22.51 Quantum Theory of Radiation Interactions

Size: px
Start display at page:

Download "22.51 Quantum Theory of Radiation Interactions"

Transcription

1 .51 Quantum Theory of Radaton Interactons Fna Exam - Soutons Tuesday December 15, 009 Probem 1 Harmonc oscator 0 ponts Consder an harmonc oscator descrbed by the Hamtonan H = ω(nˆ + ). Cacuate the evouton of the expectaton vaue of J the poston of the harmonc oscator x = (a + a ) n the foowng cases: a) The harmonc oscator s ntay prepared n a superposton of number states: mω 1 ψ(t = 0)) = c a ) + c b ) where c a, c b are coeffcents such that the state s normazed (here for exampe take c a = cos(ϑ/) and c b = e ϕ sn (ϑ/)) We can use the Schrödnger pcture to fnd the evouton of the state: ψ(t)) = cos(ϑ/)e ωt ) + e ϕ sn (ϑ/)e ωt ) (Notce that I ve aready emnated the common phase factor e 1 ωt ). Then we can cacuate the expectaton vaue of x: ( ) ( ) (x(t)) = cos(ϑ/)e ωt ( + e ϕ sn (ϑ/)e ωt ( (a + a ) cos(ϑ/)e ωt ) + e ϕ sn (ϑ/)e ωt ) mω Ony the terms ( a ) = and ( a ) = survve, yedng (x(t)) = sn(ϑ) cos(ωt ϕ) mω It coud have been maybe smper to use the Heseberg pcture, rememberng that a(t) = a(0)e ωt. Then: (x(t)) = and the same resut as above s drecty obtaned. ( ) ( ) cos(ϑ/)( + e ϕ sn (ϑ/)( (ae ωt + a e ωt ) cos(ϑ/) ) + e ϕ sn (ϑ/) ) mω b) The nta state of the harmonc oscator s a superposton of coherent states: where c a, c b are coeffcents such that the state s normazed. In ths case t s convenent to use the Hesenberg pcture: ψ(t = 0)) = c a α) + c b β) ωt (x(t)) = (c a(α + c ωt b (β ) (ae + a e )(c a α) + c b β)) mω The mportant pont here was to remember that athough the coherent states are normazed, they are not orthogona, thus (α β) = 0, but ( α + β α β)/ (α β) = O α,β = e We then have (x(t)) = ( ca (αe ωt + α e ωt ) + c b (βe ωt + β e ωt ) + c c b (α e ωt + βe ωt )O α,β + c a c b (αe ωt + β e ωt )O ) a α,β mω c) Woud the choce c a = cos(ϑ/) and c b = e ϕ sn(ϑ/) normaze the above state? Wth the above choce ( ) (ψ ψ) = cos(ϑ/) + sn(ϑ/) ϕ + sn (ϑ/)cos(ϑ/) + O ϕ = 1 + sn(ϑ)e ( α + β )/ Re[e α β O e ϕ α,β e ] = 1 α,β e 1

2 Probem Coupng of a spn to an harmonc oscator 0 ponts Consder the system n fgure 1. A cantever wth a magnetc tp s postoned cosed to a spn- 1 (of gyromagnetc rato γ) n a strong externa magnetc fed B aong the z-drecton. The magnetc tp creates a magnetc gradent G z such that the fed fet by the spn depends on the poston of the tp tsef, B tot = B + G z z. In the mt of sma dspacements, the cantever can be modeed as an harmonc oscator of mass m, oscatng aong the z drecton at ts natura frequency ω c. Cantever Spn Fgure 1: A cantever couped to a spn. Adapted from P. Rab, P. Cappearo, M.V. Gurudev Dutt, L. Jang, J.R. Maze, and M.D. Lukn, Strong magnetc coupng between an eectronc spn qubt and a mechanca resonator, Phys. Rev. B 79, 0410 R 0 (009) a) What s the tota Hamtonan of the system (spn+harmonc oscator)? 1 1 H spn = γbs z = γbσ z = ωσ z 1 H h.o. = ω c (nˆ + ) The coupng between the cantever and the spn s gven by the extra fed G z z(t) actng on the spn: σz λ V = γg z zs z = γg z (a + a ) = σ z (a + a ) mω c J wth λ = γg z mω c. The tota Hamtonan s thus 1 1 λ Htot = H 0 + V = ωσ z + ωc(nˆ + ) + σ z (a + a ) b) The magnetc gradent s usuay sma, thus the coupng term between the spn and the harmonc oscator can be consdered a sma perturbaton. Use perturbaton theory to cacuate the energy and egenstates to the owest non-vanshng order. The egenstatates of H 0 are egenstates of the σ z and nˆ operators: (0) (0) ψ 0,n ) = 0) n), ψ 1,n ) = 1) n) wth energes: (0) 1 1 (0) 1 1 E 0, n = ω + ω c (n + ), E 1,n = ω + ω c (n + ) The frst order correcton s cacuated as Δ (1) = (ψk 0 V ψk 0 ). Here: (1) (1) λ Δ 0,n = ( 0 ( n [ σ z(a + a )] 0) n) = 0 and Δ 1,n = 0 as we. Thus we need to cacuate the second order energy shft. Frst we cacuate the frst order egenstates. (1) (0, m V 0, n ) 0, m ) ( 1, m V 0, n ) 1, m ) ψ 0,n ) = + (0) ( 0) ( 0) ( 0) m=n E 0,n E 0,m m E 0,n E 1,m λ(0 σ z 0)( m (a + a ) n) λ 1 σz/ 0 m (a + a ) n = 0, m ( )( ) ) + 1, m) ω (n m) (0) (0) c m=n m E 0,n E 1,m

