Towards developing a reacting- DNS code Design and numerical issues

Size: px
Start display at page:

Download "Towards developing a reacting- DNS code Design and numerical issues"

Transcription

1 Towards developg a reactg- DNS code Desg ad umercal ssues Rx Yu FM teral semar

2 Motvatos Why we eed a Reactg DNS code No model for both flow (turbulece) ad combusto Study applcatos of research terests Iteracto of turbulece ad chemstry Auto-gto Premxed Flame Lamar flame stablty Model developmet Mult-zoe Chemstry More FM teral semar 2

3 Requremets & Challeges Accuracy Chemstry Igto delay tme, flame thcess, flame speed Turbulece Eergy cascadg, less umercal dffuso/dsperso error Robustess Less crashes gve eough resoluto ad correct B.C Numercally stable schemes Good decouple method for the solver Effcecy Fast computato Compromse betwee accuracy ad robustess Usefuless Multple applcatos FM teral semar 3

4 Desg recpes Stff chemstry solver Hgh order schemes for approxmatg dervatves Space: Most of 6 th ce_dff + 5 th WENO for Covecto of (Y,T) Tme: 3 rd RGK-TVD A stable method for treatg desty couplg Fractoal step method I oe CFD tme step, calculate dvdual physcal process sequece, freezg other process whle computg oe. Explct method for computg dffuso terms I oe tme step, do multple sub-step of explct dffuso Code geeralzato Vector programmg ( oe code for,2 ad 3 dmeso) FM teral semar 4

5 Warg No pcture from ow o FM teral semar 5

6 Outles The goverg equatos The dscretzato methods Iterpolato / dervatve approxmato Solver (eglect B.D) Decouplg strategy Detaled solver procedures Fractoal step method Code mplemetato Example of vector programmg FM teral semar 6

7 Outles The goverg equatos The dscretzato methods Iterpolato / dervatve approxmato Solver Decouplg strategy Detaled solver procedures Fractoal step method Code mplemetato Vector programmg example FM teral semar 7

8 Assumptos Low mach umber assumpto Pressure splts to the thermodyamc ad hydrodyamc parts p(x,t) = P(t) +p(x,t) Gas phases, o body force, o exteral heat source, o radato Solve all the detaled dffuso trasports, o assumptos o the Lews, Schmdt umbers FM teral semar 8

9 Goverg equatos N sp Speces mass Eq DY ρ Dt ρv Y, = + x & ω ( =, N sp ) 3 Mometum Eq ρu ρuu j uj u 2 u p + = μ + μ δj t xj x j x x j 3 x x Eergy Eq N N DT T P T ρc = h & ω ( ρ C YV ) + + ( λ ) Thermodyamc relatos Eq of state: Other relatos: p p,, Dt = = x t x x N sp Y P = ρrt W = μ ( Y, T, P) λ( Y, T, P) Cp, ( Y, T, P) FM teral semar 9 D ( Y, T, P )

10 Speces mass Eq Goverg equatos (Cotue) DY ρ Dt ρv Y, = + x & ω Y V Y D Y D N, = + x = Y x Fc Law Guaraty Total mass coservato N sp = ρ ρu ( Eq _ Y ) + = 0 t x FM teral semar 0

11 A smple vew of geeral trasport equatos φ = (... C...) + (... D...) + (... R...) + (... O...) t Covecto Dffuso Reacto Other φ ca be Speces Eq : Y Eergy Eq : T Mometum Eq : U FM teral semar

12 Outles The goverg equatos The dscretzato methods Iterpolato / dervatve approxmato Solver Decouplg strategy Detaled solver procedures Fractoal step method Code mplemetato Vector programmg example FM teral semar 2

13 Grd & Varables defto Varable ca be defed o dfferet posto Scalars : cell ceter Vector compoets : cell surface More umercal efforts due to staggerg Iterpolato Y, T, p, ρ, j,, j,, j,, j, u, v, w + /2, j,, j+ /2,, j, + /2 Move varables from +/2 to, vce versa. Extra schemes for approxmatg spatal dervate FM teral semar 3

