Supervised Learning NNs

Size: px
Start display at page:

Download "Supervised Learning NNs"

Transcription

1 EE788 Robot Cognton and Plannng, Prof. J.-H. Km Lecture 6 Supervsed Learnng NNs Robot Intellgence Technolog Lab. From Jang, Sun, Mzutan, Ch.9, Neuro-Fuzz and Soft Computng, Prentce Hall

2 Contents. Introducton. Perceptrons 3. Adalne 4. Backpropagaton MLPs 5. Radal Bass Functon Netorks 6. Modular Netorks

3 . Introducton Artfcal neural netorks or smpl NNs Perceptron: McCulloch and Ptts 43 Sngle-laer perceptrons (Rosenblatt 6) Appled to pattern classfcaton learnng Interest n NNs dndled n the 97s. Lmtaton of sngle-laer sstems (Mnsk and Papert 69) The recent resurgence of nterest n the feld of NNs (snce 98s) Ne NN learnng algorthms Analog VLSI crcuts Parallel processng technques 3

4 . Introducton Classfcaton of NN models Learnng methods: supervsed vs. unsupervsed Archtectures: feedforard vs. recurrent Output tpes: bnar vs. contnuous Node tpes: unform vs. hbrd Implementatons: softare vs. hardare Connecton eghts: adustable vs. hardred Supervsed learnng or mappng netorks Desred nput-output data sets Adustable parameters Updated b a supervsed learnng rule 4

5 . Perceptrons Archtecture: a sngle-laer perceptron for pattern recognton g : maps all or a part of the nput pattern nto A bnar value {, } A bpolar value {-, } The term : : actve or ectator : nactve -: nhbtor 5

6 . Perceptrons Output: o f f n n f n th and here : a modfable eght, : the bas term Actvaton functon f( ): sgnum or step functon sgn( ) f, otherse step( ) f, otherse 6

7 . Perceptrons Learnng algorthm. Select an nput vector from the tranng data set.. If the perceptron gves an ncorrect response, modf all connecton eghts accordng to Δ = η t here t : a target output, η: learnng rate 3. Repeat and. Learnng rate A constant throughout tranng Proportonal to the error Faster convergence Ma lead to unstable learnng 7

8 8 Eclusve-OR problem: Not lnearl separable usng a sngle-laer perceptron because The to-laer perceptron: Multlaer perceptrons Solve nonlnearl separable problems.,,,. Perceptrons o: class, : class (Mnsk and Papert, 69)

9 9 3. Adalne Adalne (adaptve lnear element), Wdro and Hoff 6 Delta rule for adustng the eghts on the pth I/O pattern: n o p p p p p p p p p o t o t E o t E ) ( ) ( ) (

10 3. Adalne Delta rule Wdro-Hoff learnng rule Least mean square learnng procedure mnmzng squared errors Features: Smplct Dstrbuted learnng (performed locall at each node level) On-lne learnng (updated after presentaton of each pattern) Applcatons Adaptve nose cancellaton Interference cancelng n electrocardograms Echo elmnaton from long-dstance telephone transmsson lnes Antenna sdelobe nterference cancelng Adaptve nverse control

11 4. Backpropagaton MLPs MLP (Mult-Laer Perceptron) Feedforard netork that emplos the delta rule for tranng Feedforard netorks Full connected multlaer netork All neurons n a partcular laer are full connected to all neurons n the subsequent laer E) Three-laer feedforard NN Three neuron nput laer To neuron output laer Four neuron hdden laer (Laer ) (Laer ) (Laer )

12 4. Backpropagaton MLPs Basc model of a sngle artfcal neuron,, : nputs b f,, : eghts : a bas : the actvaton functon : the output Let s be a eghted sum, N s () t () t b s (t) = W +b

13 4. Backpropagaton MLPs Actvaton functon f(s) Bas b ll move the curve along the s-as. Sgmod actvaton functon: f ( s ) e Dfferentable Monotonc s Actvaton functons or, logstc 3

14 4. Backpropagaton MLPs Backpropagaton Supervsed learnng method to tran NNs Uses a gradent-descent optmzaton method, also referred to as the delta rule, hen appled to feedforard netorks Performance nde or cost functon J: M J ( d here d : desred netork output : actual netork output Usng gradent-descent, the eght ncrement s J here μ: a constant ) 4

15 5 Usng the chan rule, M d M J ) (, ) ( M d M J M d M J ) ( If the actvaton functon s the sgmod functon, then ts dervatve s ) ( s s s s e e e e s f or ) ( ) ( s f s f s f Snce f(s) s the neuron output, then above equaton can be rtten as ) ( s From (), agan usng the chan rule, s s () () (3) (4) 4. Backpropagaton MLPs

16 6 Bas b s called, thus N s ) ( N N s (5) (6) Substtutng (3) and (5) nto (4), Puttng (6) nto (), M M M d M J ) ( ) ( (7) here ) ( ) ( d (8) 4. Backpropagaton MLPs

