons It s clear that Lagrange s equatons are correct for any reasonable choce of parameters labelng the system confguraton. Let s call our frst

More information