14 Spatal dscretzato schemes Operators for terpolato ad dervate For terpolato (6 th order) For spatal dervatves ( ) 2 d order ceter dfferece No-Staggered Staggered 6 th order ceter dfferece No-Staggered: Staggered φ x 5 th order WENO schemes No-Staggered φ, φ Where s for? xx δ δ x xy s s+ s s+ 2 s 2 s+ 3 φ s+ /2 = 2 δ φ φs+ φs δ x 6 δφ φs+ φs φs+ 2 + φs 2 + φs+ 3 + φs 3 45( ) 9( ) ( ) = δ x 60Δx s 6 δ φ φs+ φs φs+ φs + φs+ 3 φs = δ 920 x ( ) = 2Δx ( s+ s) = Δx s 2 δ φ φ φ δ x 5 δwenoφ δ x s+ /2 s+ / 2 s 450( φ + φ ) 75( φ + φ ) + 9( φ + φ ) 768 = ( ) 25( 2 ) 9( 2) Δx FM teral semar 4

15 Temporal dscretzato A smple tme marchg problem φ = L( φx, φ, ψ x, ψ) t (φ ad ψ are defed staggerg to each other) st order Euler explct tme φ + φ = Δt L( δ φ, φ, ( δ ψ δ ψ ), ψ ) x x x 3 rd order RGK TVD () + φ = φ +Δt L φ ( ) (2) 3 () () φ = φ + φ + Δt L( φ ) (2) 2 (2) φ = φ + φ + Δt L( φ ) FM teral semar 5

16 Outles The goverg equatos The dscretzato methods Iterpolato / dervatve approxmato Solver Desty decouplg strategy Detaled solver procedures Fractoal step method Code mplemetato Vector programmg example FM teral semar 6

17 Decouplg strategy Two categores for all varables Essetal : P(), t Y, T, u Dervable: ρ, μ, D, C, λ p, Decouple desty computato, two-stage computato Stage : Solve trasport Eq of speces mass (Y ) ad eergy (T), P Compute the dervable varables Stage 2 : A stadard compressble solver ρ(x,t), μ(x,t) gve the above step 4 uow / 4 equatos A Posso equato s solved for p(x,t) FM teral semar 7

18 Choce of the cotuty equato Numercal stablty for large desty rato system Coservatve form (Ustable) ρu x ρ = t δ ( C D R C D R u ρ + ρ ρ = Δ ρ + Δε ) δ x Δt Δt C Δε : Spurous heat release (Numercal errors due to covecto of Y ad T) No-Coservatve form (Stable: Remove cov error) Dφ = + u φ = φ + C( φ) Dt t x t u x Dρ = ρ Dt D P Dt = ρrt Nsp u Dρ P DT W DY = = + + x ρ Dt P t T Dt FM teral semar = W Dt 8 N sp = Y W

19 Solver procedure (Stage : Fractoal step method) Step : Chemcal reacto (Y, T Y *, T*) Stff ODE solver ( Y, T ) Step 2: Dffuso of speces ad heat (Y *, T* Y **, T**) N ΔY sub tme step (Δt/ N ΔY ) of explct speces dffuso (Y * Y **) N ΔT sub tme step (Δt/ N ΔT ) of explct heat dffuso (Τ* Τ**) Step 3: Covecto of speces ad heat (Y **, T** Y +, T + ) Oe step explct WENO scheme (5 th order) for covectve term Pressure heat term Step 4: Update P + ad ρ + Costat pressure Costat volume or gve total mass FM teral semar 9

20 Solver procedure (Stage 2: Icompressble flow solver) Step 5: Compute r.h.s of cotuty Eq Prepare for pressure equatos Step 6: Mometum covecto ad dffuso(u u ## ) Mometum covecto (u u # ) Mometum dffuso(u # u ## ) Step 7: Solve the pressure equato (p + ) Varable Coeffcet Posso equato Step 8: Correct velocty(u ## u + ) FM teral semar 20