17 4. Backpropagaton MLPs Substtutng (7) nto the eght ncrement here M M (9) Ths leads to a eght ncrement, called the delta rule, for a partcular neuron: ( kt ) here η s the learnng rate and s a value of beteen and. Hence the ne eght becomes () ( kt ) ( k ) T ( kt ) ( k ) T () 7

18 4. Backpropagaton MLPs Consder a three laered netork: Input laer (l=), hdden laer (l=), and output laer (l=) Back-propagaton commences th the output laer here d s knon and hence δ can be calculated usng (8), and the eghts adusted usng (). To adust the eghts on the hdden laer (l=), (8) s replaced b Three-laer feedforard NN: N [ ] l [ ( )] l () l 8

19 4. Backpropagaton MLPs Hence, the δ values for laer l are calculated usng the neuron outputs from laer l (hdden laer) together th the summaton of and δ products from laer l+ (output laer). The back-propagaton process contnues untl all eghts have been adusted. Then, usng a ne set of nputs, nformaton s fed forard through the netork (usng the ne eghts) and errors at the output laer computed. The process contnues untl () The performance nde J reaches an acceptable lo value () A mamum teraton count (number of epochs) has been eceeded () A tranng-tme perod has been eceeded. 9

20 4. Backpropagaton MLPs Equatons that govern the BPA can be summarzed as Sngle neuron summaton: Sgmod actvaton functon: s N ( t) ( t) b (3) e s (4) Delta rule: ( kt ) (5) Ne eght: ( kt ) ( k ) T ( kt ) (6) Output laer: Other laers: d ) ( ) (7) J ( M ( d ) l (8) N [ ] l [ ( )] l (9)

21 4. Backpropagaton MLPs Learnng th momentum Makng the current eght change equal to a proporton of the prevous eght change summed th the eght change calculated usng the delta rule Delta rule gven n (5) can be modfed as Δ ( kt ) ( α) ηδ αδ (( k ) T ) () here α s the momentum coeffcent, and has a value of beteen and. Used n BPA, the soluton stands less chance of becomng trapped n local mnma

22 4. Backpropagaton MLPs E) Tranng usng back-propagaton Calculate the output, and hence the ne values for the eghts and bases. Assume a learnng rate of.5. Current nputs =., =.6 Desred output d = Estng eghts and bases are: n the hdden laer, b 3. n the output laer, b 4.

23 4. Backpropagaton MLPs Sol.) Forard propagaton Hdden laer (l=): Sngle neuron summaton or () B sgmod actvaton functons (= to 3), () 3

24 4. Backpropagaton MLPs Insertng values nto () and (), Output laer (l=) (3) (4) Insertng values nto (3) and (4), 4

25 4. Backpropagaton MLPs Back propagaton Output laer (l=): From (8), Snce =, Delta rule: Ne eghts and bases for the output laer: 5

26 4. Backpropagaton MLPs Hdden laer (l=): From (9), To llustrate ths equaton, had there been to neurons n laer (l+),.e. the output laer, values for δ and δ for laer (l+) ould have been calculated. Thus, for laer l (the hdden laer), the [δ ] l values ould be Hoever, snce n ths eample there s onl a sngle neuron n laer (l+), δ =. Thus the δ values for laer l are 6

27 4. Backpropagaton MLPs Hence, usng the delta rule, the eght ncrements for the hdden laer are The ne eghts and bases for the hdden laer no become Intall, b..5.5 W b

28 5. Radal Bass Functon Netorks Locall tuned and overlappng receptve felds: Structures n the regons of the cerebral corte, the vsual corte, etc. RBFN: A netork structure emplong local receptve felds to perform functon mappngs The actvaton level of the th receptve feld unts (or hdden unt): R u /,,, H R..., (a) Weghted sum of the output values (b) Weghted average of the output values 8

29 5. Radal Bass Functon Netorks R ( ) s a radal bass functon: Gaussan functon: Logstc functon: R R u ep ep[ u / ] The actvaton level s mamum hen the nput vector s at the center u of that unt. Note that there are no connecton eghts beteen the nput laer and the hdden laer. 9

30 3 5. Radal Bass Functon Netorks Output of an RBFN Weghted sum of the output value assocated th each receptve feld: Weghted average of the output value assocated th each receptve feld: Dsadvantage: a hgher degree of computatonal complet Advantage: a ell-nterpolated overall output beteen the outputs of the overlappng receptve felds H H R c c d H H H H R R c c d

31 5. Radal Bass Functon Netorks RBFN s appromaton capact Further mproved th supervsed adustments of the center and shape of the receptve feld (or radal bass) functon Sequental tranng algorthm: F the receptve feld functons frst Then adust the eghts of the output laer Functonal equvalence to Fuzz Inference Sstem Same aggregaton method to derve ther overall outputs Weghted average or eghted sum Same number of receptve feld unts and fuzz f-then rules Each radal bass functon of the RBFN s equal to a multdmensonal composte MF. 3