3 fnay, Smary, we obtan (1) λ ( ψ 0,n ) = n 0, n 1 ) n + 1 0, n + 1) ) ω c (1) λ 1, ωc ψ n ) = The second order energy shft can be cacuated from Δ = (ψ 0 V ψ 1 k k ): ( n 1, n 1) n + 1 1, n + 1) ) λ λ Δ 0,n = [n (n + 1)] = ω ω Probem Tme-dependent perturbaton theory: harmonc perturbaton 5 ponts Use tme-dependent perturbaton theory to derve the transton rate for a perturbaton Hamtonan V (t) = V 0 cos(ωt). You can use the foowng steps: a) The unperturbed Hamtonan s H 0, wth egenvectors and egenvaues: H 0 k) = ω k k). In the nteracton pcture defned by H 0, the state evoves under the propagator U I (t): ψ(t)) I = U I (t) ψ(0))). What s the dfferenta equaton descrbng the evouton of U I (t)? wth V (t) = e H0 t V (t)e H0 t I. du I dt = V I (t)u I (t) b) Wrte an expanson for U I (t) to frst order ( Dyson seres). Integratng the equaton above: U I (t) = 11 0 t dt V I (t ) c) Cacuate the transton amptude c k (t) = (k U I (t) ) from the nta state ) to the egenstate k) to frst order, as a functon of ω k = ω k ω, V k = (k V 0 ) and ω. Hnt: the foowng ntegra mght be usefu: From the expresson n b) and the defnton of V I : Takng k = we have: c (t) = (k U (t) ) = δ k I k t dt e ω 1 t sn ((ω 1 ω )t/) e ±ω t = e (ω1±ω)t/ ± 0 ω 1 ± ω t t dt (k V (t ) ) = δ I k 0 0 t dt (k V (t ) )e (ω k ω ) t ck(t) = dt (k V I (t ) ) = (k V0 ) dt cos(ωt)e (ω ω k ) Settng ω k = ω k ω and usng the gven formua, we have: 0 V k c (t) = e (ω k+ω)t/ sn ((ω k + ω)t/) (ω k ω)t/ sn ((ω k ω)t/) k + e ω k + ω ω k ω 0 d) Cacuate the probabty of transton p k (t) = c k (t) n the ong tme mt, wth the foowng approxmatons: sn (Ωt/) π m = tδ(ω) t Ω and sn (Ω 1 t/)sn (Ω t/) m = 0 t Ω 1 Ω

4 (for Ω 1 = Ω ) The probabty p k (t) = c ( k t) w have contrbutons from terms ke (ω k +ω)t/ sn ((ω k + ω)t/) e ω k + ω and e (ω k+ω)t/ sn ((ω k + ω)t/) (ω k ω)t/ sn ((ωk ω)t/) e ω k + ω ω k ω Ths ast term goes to zero by the second reatonshp provded, whe the frst terms gve: p k = π Vk t [δ(ω k + ω) + δ(ω k ω)] e) Fnay, you shoud wrte down the transton rate W k = dp k. The transton rate s just the probabty per tme: dt π Vk W k = [δ(ω k + ω) + δ(ω k ω)] Probem 4 Rayegh ght scatterng 5 ponts Consder the eastc scatterng of ght from a moecue n the atmosphere. We want to cacuate the frequency dependence of the crosssecton, to understand why the sky s bue and the sunset s red. The system of nterest s descrbed by a moecue, wth egenstates m k ) and energes E k and two modes of the radaton fed, k and k k, λ wth energes ωk and ω k and poarzatons λ and λ. For convenence the system s encosed n a cavty of voume V = L. The nteracton between the radaton fed and the moecue s descrbe by k, λ Moecue the hamtonan V = d E E n the dpoe approxmaton, where L πωh h R h R E = ahξe + a e Eǫ hξ Fgure : Rayegh scatterng, showng the ncomng and hξ V outgong photon nto the voume of nterest. h,ξ wth R s the poston of the center of mass of the moecue. Wf You can use the foowng steps to cacuate the scatterng cross secton dσ =, wth W f = π (f T ) Φ ρ(e f ), where T s the nc transton matrx and ρ(e f ) the fna densty of states. a) Wrte a forma expresson for the transton matrx eement (f T ), to the owest non-zero order n the perturbaton V. ( f V )( V ) (f T ) = ( f V ) E As V does not aow transtons nvovng two photons, the frst order term s zero and we have: ( f V )( V ) (f T ) = E E E b) What are the possbe ntermedate (vrtua) states that we need to consder n ths scatterng process? Use them to smpfy the expresson n a). The nta state s m, 1 k,λ, 0 k,λ ) and fna state m, 0 k,λ, 1 k,λ ). Intermedate states are such that there s ony 1-photon transton, ether m, 0 k,λ, 0 k,λ ) or m, 1 k,λ, 1 k,λ ). Thus: (mf, 0 k,λ, 1 k,λ V m, 0 k,λ, 0 k,λ )(m, 0 k,λ, 0 k,λ V m, 1 k,λ, 0 k ) ( ),λ f T = ( E + ω k ) E (mf, 0 k,λ, 1 k,λ V m, 1 k,λ, 1 k,λ )(m, 1 k,λ, 1 k,λ V m, 1 k,λ, 0 k,λ + ) (E + ωk) (E + ω k + ω 4 k )