21 Solver procedure Step : Stff reacto solver Costat pressure gto (Y,T Y*,T*) Y ρ = (... C...) + (... D...) + & ω t N T ρcp = (... C...) + (... D...) ( hω) t & = P P RT = + t * = & ω ρ t Y Y dt + N sp Y = = ρ W t N * T T = ( h & ω) dt ρc p FM t = teral semar 2

22 Solver procedure Step 2: Speces ad heat dffuso Speces dffuso (N ΔY steps) * *: d 0 Y = Y = ( d ++ ) Δ Y = Y ** *: d = N Y + ρ Y Y δ ( δ δ ) *: d+ *: d 6 6 N 6 *: d *: d *: d = ρ D Y Y D Y Δt / NΔY δx δx = δx Heat coduct ad speces dffuso heat (N ΔT steps) T = T = * *:d 0 ( d ++ ) ρ *: d *: d 6 6 T + T δ δ *: d Cp = ( λ T ) Δt / NΔT δx δx δ δ δ C D Y Y D Y T N 6 N 6 6 ** ** ** ** *: d = N ( ρ p, ( )) T + = = FM teral semar δx = δx δx22 T T Δ N Y ρ = (... C...) ρ( D Y Y D Y ) + (... R...) t x x = x N N T ρcp = (... C...) + ( λ T) ( ρ C ( D Y Y D Y )) T + (... R...) t x x x x p, = = x **

23 ρ Solver procedure Step 3: Covecto of speces ad heat Speces covecto: (Y ** Y + ) ρ Y ρy t = ρuy + (... D...) + (... R...) x j + ** 5 Y δ weo = ρ u Δt δ x Heat covecto + pressure heat: (T** T + ) FM teral semar 23 Y ** T P ρcp = ρcpu T + + (... D...) + (... R...) t x t T + T δ P P ** 5 weo ** Cp = ρ u T + Δt δ x Δt j

24 Solver procedure Step 4: Update P + ad ρ + Compute P + Costat pressure 0 P + = P = P Costat volume or gve total mass ( M = ρ dv ) T V P + = V M M& t R ( ) T + Δ T N + sp = Y W + dv Compute ρ + ρ Other dervable varables + = RT P N + + sp = Y W FM teral semar 24

25 Solver procedure Step 5: Compute rhs of cotuty Eq sp u Dρ P DT W DY = = + + x Dt P t T Dt W Dt ρ = N 6 + ** N sp ** + Dρ P P T T W Y Y u = = + + ρ Δ Δ = Δ δ δ x Dt P t T t W t rhs( Cot) FM teral semar 25

26 Solver procedure Step 6: Mometum covecto ad dffuso Covecto ( step) (u u # ) Dffuso (N Δu Steps) (u # u ## ) u = u = # #:d 0 ρu t = ρuu j + (... D...) + (... P...) x j + # u u 6 ρ ρ δ = Δt δ x j ρ uu ρu u j u 2 u = (... C...) + μ( + δj ) + (... P...) t x j x xj 3 x j d' = d( d> 0) #: d' = 0 u = u ( d ++ ) Δ u = u ## : d = N + # u + #: d+ #: d u #: d' #: d' 2 #: d' u + = μ uj + u δj u t/ N u δ x Δ j δx δxj 3 δx ρ ρ δ ( δ δ δ ) Δ FM teral semar 26

27 Solver procedure Step 7: Solve the pressure equato 6 δ δ x ρ + + ## 6 + ρ u ρ u δ = Δt δ x 6 δ + u = rhs( Cot) δ x Varable Coeffcet Posso equatos for the hydrodyamc pressure (p + ) δ δ δ ρ + ## 6 th order p = u ( ) rhs Cot + + δx ρ δx Δt δx ρ p + 2 d order Defer-Corr δ δ δ ρ + ## p u ( ) rhs Cot ϑ + = + + δx ρ δx Δt δx ρ δ δ p δ δ ϑ = p δx ρ δx δx ρ δx FM teral semar 27