32 6. Modular Netorks Modular netorks A herarchcal organzaton comprsng multple NNs To prncpal components: Local eperts (or epert netorks) Integratng unt (or gatng netork) Overall output usng estmated combnaton eghts (g ): Y K g O 3

33 7. Summar Learnng modes Characterstcs of avalable nformaton for learnng Supervsed: Instructve nformaton on desred responses, eplctl specfed b a teacher Renforcement: Partal nformaton about desred responses, or onl rght or rong, evaluatve nformaton Unsupervsed: No nformaton about desred response Recordng: A pror desgn nformaton for memor storng 33

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Neural Networks & Learning

Neural Networks & Learning Neural Netorks & Learnng. Introducton The basc prelmnares nvolved n the Artfcal Neural Netorks (ANN) are descrbed n secton. An Artfcal Neural Netorks (ANN) s an nformaton-processng paradgm that nspred

More information

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata Multlayer Perceptrons and Informatcs CG: Lecture 6 Mrella Lapata School of Informatcs Unversty of Ednburgh mlap@nf.ed.ac.uk Readng: Kevn Gurney s Introducton to Neural Networks, Chapters 5 6.5 January,

More information

Introduction to the Introduction to Artificial Neural Network

Introduction to the Introduction to Artificial Neural Network Introducton to the Introducton to Artfcal Neural Netork Vuong Le th Hao Tang s sldes Part of the content of the sldes are from the Internet (possbly th modfcatons). The lecturer does not clam any onershp

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Multi-layer neural networks

Multi-layer neural networks Lecture 0 Mult-layer neural networks Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Lnear regresson w Lnear unts f () Logstc regresson T T = w = p( y =, w) = g( w ) w z f () = p ( y = ) w d w d Gradent

More information

Multigradient for Neural Networks for Equalizers 1

Multigradient for Neural Networks for Equalizers 1 Multgradent for Neural Netorks for Equalzers 1 Chulhee ee, Jnook Go and Heeyoung Km Department of Electrcal and Electronc Engneerng Yonse Unversty 134 Shnchon-Dong, Seodaemun-Ku, Seoul 1-749, Korea ABSTRACT

More information

Multilayer neural networks

Multilayer neural networks Lecture Multlayer neural networks Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Mdterm exam Mdterm Monday, March 2, 205 In-class (75 mnutes) closed book materal covered by February 25, 205 Multlayer

More information

Discriminative classifier: Logistic Regression. CS534-Machine Learning

Discriminative classifier: Logistic Regression. CS534-Machine Learning Dscrmnatve classfer: Logstc Regresson CS534-Machne Learnng robablstc Classfer Gven an nstance, hat does a probablstc classfer do dfferentl compared to, sa, perceptron? It does not drectl predct Instead,

More information

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) Multlayer Perceptron (MLP) Seungjn Cho Department of Computer Scence and Engneerng Pohang Unversty of Scence and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjn@postech.ac.kr 1 / 20 Outlne

More information

Evaluation of classifiers MLPs

Evaluation of classifiers MLPs Lecture Evaluaton of classfers MLPs Mlos Hausrecht mlos@cs.ptt.edu 539 Sennott Square Evaluaton For any data set e use to test the model e can buld a confuson matrx: Counts of examples th: class label

More information

Discriminative classifier: Logistic Regression. CS534-Machine Learning

Discriminative classifier: Logistic Regression. CS534-Machine Learning Dscrmnatve classfer: Logstc Regresson CS534-Machne Learnng 2 Logstc Regresson Gven tranng set D stc regresson learns the condtonal dstrbuton We ll assume onl to classes and a parametrc form for here s

More information

Other NN Models. Reinforcement learning (RL) Probabilistic neural networks

Other NN Models. Reinforcement learning (RL) Probabilistic neural networks Other NN Models Renforcement learnng (RL) Probablstc neural networks Support vector machne (SVM) Renforcement learnng g( (RL) Basc deas: Supervsed dlearnng: (delta rule, BP) Samples (x, f(x)) to learn

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

Model of Neurons. CS 416 Artificial Intelligence. Early History of Neural Nets. Cybernetics. McCulloch-Pitts Neurons. Hebbian Modification.

Model of Neurons. CS 416 Artificial Intelligence. Early History of Neural Nets. Cybernetics. McCulloch-Pitts Neurons. Hebbian Modification. Page 1 Model of Neurons CS 416 Artfcal Intellgence Lecture 18 Neural Nets Chapter 20 Multple nputs/dendrtes (~10,000!!!) Cell body/soma performs computaton Sngle output/axon Computaton s typcally modeled

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Pattern Classification

Pattern Classification Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton (nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher

More information

Neural Networks. Perceptrons and Backpropagation. Silke Bussen-Heyen. 5th of Novemeber Universität Bremen Fachbereich 3. Neural Networks 1 / 17

Neural Networks. Perceptrons and Backpropagation. Silke Bussen-Heyen. 5th of Novemeber Universität Bremen Fachbereich 3. Neural Networks 1 / 17 Neural Networks Perceptrons and Backpropagaton Slke Bussen-Heyen Unverstät Bremen Fachberech 3 5th of Novemeber 2012 Neural Networks 1 / 17 Contents 1 Introducton 2 Unts 3 Network structure 4 Snglelayer