5 Usng the expct expresson for V, we have: π J E E E E (k k) R) (Eǫ d f )(Eǫ k d ) (Eǫ k d f )(Eǫ d ) ( f T ) = ω ω k k k k V e E + E + ω k E E ω k c) What s the fux of ncomng photons and the densty of states of the outgong photons? Φ = c/l nc and L ωk ρ(ef) = dω π c d) Fnd an expresson for the dfferenta cross secton dσ (where dω s the sod ange nto whch the photon s scattered) From dσ = Wf π (f T ) = Φ nc Φ nc ρ(e f ) we fnd: dω dσ π L L ω E E E E k 4π (Eǫ k d f)(eǫ k d ) (Eǫ k d f )(Eǫ k d ) = (ω k ωk dω c π ) + c L 6 E E + ω k E E ω k smpfyng the expresson: dσ ω E E E E k ω k (Eǫ k d f )(Eǫ k d ) (Eǫ k d f )(Eǫ k d ) = + dω c 4 E E + ωk E E ω k e) In the case of eastc scatterng m f ) = m ) and ω k = ω k. What s the scatterng cross-secton dependence on the photon frequency ω k? How does that hep expanng why the sky s bue and the sunset red? We can further smpfy the cross secton to dσ ω 4 E E k (Eǫ k d )(Eǫ k d )(E E ) = dω c 4 (E E) (ω k) As (E E ) ω k, the cross secton depends on the frequency as ωk 4, thus bue ght s scattered more than red ght, gvng the coor of the sky. 5

6 MIT OpenCourseWare Quantum Theory of Radaton Interactons Fa 01 For nformaton about ctng these materas or our Terms of Use, vst:

G : Statistical Mechanics

G : Statistical Mechanics G25.2651: Statstca Mechancs Notes for Lecture 11 I. PRINCIPLES OF QUANTUM STATISTICAL MECHANICS The probem of quantum statstca mechancs s the quantum mechanca treatment of an N-partce system. Suppose the

More information

k p theory for bulk semiconductors

k p theory for bulk semiconductors p theory for bu seconductors The attce perodc ndependent partce wave equaton s gven by p + V r + V p + δ H rψ ( r ) = εψ ( r ) (A) 4c In Eq. (A) V ( r ) s the effectve attce perodc potenta caused by the

More information

( ) r! t. Equation (1.1) is the result of the following two definitions. First, the bracket is by definition a scalar product.

( ) r! t. Equation (1.1) is the result of the following two definitions. First, the bracket is by definition a scalar product. Chapter. Quantum Mechancs Notes: Most of the matera presented n ths chapter s taken from Cohen-Tannoudj, Du, and Laoë, Chap. 3, and from Bunker and Jensen 5), Chap... The Postuates of Quantum Mechancs..

More information

3. Stress-strain relationships of a composite layer

3. Stress-strain relationships of a composite layer OM PO I O U P U N I V I Y O F W N ompostes ourse 8-9 Unversty of wente ng. &ech... tress-stran reatonshps of a composte ayer - Laurent Warnet & emo Aerman.. tress-stran reatonshps of a composte ayer Introducton

More information

LECTURE 21 Mohr s Method for Calculation of General Displacements. 1 The Reciprocal Theorem

LECTURE 21 Mohr s Method for Calculation of General Displacements. 1 The Reciprocal Theorem V. DEMENKO MECHANICS OF MATERIALS 05 LECTURE Mohr s Method for Cacuaton of Genera Dspacements The Recproca Theorem The recproca theorem s one of the genera theorems of strength of materas. It foows drect

More information

Rate of Absorption and Stimulated Emission

Rate of Absorption and Stimulated Emission MIT Department of Chemstry 5.74, Sprng 005: Introductory Quantum Mechancs II Instructor: Professor Andre Tokmakoff p. 81 Rate of Absorpton and Stmulated Emsson The rate of absorpton nduced by the feld