28 Solver procedure Step 8: Correct velocty Correct velocty (u ## u + ) + ## u + 6 u ρ ρ δ = Δt δ x p + Complete oe Explct Euler step FM teral semar 28

29 Outles The goverg equatos The dscretzato methods Iterpolato / dervatve approxmato Solver Desty decouplg strategy Detaled solver procedures Fractoal step method Code mplemetato Vector programmg example FM teral semar 29

30 Vector programmg 3D DNS Expesve, slow rus, ot easy debuggg 2D s fast, D s eve faster Ru quc, smple to debug Ca help to aswer questos such as Is ths a 2 or 3-D pheomea? D Flame structures ad gto ca stll be terestg FM teral semar 30

31 Codg Example : Mometum covecto ρ j u 6 δ δ x ρ u u j j ρ ju ju FM teral semar 3

32 Codg example 2: Mometum vscous term + #: d #: d u + 2 = μ uj + u δj u t/ N u δ x Δ j δx δxj 3 δx ρ + u ρ δ ( δ δ δ ) Δ FM teral semar 32 S j δ = u δ x j

33 Codg example 2: Mometum vscous term 2 2 τ = S + S S = δ u + δ u δ δ u N δx δx 3 δx j j j j j j FM teral semar 33

34 Codg example 2: Mometum vscous term δ δ δ δ 2 δ μτ j = μ( uj + u δj u ) δx δx δx δxj 3 δx FM teral semar 34

35 Thas for your atteto FM teral semar 35

Module 1 : The equation of continuity. Lecture 5: Conservation of Mass for each species. & Fick s Law

Module 1 : The equation of continuity. Lecture 5: Conservation of Mass for each species. & Fick s Law Module : The equato of cotuty Lecture 5: Coservato of Mass for each speces & Fck s Law NPTEL, IIT Kharagpur, Prof. Sakat Chakraborty, Departmet of Chemcal Egeerg 2 Basc Deftos I Mass Trasfer, we usually

More information

End of Finite Volume Methods Cartesian grids. Solution of the Navier-Stokes Equations. REVIEW Lecture 17: Higher order (interpolation) schemes

End of Finite Volume Methods Cartesian grids. Solution of the Navier-Stokes Equations. REVIEW Lecture 17: Higher order (interpolation) schemes REVIEW Lecture 17: Numercal Flud Mechacs Sprg 2015 Lecture 18 Ed of Fte Volume Methods Cartesa grds Hgher order (terpolato) schemes Soluto of the Naver-Stokes Equatos Dscretzato of the covectve ad vscous

More information

ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport. Prof. Peter Bermel February 22, 2013

ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport. Prof. Peter Bermel February 22, 2013 ECE 595, Secto 0 Numercal Smulatos Lecture 9: FEM for Electroc Trasport Prof. Peter Bermel February, 03 Outle Recap from Wedesday Physcs-based devce modelg Electroc trasport theory FEM electroc trasport

More information

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES FDM: Appromato of Frst Order Dervatves Lecture APPROXIMATION OF FIRST ORDER DERIVATIVES. INTRODUCTION Covectve term coservato equatos volve frst order dervatves. The smplest possble approach for dscretzato

More information

R. G. Prinn, / Atmospheric Physics & Chemistry, March 14, 2006

R. G. Prinn, / Atmospheric Physics & Chemistry, March 14, 2006 R. G. Pr, 1.806/10.571 Atmospherc Physcs & Chemstry, March 14, 006 Solvg the Basc Equatos for the Atmosphere 3-D ρ d (uρ) d (vρ) d (wρ) Mass = Cotuty t dx dy dz Equatos of u d (uu) d (vu) d (wu) = +...