More information

Hopfield Training Rules 1 N

Hopfield Training Rules 1 N Hopfeld Tranng Rules To memorse a sngle pattern Suppose e set the eghts thus - = p p here, s the eght beteen nodes & s the number of nodes n the netor p s the value requred for the -th node What ll the

More information

Introduction to Artificial Neural Networks EE /09/2015. Who am I. Associate Prof. Dr. Turgay IBRIKCI. What you learn from the course

Introduction to Artificial Neural Networks EE /09/2015. Who am I. Associate Prof. Dr. Turgay IBRIKCI. What you learn from the course Introducton to Artfcal Neural Netorks EE-589 Who am I Assocate Prof Dr Turga IBRIKCI Room # 305 Tuesdas 3:30-6:00 2 (322) 338 6868 / 39 eembderslerordpresscom What ou learn from the course Course Outlne

More information

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS COURSE CODES: FFR 35, FIM 72 GU, PhD Tme: Place: Teachers: Allowed materal: Not allowed: January 2, 28, at 8 3 2 3 SB

More information

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester 0/25/6 Admn Assgnment 7 Class /22 Schedule for the rest of the semester NEURAL NETWORKS Davd Kauchak CS58 Fall 206 Perceptron learnng algorthm Our Nervous System repeat untl convergence (or for some #

More information

Week 5: Neural Networks

Week 5: Neural Networks Week 5: Neural Networks Instructor: Sergey Levne Neural Networks Summary In the prevous lecture, we saw how we can construct neural networks by extendng logstc regresson. Neural networks consst of multple

More information

Multi layer feed-forward NN FFNN. XOR problem. XOR problem. Neural Network for Speech. NETtalk (Sejnowski & Rosenberg, 1987) NETtalk (contd.

Multi layer feed-forward NN FFNN. XOR problem. XOR problem. Neural Network for Speech. NETtalk (Sejnowski & Rosenberg, 1987) NETtalk (contd. NN 3-00 Mult layer feed-forard NN FFNN We consder a more general netor archtecture: beteen the nput and output layers there are hdden layers, as llustrated belo. Hdden nodes do not drectly send outputs

More information

Internet Engineering. Jacek Mazurkiewicz, PhD Softcomputing. Part 3: Recurrent Artificial Neural Networks Self-Organising Artificial Neural Networks

Internet Engineering. Jacek Mazurkiewicz, PhD Softcomputing. Part 3: Recurrent Artificial Neural Networks Self-Organising Artificial Neural Networks Internet Engneerng Jacek Mazurkewcz, PhD Softcomputng Part 3: Recurrent Artfcal Neural Networks Self-Organsng Artfcal Neural Networks Recurrent Artfcal Neural Networks Feedback sgnals between neurons Dynamc

More information

Non-linear Canonical Correlation Analysis Using a RBF Network

Non-linear Canonical Correlation Analysis Using a RBF Network ESANN' proceedngs - European Smposum on Artfcal Neural Networks Bruges (Belgum), 4-6 Aprl, d-sde publ., ISBN -97--, pp. 57-5 Non-lnear Canoncal Correlaton Analss Usng a RBF Network Sukhbnder Kumar, Elane

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Neural networks. Nuno Vasconcelos ECE Department, UCSD

Neural networks. Nuno Vasconcelos ECE Department, UCSD Neural networs Nuno Vasconcelos ECE Department, UCSD Classfcaton a classfcaton problem has two types of varables e.g. X - vector of observatons (features) n the world Y - state (class) of the world x X

More information

CS294A Lecture notes. Andrew Ng

CS294A Lecture notes. Andrew Ng CS294A Lecture notes Andrew Ng Sparse autoencoder 1 Introducton Supervsed learnng s one of the most powerful tools of AI, and has led to automatc zp code recognton, speech recognton, self-drvng cars, and

More information

Radial-Basis Function Networks

Radial-Basis Function Networks Radal-Bass uncton Networs v.0 March 00 Mchel Verleysen Radal-Bass uncton Networs - Radal-Bass uncton Networs p Orgn: Cover s theorem p Interpolaton problem p Regularzaton theory p Generalzed RBN p Unversal

More information

1 Input-Output Mappings. 2 Hebbian Failure. 3 Delta Rule Success.

1 Input-Output Mappings. 2 Hebbian Failure. 3 Delta Rule Success. Task Learnng 1 / 27 1 Input-Output Mappngs. 2 Hebban Falure. 3 Delta Rule Success. Input-Output Mappngs 2 / 27 0 1 2 3 4 5 6 7 8 9 Output 3 8 2 7 Input 5 6 0 9 1 4 Make approprate: Response gven stmulus.