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

Quantum Runge-Lenz Vector and the Hydrogen Atom, the hidden SO(4) symmetry

Quantum Runge-Lenz Vector and the Hydrogen Atom, the hidden SO(4) symmetry Quantum Runge-Lenz ector and the Hydrogen Atom, the hdden SO(4) symmetry Pasca Szrftgser and Edgardo S. Cheb-Terrab () Laboratore PhLAM, UMR CNRS 85, Unversté Le, F-59655, France () Mapesoft Let's consder

More information

Note 2. Ling fong Li. 1 Klein Gordon Equation Probablity interpretation Solutions to Klein-Gordon Equation... 2

Note 2. Ling fong Li. 1 Klein Gordon Equation Probablity interpretation Solutions to Klein-Gordon Equation... 2 Note 2 Lng fong L Contents Ken Gordon Equaton. Probabty nterpretaton......................................2 Soutons to Ken-Gordon Equaton............................... 2 2 Drac Equaton 3 2. Probabty nterpretaton.....................................

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Andre Schneider P622

Andre Schneider P622 Andre Schneder P6 Probem Set #0 March, 00 Srednc 7. Suppose that we have a theory wth Negectng the hgher order terms, show that Souton Knowng β(α and γ m (α we can wrte β(α =b α O(α 3 (. γ m (α =c α O(α

More information

Lowest-Order e + e l + l Processes in Quantum Electrodynamics. Sanha Cheong

Lowest-Order e + e l + l Processes in Quantum Electrodynamics. Sanha Cheong Lowest-Order e + e + Processes n Quantum Eectrodynamcs Sanha Cheong Introducton In ths short paper, we w demonstrate some o the smpest cacuatons n quantum eectrodynamcs (QED), eadng to the owest-order

More information

Dynamics of a Superconducting Qubit Coupled to an LC Resonator

Dynamics of a Superconducting Qubit Coupled to an LC Resonator Dynamcs of a Superconductng Qubt Coupled to an LC Resonator Y Yang Abstract: We nvestgate the dynamcs of a current-based Josephson juncton quantum bt or qubt coupled to an LC resonator. The Hamltonan of

More information

HW #6, due Oct Toy Dirac Model, Wick s theorem, LSZ reduction formula. Consider the following quantum mechanics Lagrangian,

HW #6, due Oct Toy Dirac Model, Wick s theorem, LSZ reduction formula. Consider the following quantum mechanics Lagrangian, HW #6, due Oct 5. Toy Drac Model, Wck s theorem, LSZ reducton formula. Consder the followng quantum mechancs Lagrangan, L ψ(σ 3 t m)ψ, () where σ 3 s a Paul matrx, and ψ s defned by ψ ψ σ 3. ψ s a twocomponent

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION do: 0.08/nature09 I. Resonant absorpton of XUV pulses n Kr + usng the reduced densty matrx approach The quantum beats nvestgated n ths paper are the result of nterference between two exctaton paths of

More information

Unified spin-wave theory for quantum spin systems with single-ion anisotropies

Unified spin-wave theory for quantum spin systems with single-ion anisotropies J. Phys. A: Math. Gen. 3 (999) 6687 674. Prnted n the UK PII: S35-447(99)67-8 Unfed spn-wave theory for quantum spn systems wth snge-on ansotropes Le Zhou and Yoshyuk Kawazoe Insttute for Materas Research,

More information

Semiclassical theory of molecular nonlinear optical polarization

Semiclassical theory of molecular nonlinear optical polarization Semcassca theory of moecuar nonnear optca poarzaton Mgue Ange Sepúveda a) and Shau Mukame Department of Chemstry, Unversty of Rochester, Rochester, New York 14627 Receved 27 February 1995; accepted 13

More information

D hh ν. Four-body charm semileptonic decay. Jim Wiss University of Illinois

D hh ν. Four-body charm semileptonic decay. Jim Wiss University of Illinois Four-body charm semeptonc decay Jm Wss Unversty of Inos D hh ν 1 1. ector domnance. Expected decay ntensty 3. SU(3) apped to D s φν 4. Anaytc forms for form factors 5. Non-parametrc form factors 6. Future

More information

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MI OpenCourseWare http://ocw.mt.edu 8.323 Relatvstc Quantum Feld heory I Sprng 2008 For nformaton about ctng these materals or our erms of Use, vst: http://ocw.mt.edu/terms. MASSACHUSES INSIUE OF ECHNOLOGY

More information

Chapter 6. Rotations and Tensors

Chapter 6. Rotations and Tensors Vector Spaces n Physcs 8/6/5 Chapter 6. Rotatons and ensors here s a speca knd of near transformaton whch s used to transforms coordnates from one set of axes to another set of axes (wth the same orgn).