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

A neural network with localized receptive fields for visual pattern classification

A neural network with localized receptive fields for visual pattern classification Unversty of Wollongong Research Onlne Faculty of Informatcs - Papers (Archve) Faculty of Engneerng and Informaton Scences 2005 A neural network wth localzed receptve felds for vsual pattern classfcaton

More information

Development of a General Purpose On-Line Update Multiple Layer Feedforward Backpropagation Neural Network

Development of a General Purpose On-Line Update Multiple Layer Feedforward Backpropagation Neural Network Master Thess MEE 97-4 Made by Development of a General Purpose On-Lne Update Multple Layer Feedforward Backpropagaton Neural Network Master Program n Electrcal Scence 997 College/Unversty of Karlskrona/Ronneby

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

Kernels in Support Vector Machines. Based on lectures of Martin Law, University of Michigan

Kernels in Support Vector Machines. Based on lectures of Martin Law, University of Michigan Kernels n Support Vector Machnes Based on lectures of Martn Law, Unversty of Mchgan Non Lnear separable problems AND OR NOT() The XOR problem cannot be solved wth a perceptron. XOR Per Lug Martell - Systems

More information

Neural Networks. Class 22: MLSP, Fall 2016 Instructor: Bhiksha Raj

Neural Networks. Class 22: MLSP, Fall 2016 Instructor: Bhiksha Raj Neural Networs Class 22: MLSP, Fall 2016 Instructor: Bhsha Raj IMPORTANT ADMINSTRIVIA Fnal wee. Project presentatons on 6th 18797/11755 2 Neural Networs are tang over! Neural networs have become one of

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information

Gradient Descent Learning and Backpropagation

Gradient Descent Learning and Backpropagation Artfcal Neural Networks (art 2) Chrstan Jacob Gradent Descent Learnng and Backpropagaton CSC 533 Wnter 200 Learnng by Gradent Descent Defnton of the Learnng roble Let us start wth the sple case of lnear

More information

A Fuzzy Image Segmentation using Feedforward Neural Networks with Supervised Learning

A Fuzzy Image Segmentation using Feedforward Neural Networks with Supervised Learning Proceedngs of the Internatonal Conference on Cognton and Recognton Fuzzy Image Segmentaton usng Feedforward Neural Networks wth Supervsed Learnng N. Krshnan 1, C. Nelson Kennedy Babu 2, V.V. Joseph Rajapandan

More information

The McCulloch Neuron (1943)

The McCulloch Neuron (1943) The McCulloch Neuron 943 p p b a pn n n g p b g t p b a [0;] p for n p p b A g tep functon The eucldan pace R n dvded n to regon A and B B p Laboratóro de Automação e Robótca - A. Bauchpe Soft Computng

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

PERFORMANCE COMPARISON BETWEEN BACK PROPAGATION, RPE AND MRPE ALGORITHMS FOR TRAINING MLP NETWORKS

PERFORMANCE COMPARISON BETWEEN BACK PROPAGATION, RPE AND MRPE ALGORITHMS FOR TRAINING MLP NETWORKS PERFORMANCE COMPARISON BETWEEN BACK PROPAGATION, RPE AND MRPE ALGORITHMS FOR TRAINING MLP NETWORKS Mohd Yusoff Mashor School of Electrcal and Electronc Engneerng, Unversty Scence Malaysa, Pera Branch Campus,

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Classification learning II

Classification learning II Lecture 8 Classfcaton learnng II Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Logstc regresson model Defnes a lnear decson boundar Dscrmnant functons: g g g g here g z / e z f, g g - s a logstc functon

More information

Associative Memories

Associative Memories Assocatve Memores We consder now modes for unsupervsed earnng probems, caed auto-assocaton probems. Assocaton s the task of mappng patterns to patterns. In an assocatve memory the stmuus of an ncompete

More information

Video Data Analysis. Video Data Analysis, B-IT

Video Data Analysis. Video Data Analysis, B-IT Lecture Vdeo Data Analyss Deformable Snakes Segmentaton Neural networks Lecture plan:. Segmentaton by morphologcal watershed. Deformable snakes 3. Segmentaton va classfcaton of patterns 4. Concept of a

More information

arxiv: v1 [cs.lg] 17 Jan 2019

arxiv: v1 [cs.lg] 17 Jan 2019 LECTURE NOTES arxv:90.05639v [cs.lg] 7 Jan 209 Artfcal Neural Networks B. MEHLIG Department of Physcs Unversty of Gothenburg Göteborg, Sweden 209 PREFACE These are lecture notes for my course on Artfcal

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

LECTURE NOTES. Artifical Neural Networks. B. MEHLIG (course home page)

LECTURE NOTES. Artifical Neural Networks. B. MEHLIG (course home page) LECTURE NOTES Artfcal Neural Networks B. MEHLIG (course home page) Department of Physcs Unversty of Gothenburg Göteborg, Sweden 208 PREFACE These are lecture notes for my course on Artfcal Neural Networks

More information

Boostrapaggregating (Bagging)

Boostrapaggregating (Bagging) Boostrapaggregatng (Baggng) An ensemble meta-algorthm desgned to mprove the stablty and accuracy of machne learnng algorthms Can be used n both regresson and classfcaton Reduces varance and helps to avod

More information

Mean Field / Variational Approximations

Mean Field / Variational Approximations Mean Feld / Varatonal Appromatons resented by Jose Nuñez 0/24/05 Outlne Introducton Mean Feld Appromaton Structured Mean Feld Weghted Mean Feld Varatonal Methods Introducton roblem: We have dstrbuton but

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

Linear Feature Engineering 11

Linear Feature Engineering 11 Lnear Feature Engneerng 11 2 Least-Squares 2.1 Smple least-squares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19

More information

Why feed-forward networks are in a bad shape

Why feed-forward networks are in a bad shape Why feed-forward networks are n a bad shape Patrck van der Smagt, Gerd Hrznger Insttute of Robotcs and System Dynamcs German Aerospace Center (DLR Oberpfaffenhofen) 82230 Wesslng, GERMANY emal smagt@dlr.de

More information

Determining Transmission Losses Penalty Factor Using Adaptive Neuro Fuzzy Inference System (ANFIS) For Economic Dispatch Application

Determining Transmission Losses Penalty Factor Using Adaptive Neuro Fuzzy Inference System (ANFIS) For Economic Dispatch Application 7 Determnng Transmsson Losses Penalty Factor Usng Adaptve Neuro Fuzzy Inference System (ANFIS) For Economc Dspatch Applcaton Rony Seto Wbowo Maurdh Hery Purnomo Dod Prastanto Electrcal Engneerng Department,

More information

Online Classification: Perceptron and Winnow

Online Classification: Perceptron and Winnow E0 370 Statstcal Learnng Theory Lecture 18 Nov 8, 011 Onlne Classfcaton: Perceptron and Wnnow Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton In ths lecture we wll start to study the onlne learnng

More information

15-381: Artificial Intelligence. Regression and cross validation

15-381: Artificial Intelligence. Regression and cross validation 15-381: Artfcal Intellgence Regresson and cross valdaton Where e are Inputs Densty Estmator Probablty Inputs Classfer Predct category Inputs Regressor Predct real no. Today Lnear regresson Gven an nput

More information

Support Vector Machines CS434

Support Vector Machines CS434 Support Vector Machnes CS434 Lnear Separators Many lnear separators exst that perfectly classfy all tranng examples Whch of the lnear separators s the best? Intuton of Margn Consder ponts A, B, and C We

More information

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION CAPTER- INFORMATION MEASURE OF FUZZY MATRI AN FUZZY BINARY RELATION Introducton The basc concept of the fuzz matr theor s ver smple and can be appled to socal and natural stuatons A branch of fuzz matr

More information

Ensemble Methods: Boosting

Ensemble Methods: Boosting Ensemble Methods: Boostng Ncholas Ruozz Unversty of Texas at Dallas Based on the sldes of Vbhav Gogate and Rob Schapre Last Tme Varance reducton va baggng Generate new tranng data sets by samplng wth replacement

More information

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015 CS 3710: Vsual Recognton Classfcaton and Detecton Adrana Kovashka Department of Computer Scence January 13, 2015 Plan for Today Vsual recognton bascs part 2: Classfcaton and detecton Adrana s research

More information

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018 INF 5860 Machne learnng for mage classfcaton Lecture 3 : Image classfcaton and regresson part II Anne Solberg January 3, 08 Today s topcs Multclass logstc regresson and softma Regularzaton Image classfcaton

More information

CS407 Neural Computation

CS407 Neural Computation CS407 Neural Computaton Lecture 8: Neural Netorks for Constraned Optmzaton. Lecturer: A/Prof. M. Bennamoun Neural Nets for Constraned Optmzaton. Introducton Boltzmann machne Introducton Archtecture and

More information

MATH 567: Mathematical Techniques in Data Science Lab 8

MATH 567: Mathematical Techniques in Data Science Lab 8 1/14 MATH 567: Mathematcal Technques n Data Scence Lab 8 Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 11, 2017 Recall We have: a (2) 1 = f(w (1) 11 x 1 + W (1) 12 x 2 + W

More information

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 - Chapter 9R -Davd Klenfeld - Fall 2005 9 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys a set

More information

Finite Difference Method

Finite Difference Method 7/0/07 Instructor r. Ramond Rump (9) 747 698 rcrump@utep.edu EE 337 Computatonal Electromagnetcs (CEM) Lecture #0 Fnte erence Method Lecture 0 These notes ma contan coprghted materal obtaned under ar use

More information

Unsupervised Learning

Unsupervised Learning Unsupervsed Learnng Kevn Swngler What s Unsupervsed Learnng? Most smply, t can be thought of as learnng to recognse and recall thngs Recognton I ve seen that before Recall I ve seen that before and I can

More information

A Tutorial on Data Reduction. Linear Discriminant Analysis (LDA) Shireen Elhabian and Aly A. Farag. University of Louisville, CVIP Lab September 2009