More information

Research on Complex Networks Control Based on Fuzzy Integral Sliding Theory

Research on Complex Networks Control Based on Fuzzy Integral Sliding Theory Advanced Scence and Technoogy Letters Vo.83 (ISA 205), pp.60-65 http://dx.do.org/0.4257/ast.205.83.2 Research on Compex etworks Contro Based on Fuzzy Integra Sdng Theory Dongsheng Yang, Bngqng L, 2, He

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

Supplementary Material: Learning Structured Weight Uncertainty in Bayesian Neural Networks

Supplementary Material: Learning Structured Weight Uncertainty in Bayesian Neural Networks Shengyang Sun, Changyou Chen, Lawrence Carn Suppementary Matera: Learnng Structured Weght Uncertanty n Bayesan Neura Networks Shengyang Sun Changyou Chen Lawrence Carn Tsnghua Unversty Duke Unversty Duke

More information

Frequency dependence of the permittivity

Frequency dependence of the permittivity Frequency dependence of the permttvty February 7, 016 In materals, the delectrc constant and permeablty are actually frequency dependent. Ths does not affect our results for sngle frequency modes, but

More information

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0 Quantum Mechancs, Advanced Course FMFN/FYSN7 Solutons Sheet Soluton. Lets denote the two operators by  and ˆB, the set of egenstates by { u }, and the egenvalues as  u = a u and ˆB u = b u. Snce the

More information

Strain Energy in Linear Elastic Solids

Strain Energy in Linear Elastic Solids Duke Unverst Department of Cv and Envronmenta Engneerng CEE 41L. Matr Structura Anass Fa, Henr P. Gavn Stran Energ n Lnear Eastc Sods Consder a force, F, apped gradua to a structure. Let D be the resutng

More information

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 3A EECS 16B Desgnng Informaton Devces and Systems II Sprng 018 J. Roychowdhury and M. Maharbz Dscusson 3A 1 Phasors We consder snusodal voltages and currents of a specfc form: where, Voltage vt) = V 0 cosωt

More information

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and x-ray exctatons 9-01 By gong through the procedure ndcated n the text, develop the tme-ndependent Schroednger equaton

More information

Degenerate PT. ψ φ λψ. When two zeroth order states are degenerate (or near degenerate), cannot use simple PT.

Degenerate PT. ψ φ λψ. When two zeroth order states are degenerate (or near degenerate), cannot use simple PT. Degenerate PT When two zeroth order states are degenerate (or near degenerate), cannot use smple PT. Degenerate PT desgned to deal wth such cases Suppose the energy level of nterest s r fold degenerate

More information

MARKOV CHAIN AND HIDDEN MARKOV MODEL

MARKOV CHAIN AND HIDDEN MARKOV MODEL MARKOV CHAIN AND HIDDEN MARKOV MODEL JIAN ZHANG JIANZHAN@STAT.PURDUE.EDU Markov chan and hdden Markov mode are probaby the smpest modes whch can be used to mode sequenta data,.e. data sampes whch are not

More information

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields EJTP 6, No. 0 009) 43 56 Electronc Journal of Theoretcal Physcs Non-nteractng Spn-1/ Partcles n Non-commutng External Magnetc Felds Kunle Adegoke Physcs Department, Obafem Awolowo Unversty, Ile-Ife, Ngera

More information

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 3 Jan 2006

arxiv:cond-mat/ v2 [cond-mat.mes-hall] 3 Jan 2006 arxv:cond-mat/0210519v2 [cond-mat.mes-hall] 3 Jan 2006 Non Equlbrum Green s Functons for Dummes: Introducton to the One Partcle NEGF equatons Magnus Paulsson Dept. of mcro- and nano-technology, NanoDTU,

More information

> To construct a potential representation of E and B, you need a vector potential A r, t scalar potential ϕ ( F,t).

> To construct a potential representation of E and B, you need a vector potential A r, t scalar potential ϕ ( F,t). MIT Departent of Chestry p. 54 5.74, Sprng 4: Introductory Quantu Mechancs II Instructor: Prof. Andre Tokakoff Interacton of Lght wth Matter We want to derve a Haltonan that we can use to descrbe the nteracton

More information

1 Rabi oscillations. Physical Chemistry V Solution II 8 March 2013

1 Rabi oscillations. Physical Chemistry V Solution II 8 March 2013 Physcal Chemstry V Soluton II 8 March 013 1 Rab oscllatons a The key to ths part of the exercse s correctly substtutng c = b e ωt. You wll need the followng equatons: b = c e ωt 1 db dc = dt dt ωc e ωt.

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Remark: Positive work is done on an object when the point of application of the force moves in the direction of the force.