A Tutorial on Data Reduction. Linear Discriminant Analysis (LDA) Shireen Elhabian and Aly A. Farag. University of Louisville, CVIP Lab September 2009 A utoral on Data Reducton Lnear Dscrmnant Analss (LDA) hreen Elhaban and Al A Farag Unverst of Lousvlle, CVIP Lab eptember 009 Outlne LDA objectve Recall PCA No LDA LDA o Classes Counter eample LDA C Classes

More information

The Chaotic Robot Prediction by Neuro Fuzzy Algorithm (2) = θ (3) = ω. Asin. A v. Mana Tarjoman, Shaghayegh Zarei

The Chaotic Robot Prediction by Neuro Fuzzy Algorithm (2) = θ (3) = ω. Asin. A v. Mana Tarjoman, Shaghayegh Zarei The Chaotc Robot Predcton by Neuro Fuzzy Algorthm Mana Tarjoman, Shaghayegh Zare Abstract In ths paper an applcaton of the adaptve neurofuzzy nference system has been ntroduced to predct the behavor of

More information

RBF Neural Network Model Training by Unscented Kalman Filter and Its Application in Mechanical Fault Diagnosis

RBF Neural Network Model Training by Unscented Kalman Filter and Its Application in Mechanical Fault Diagnosis Appled Mechancs and Materals Submtted: 24-6-2 ISSN: 662-7482, Vols. 62-65, pp 2383-2386 Accepted: 24-6- do:.428/www.scentfc.net/amm.62-65.2383 Onlne: 24-8- 24 rans ech Publcatons, Swtzerland RBF Neural

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

Atmospheric Environmental Quality Assessment RBF Model Based on the MATLAB

Atmospheric Environmental Quality Assessment RBF Model Based on the MATLAB Journal of Envronmental Protecton, 01, 3, 689-693 http://dxdoorg/10436/jep0137081 Publshed Onlne July 01 (http://wwwscrporg/journal/jep) 689 Atmospherc Envronmental Qualty Assessment RBF Model Based on

More information

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z )

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z ) C4B Machne Learnng Answers II.(a) Show that for the logstc sgmod functon dσ(z) dz = σ(z) ( σ(z)) A. Zsserman, Hlary Term 20 Start from the defnton of σ(z) Note that Then σ(z) = σ = dσ(z) dz = + e z e z

More information

MULTISPECTRAL IMAGE CLASSIFICATION USING BACK-PROPAGATION NEURAL NETWORK IN PCA DOMAIN

MULTISPECTRAL IMAGE CLASSIFICATION USING BACK-PROPAGATION NEURAL NETWORK IN PCA DOMAIN MULTISPECTRAL IMAGE CLASSIFICATION USING BACK-PROPAGATION NEURAL NETWORK IN PCA DOMAIN S. Chtwong, S. Wtthayapradt, S. Intajag, and F. Cheevasuvt Faculty of Engneerng, Kng Mongkut s Insttute of Technology

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

Introduction to Neural Networks. David Stutz

Introduction to Neural Networks. David Stutz RWTH Aachen Unversty Char of Computer Scence 6 Prof. Dr.-Ing. Hermann Ney Selected Topcs n Human Language Technology and Pattern Recognton WS 13/14 Introducton to Neural Networs Davd Stutz Matrculaton

More information

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming

EEL 6266 Power System Operation and Control. Chapter 3 Economic Dispatch Using Dynamic Programming EEL 6266 Power System Operaton and Control Chapter 3 Economc Dspatch Usng Dynamc Programmng Pecewse Lnear Cost Functons Common practce many utltes prefer to represent ther generator cost functons as sngle-

More information

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

Lecture 23: Artificial neural networks

Lecture 23: Artificial neural networks Lecture 23: Artfcal neural networks Broad feld that has developed over the past 20 to 30 years Confluence of statstcal mechancs, appled math, bology and computers Orgnal motvaton: mathematcal modelng of

More information

Principe, J.C. Artificial Neural Networks The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000

Principe, J.C. Artificial Neural Networks The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000 Prncpe, J.C. Artfcal Neural Networks The Electrcal Engneerng Handbook Ed. Rchard C. Dorf Boca Raton: CRC Press LLC, 2000 20 Artfcal Neural Networks Jose C. Prncpe Unversty of Florda 20.1 Defntons and Scope

More information

b ), which stands for uniform distribution on the interval a x< b. = 0 elsewhere

b ), which stands for uniform distribution on the interval a x< b. = 0 elsewhere Fall Analyss of Epermental Measurements B. Esensten/rev. S. Errede Some mportant probablty dstrbutons: Unform Bnomal Posson Gaussan/ormal The Unform dstrbuton s often called U( a, b ), hch stands for unform

More information

Using Immune Genetic Algorithm to Optimize BP Neural Network and Its Application Peng-fei LIU1,Qun-tai SHEN1 and Jun ZHI2,*

Using Immune Genetic Algorithm to Optimize BP Neural Network and Its Application Peng-fei LIU1,Qun-tai SHEN1 and Jun ZHI2,* Advances n Computer Scence Research (ACRS), volume 54 Internatonal Conference on Computer Networks and Communcaton Technology (CNCT206) Usng Immune Genetc Algorthm to Optmze BP Neural Network and Its Applcaton

More information

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations

8 Derivation of Network Rate Equations from Single- Cell Conductance Equations Physcs 178/278 - Davd Klenfeld - Wnter 2019 8 Dervaton of Network Rate Equatons from Sngle- Cell Conductance Equatons Our goal to derve the form of the abstract quanttes n rate equatons, such as synaptc

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia

Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia Usng deep belef network modellng to characterze dfferences n bran morphometry n schzophrena Walter H. L. Pnaya * a ; Ary Gadelha b ; Orla M. Doyle c ; Crstano Noto b ; André Zugman d ; Qurno Cordero b,

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

More information

Solving Nonlinear Differential Equations by a Neural Network Method

Solving Nonlinear Differential Equations by a Neural Network Method Solvng Nonlnear Dfferental Equatons by a Neural Network Method Luce P. Aarts and Peter Van der Veer Delft Unversty of Technology, Faculty of Cvlengneerng and Geoscences, Secton of Cvlengneerng Informatcs,

More information

Hopfield networks and Boltzmann machines. Geoffrey Hinton et al. Presented by Tambet Matiisen

Hopfield networks and Boltzmann machines. Geoffrey Hinton et al. Presented by Tambet Matiisen Hopfeld networks and Boltzmann machnes Geoffrey Hnton et al. Presented by Tambet Matsen 18.11.2014 Hopfeld network Bnary unts Symmetrcal connectons http://www.nnwj.de/hopfeld-net.html Energy functon The

More information

CS294A Lecture notes. Andrew Ng

CS294A Lecture notes. Andrew Ng CS294A Lecture notes Andrew Ng Sparse autoencoder 1 Introducton Supervsed learnng s one of the most powerful tools of AI, and has led to automatc zp code recognton, speech recognton, self-drvng cars, and

More information

CoSMo 2012 Gunnar Blohm

CoSMo 2012 Gunnar Blohm Sensory-motor computatons CoSMo 2012 Gunnar Blom Outlne Introducton (Day 1) Sabes Sensory-motor transformatons Blom Populaton codng and parallel computng Modellng sensory-motor mappngs t artfcal neural

More information

Machine Learning CS-527A ANN ANN. ANN Short History ANN. Artificial Neural Networks (ANN) Artificial Neural Networks

Machine Learning CS-527A ANN ANN. ANN Short History ANN. Artificial Neural Networks (ANN) Artificial Neural Networks Machne Learnng CS-57A Artfcal Neural Networks Burchan (bourch-khan) Bayazt http://www.cse.wustl.edu/~bayazt/courses/cs57a/ Malng lst: cs-57a@cse.wustl.edu Artfcal Neural Networks (ANN) Neural network nspred

More information

Linear Regression Introduction to Machine Learning. Matt Gormley Lecture 5 September 14, Readings: Bishop, 3.1

Linear Regression Introduction to Machine Learning. Matt Gormley Lecture 5 September 14, Readings: Bishop, 3.1 School of Computer Scence 10-601 Introducton to Machne Learnng Lnear Regresson Readngs: Bshop, 3.1 Matt Gormle Lecture 5 September 14, 016 1 Homework : Remnders Extenson: due Frda (9/16) at 5:30pm Rectaton

More information

CHAPTER 3 ARTIFICIAL NEURAL NETWORKS AND LEARNING ALGORITHM

CHAPTER 3 ARTIFICIAL NEURAL NETWORKS AND LEARNING ALGORITHM 46 CHAPTER 3 ARTIFICIAL NEURAL NETWORKS AND LEARNING ALGORITHM 3.1 ARTIFICIAL NEURAL NETWORKS 3.1.1 Introducton The noton of computng takes many forms. Hstorcally, the term computng has been domnated by

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING 1 ADVANCED ACHINE LEARNING ADVANCED ACHINE LEARNING Non-lnear regresson technques 2 ADVANCED ACHINE LEARNING Regresson: Prncple N ap N-dm. nput x to a contnuous output y. Learn a functon of the type: N

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

A New Algorithm for Training Multi-layered Morphological Networks

A New Algorithm for Training Multi-layered Morphological Networks A New Algorthm for Tranng Mult-layered Morphologcal Networs Rcardo Barrón, Humberto Sossa, and Benamín Cruz Centro de Investgacón en Computacón-IPN Av. Juan de Dos Bátz esquna con Mguel Othón de Mendzábal

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

A New Algorithm Using Hopfield Neural Network with CHN for N-Queens Problem

A New Algorithm Using Hopfield Neural Network with CHN for N-Queens Problem 36 IJCSS Internatonal Journal of Computer Scence and etwork Securt, VOL9 o4, Aprl 009 A ew Algorthm Usng Hopfeld eural etwork wth CH for -Queens Problem We Zhang and Zheng Tang, Facult of Engneerng, Toama

More information