Remark: Positive work is done on an object when the point of application of the force moves in the direction of the force. Unt 5 Work and Energy 5. Work and knetc energy 5. Work - energy theore 5.3 Potenta energy 5.4 Tota energy 5.5 Energy dagra o a ass-sprng syste 5.6 A genera study o the potenta energy curve 5. Work and

More information

) is the unite step-function, which signifies that the second term of the right-hand side of the

) is the unite step-function, which signifies that the second term of the right-hand side of the Casmr nteracton of excted meda n electromagnetc felds Yury Sherkunov Introducton The long-range electrc dpole nteracton between an excted atom and a ground-state atom s consdered n ref. [1,] wth the help

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

Associative Memories

Associative Memories Assocatve Memores We consder now modes for unsupervsed earnng probems, caed auto-assocaton probems. Assocaton s the task of mappng patterns to patterns. In an assocatve memory the stmuus of an ncompete

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

[WAVES] 1. Waves and wave forces. Definition of waves

[WAVES] 1. Waves and wave forces. Definition of waves 1. Waves and forces Defnton of s In the smuatons on ong-crested s are consdered. The drecton of these s (μ) s defned as sketched beow n the goba co-ordnate sstem: North West East South The eevaton can

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013

Ph 219a/CS 219a. Exercises Due: Wednesday 23 October 2013 1 Ph 219a/CS 219a Exercses Due: Wednesday 23 October 2013 1.1 How far apart are two quantum states? Consder two quantum states descrbed by densty operators ρ and ρ n an N-dmensonal Hlbert space, and consder

More information

Module III, Lecture 02: Correlation Functions and Spectral Densities

Module III, Lecture 02: Correlation Functions and Spectral Densities Modue III, Lecture : orreaton Functons and Spectra enstes The ony part of Boch Redfed Wangsness spn reaxaton theory that we coud say nothng about n the prevous ecture were the correaton functons. They

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

PHY2049 Exam 2 solutions Fall 2016 Solution:

PHY2049 Exam 2 solutions Fall 2016 Solution: PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now

More information

8.592J: Solutions for Assignment 7 Spring 2005

8.592J: Solutions for Assignment 7 Spring 2005 8.59J: Solutons for Assgnment 7 Sprng 5 Problem 1 (a) A flament of length l can be created by addton of a monomer to one of length l 1 (at rate a) or removal of a monomer from a flament of length l + 1

More information

Solution 1 for USTC class Physics of Quantum Information

Solution 1 for USTC class Physics of Quantum Information Soluton 1 for 018 019 USTC class Physcs of Quantum Informaton Shua Zhao, Xn-Yu Xu and Ka Chen Natonal Laboratory for Physcal Scences at Mcroscale and Department of Modern Physcs, Unversty of Scence and

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

RPA-CPA theory for magnetism in disordered Heisenberg binary systems with long-range exchange integrals

RPA-CPA theory for magnetism in disordered Heisenberg binary systems with long-range exchange integrals PHYSICAL REVIEW B 66, 0440 2002 RPA-CPA theory for magnetsm n dsordered Hesenberg bnary systems wth ong-range exchange ntegras G. Bouzerar P. Bruno Max-Panck-Insttute für Mkrostrukturphysk, Wenberg 2,

More information

From Biot-Savart Law to Divergence of B (1)

From Biot-Savart Law to Divergence of B (1) From Bot-Savart Law to Dvergence of B (1) Let s prove that Bot-Savart gves us B (r ) = 0 for an arbtrary current densty. Frst take the dvergence of both sdes of Bot-Savart. The dervatve s wth respect to

More information

Computing π with Bouncing Balls

Computing π with Bouncing Balls by Let the mass of two balls be M and m, where M = (6 n )m for n N. The larger ball s rolled towards the lghter ball, whch ear a wall and ntally at rest. Fnd the number of collsons between the two balls

More information

The line method combined with spectral chebyshev for space-time fractional diffusion equation

The line method combined with spectral chebyshev for space-time fractional diffusion equation Apped and Computatona Mathematcs 014; 3(6): 330-336 Pubshed onne December 31, 014 (http://www.scencepubshnggroup.com/j/acm) do: 10.1164/j.acm.0140306.17 ISS: 3-5605 (Prnt); ISS: 3-5613 (Onne) The ne method

More information

Note on the Electron EDM

Note on the Electron EDM Note on the Electron EDM W R Johnson October 25, 2002 Abstract Ths s a note on the setup of an electron EDM calculaton and Schff s Theorem 1 Basc Relatons The well-known relatvstc nteracton of the electron

More information

A finite difference method for heat equation in the unbounded domain

A finite difference method for heat equation in the unbounded domain Internatona Conerence on Advanced ectronc Scence and Technoogy (AST 6) A nte derence method or heat equaton n the unbounded doman a Quan Zheng and Xn Zhao Coege o Scence North Chna nversty o Technoogy

More information

1 Vectors over the complex numbers

1 Vectors over the complex numbers Vectors for quantum mechancs 1 D. E. Soper 2 Unversty of Oregon 5 October 2011 I offer here some background for Chapter 1 of J. J. Sakura, Modern Quantum Mechancs. 1 Vectors over the complex numbers What

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

4. INTERACTION OF LIGHT WITH MATTER

4. INTERACTION OF LIGHT WITH MATTER Andre Tokmakoff, MIT Department of Chemstry, 3/8/7 4-1 4. INTERACTION OF LIGHT WITH MATTER One of the most mportant topcs n tme-dependent quantum mechancs for chemsts s the descrpton of spectroscopy, whch

More information

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR 5.0, Prncples of Inorganc Chemstry II MIT Department of Chemstry Lecture 3: Vbratonal Spectroscopy and the IR Vbratonal spectroscopy s confned to the 00-5000 cm - spectral regon. The absorpton of a photon

More information

Introduction to Antennas & Arrays

Introduction to Antennas & Arrays Introducton to Antennas & Arrays Antenna transton regon (structure) between guded eaves (.e. coaxal cable) and free space waves. On transmsson, antenna accepts energy from TL and radates t nto space. J.D.

More information

Conservation of Angular Momentum = "Spin"

Conservation of Angular Momentum = Spin Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts

More information

14 The Postulates of Quantum mechanics

14 The Postulates of Quantum mechanics 14 The Postulates of Quantum mechancs Postulate 1: The state of a system s descrbed completely n terms of a state vector Ψ(r, t), whch s quadratcally ntegrable. Postulate 2: To every physcally observable

More information

Atomic Scattering Factor for a Spherical Wave and the Near Field Effects in X-ray Fluorescence Holography

Atomic Scattering Factor for a Spherical Wave and the Near Field Effects in X-ray Fluorescence Holography Atomc Scatterng Factor for a Spherca Wave and the Near Fed Effects n X-ray Fuorescence Hoography Janmng Ba Oak Rdge Natona Laboratory, Oak Rdge, TN 37831 Formua for cacuatng the atomc scatterng factor

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

On the Power Function of the Likelihood Ratio Test for MANOVA

On the Power Function of the Likelihood Ratio Test for MANOVA Journa of Mutvarate Anayss 8, 416 41 (00) do:10.1006/jmva.001.036 On the Power Functon of the Lkehood Rato Test for MANOVA Dua Kumar Bhaumk Unversty of South Aabama and Unversty of Inos at Chcago and Sanat

More information

Image Classification Using EM And JE algorithms

Image Classification Using EM And JE algorithms Machne earnng project report Fa, 2 Xaojn Sh, jennfer@soe Image Cassfcaton Usng EM And JE agorthms Xaojn Sh Department of Computer Engneerng, Unversty of Caforna, Santa Cruz, CA, 9564 jennfer@soe.ucsc.edu

More information

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m Homework Solutons Problem In solvng ths problem, we wll need to calculate some moments of the Gaussan dstrbuton. The brute-force method s to ntegrate by parts but there s a nce trck. The followng ntegrals

More information

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

Georgia Tech PHYS 6124 Mathematical Methods of Physics I Georga Tech PHYS 624 Mathematcal Methods of Physcs I Instructor: Predrag Cvtanovć Fall semester 202 Homework Set #7 due October 30 202 == show all your work for maxmum credt == put labels ttle legends

More information

Level Crossing Spectroscopy

Level Crossing Spectroscopy Level Crossng Spectroscopy October 8, 2008 Contents 1 Theory 1 2 Test set-up 4 3 Laboratory Exercses 4 3.1 Hanle-effect for fne structure.................... 4 3.2 Hanle-effect for hyperfne structure.................

More information

MAE140 - Linear Circuits - Fall 13 Midterm, October 31

MAE140 - Linear Circuits - Fall 13 Midterm, October 31 Instructons ME140 - Lnear Crcuts - Fall 13 Mdterm, October 31 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

The Schrödinger Equation

The Schrödinger Equation Chapter 1 The Schrödnger Equaton 1.1 (a) F; () T; (c) T. 1. (a) Ephoton = hν = hc/ λ =(6.66 1 34 J s)(.998 1 8 m/s)/(164 1 9 m) = 1.867 1 19 J. () E = (5 1 6 J/s)( 1 8 s) =.1 J = n(1.867 1 19 J) and n

More information

MULTIPOLE FIELDS. Multipoles, 2 l poles. Monopoles, dipoles, quadrupoles, octupoles... Electric Dipole R 1 R 2. P(r,θ,φ) e r

MULTIPOLE FIELDS. Multipoles, 2 l poles. Monopoles, dipoles, quadrupoles, octupoles... Electric Dipole R 1 R 2. P(r,θ,φ) e r MULTIPOLE FIELDS Mutpoes poes. Monopoes dpoes quadupoes octupoes... 4 8 6 Eectc Dpoe +q O θ e R R P(θφ) -q e The potenta at the fed pont P(θφ) s ( θϕ )= q R R Bo E. Seneus : Now R = ( e) = + cosθ R = (

More information

V.C The Niemeijer van Leeuwen Cumulant Approximation

V.C The Niemeijer van Leeuwen Cumulant Approximation V.C The Nemejer van Leeuwen Cumulant Approxmaton Unfortunately, the decmaton procedure cannot be performed exactly n hgher dmensons. For example, the square lattce can be dvded nto two sublattces. For

More information

Rigid body simulation

Rigid body simulation Rgd bod smulaton Rgd bod smulaton Once we consder an object wth spacal etent, partcle sstem smulaton s no longer suffcent Problems Problems Unconstraned sstem rotatonal moton torques and angular momentum

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

Lecture 3. Interaction of radiation with surfaces. Upcoming classes

Lecture 3. Interaction of radiation with surfaces. Upcoming classes Radaton transfer n envronmental scences Lecture 3. Interacton of radaton wth surfaces Upcomng classes When a ray of lght nteracts wth a surface several nteractons are possble: 1. It s absorbed. 2. It s

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

Complex Numbers Alpha, Round 1 Test #123

Complex Numbers Alpha, Round 1 Test #123 Complex Numbers Alpha, Round Test #3. Wrte your 6-dgt ID# n the I.D. NUMBER grd, left-justfed, and bubble. Check that each column has only one number darkened.. In the EXAM NO. grd, wrte the 3-dgt Test

More information

Predicting Model of Traffic Volume Based on Grey-Markov

Predicting Model of Traffic Volume Based on Grey-Markov Vo. No. Modern Apped Scence Predctng Mode of Traffc Voume Based on Grey-Marov Ynpeng Zhang Zhengzhou Muncpa Engneerng Desgn & Research Insttute Zhengzhou 5005 Chna Abstract Grey-marov forecastng mode of

More information

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15 NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound

More information

8. Superfluid to Mott-insulator transition

8. Superfluid to Mott-insulator transition 8. Superflud to Mott-nsulator transton Overvew Optcal lattce potentals Soluton of the Schrödnger equaton for perodc potentals Band structure Bloch oscllaton of bosonc and fermonc atoms n optcal lattces

More information

4 Time varying electromagnetic field

4 Time varying electromagnetic field ectrodynamcs and Optcs GFIT5 4 Tme varyng eectromagnetc fed 4.1 ectromagnetc Inducton 4.1.1 Inducton due to moton of conductor onsder the Faraday s experment. The fgure shows a co of wre connected to a

More information

Absorption and Recurrence Spectra of Li Rydberg Atom in Perpendicular Electric and Magnetic Fields

Absorption and Recurrence Spectra of Li Rydberg Atom in Perpendicular Electric and Magnetic Fields Commun. Theor. Phys. (Bejng, Chna) 46 (2006) pp. 545 552 c Internatona Academc Pubshers Vo. 46, No. 3, September 15, 2006 Absorpton and Recurrence Spectra o L Rydberg Atom n Perpendcuar Eectrc and Magnetc

More information

Nested case-control and case-cohort studies

Nested case-control and case-cohort studies Outne: Nested case-contro and case-cohort studes Ørnuf Borgan Department of Mathematcs Unversty of Oso NORBIS course Unversty of Oso 4-8 December 217 1 Radaton and breast cancer data Nested case contro

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

Cyclic Codes BCH Codes

Cyclic Codes BCH Codes Cycc Codes BCH Codes Gaos Feds GF m A Gaos fed of m eements can be obtaned usng the symbos 0,, á, and the eements beng 0,, á, á, á 3 m,... so that fed F* s cosed under mutpcaton wth m eements. The operator

More information

Lower bounds for the Crossing Number of the Cartesian Product of a Vertex-transitive Graph with a Cycle

Lower bounds for the Crossing Number of the Cartesian Product of a Vertex-transitive Graph with a Cycle Lower bounds for the Crossng Number of the Cartesan Product of a Vertex-transtve Graph wth a Cyce Junho Won MIT-PRIMES December 4, 013 Abstract. The mnmum number of crossngs for a drawngs of a gven graph

More information

Boundary Value Problems. Lecture Objectives. Ch. 27

Boundary Value Problems. Lecture Objectives. Ch. 27 Boundar Vaue Probes Ch. 7 Lecture Obectves o understand the dfference between an nta vaue and boundar vaue ODE o be abe to understand when and how to app the shootng ethod and FD ethod. o understand what

More information

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY CIPRIAN ACATRINEI Natonal Insttute of Nuclear Physcs and Engneerng P.O. Box MG-6, 07725-Bucharest, Romana E-mal: acatrne@theory.npne.ro. Receved March 6, 2008

More information

10. Canonical Transformations Michael Fowler

10. Canonical Transformations Michael Fowler 10. Canoncal Transformatons Mchael Fowler Pont Transformatons It s clear that Lagrange s equatons are correct for any reasonable choce of parameters labelng the system confguraton. Let s call our frst

More information

Quantum Field Theory III

Quantum Field Theory III Quantum Feld Theory III Prof. Erck Wenberg February 16, 011 1 Lecture 9 Last tme we showed that f we just look at weak nteractons and currents, strong nteracton has very good SU() SU() chral symmetry,

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Solution 1 for USTC class Physics of Quantum Information

Solution 1 for USTC class Physics of Quantum Information Soluton 1 for 017 018 USTC class Physcs of Quantum Informaton Shua Zhao, Xn-Yu Xu and Ka Chen Natonal Laboratory for Physcal Scences at Mcroscale and Department of Modern Physcs, Unversty of Scence and

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information