More information

GMS Equations From Irreversible Thermodynamics

GMS Equations From Irreversible Thermodynamics GMS Equatos From Irreversble hermodyamcs ChE 6603 Refereces E. N. Lghtfoot, rasport Pheomea ad Lvg Systems, McGraw-Hll, New York 978. R. B. Brd, W. E. Stewart ad E. N. Lghtfoot, rasport Pheomea 2 d ed.,

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

ECE606: Solid State Devices Lecture 13 Solutions of the Continuity Eqs. Analytical & Numerical

ECE606: Solid State Devices Lecture 13 Solutions of the Continuity Eqs. Analytical & Numerical ECE66: Sold State Devces Lecture 13 Solutos of the Cotuty Eqs. Aalytcal & Numercal Gerhard Klmeck gekco@purdue.edu Outle Aalytcal Solutos to the Cotuty Equatos 1) Example problems ) Summary Numercal Solutos

More information

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation PGE 30: Formulato ad Soluto Geosystems Egeerg Dr. Balhoff Iterpolato Numercal Methods wth MATLAB, Recktewald, Chapter 0 ad Numercal Methods for Egeers, Chapra ad Caale, 5 th Ed., Part Fve, Chapter 8 ad

More information

We have already referred to a certain reaction, which takes place at high temperature after rich combustion.

We have already referred to a certain reaction, which takes place at high temperature after rich combustion. ME 41 Day 13 Topcs Chemcal Equlbrum - Theory Chemcal Equlbrum Example #1 Equlbrum Costats Chemcal Equlbrum Example #2 Chemcal Equlbrum of Hot Bured Gas 1. Chemcal Equlbrum We have already referred to a

More information

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits Block-Based Compact hermal Modelg of Semcoductor Itegrated Crcuts Master s hess Defese Caddate: Jg Ba Commttee Members: Dr. Mg-Cheg Cheg Dr. Daqg Hou Dr. Robert Schllg July 27, 2009 Outle Itroducto Backgroud

More information

Newton s Power Flow algorithm

Newton s Power Flow algorithm Power Egeerg - Egll Beedt Hresso ewto s Power Flow algorthm Power Egeerg - Egll Beedt Hresso The ewto s Method of Power Flow 2 Calculatos. For the referece bus #, we set : V = p.u. ad δ = 0 For all other

More information

Beam Warming Second-Order Upwind Method

Beam Warming Second-Order Upwind Method Beam Warmg Secod-Order Upwd Method Petr Valeta Jauary 6, 015 Ths documet s a part of the assessmet work for the subject 1DRP Dfferetal Equatos o Computer lectured o FNSPE CTU Prague. Abstract Ths documet

More information

Fourth Order Four-Stage Diagonally Implicit Runge-Kutta Method for Linear Ordinary Differential Equations ABSTRACT INTRODUCTION

Fourth Order Four-Stage Diagonally Implicit Runge-Kutta Method for Linear Ordinary Differential Equations ABSTRACT INTRODUCTION Malasa Joural of Mathematcal Sceces (): 95-05 (00) Fourth Order Four-Stage Dagoall Implct Ruge-Kutta Method for Lear Ordar Dfferetal Equatos Nur Izzat Che Jawas, Fudzah Ismal, Mohamed Sulema, 3 Azm Jaafar

More information

Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy

Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy Itroducto to Smulato - Lecture 22 Itegral Equato ethods Jacob Whte Thaks to Deepak Ramaswamy, chal Rewesk, X Wag ad Kare Veroy Outle Itegral Equato ethods Exteror versus teror problems Start wth usg pot

More information

ENGI 4421 Propagation of Error Page 8-01

ENGI 4421 Propagation of Error Page 8-01 ENGI 441 Propagato of Error Page 8-01 Propagato of Error [Navd Chapter 3; ot Devore] Ay realstc measuremet procedure cotas error. Ay calculatos based o that measuremet wll therefore also cota a error.

More information

Runge-Kutta discontinuous Galerkin finite element method for one-dimensional multimedium compressible flow

Runge-Kutta discontinuous Galerkin finite element method for one-dimensional multimedium compressible flow SSN 746-7659, Eglad, K Joural of formato ad Computg Scece Vol. 3, No. 3, 008, pp. 5-4 Ruge-Kutta dscotuous Galerk fte elemet metod for oe-dmesoal multmedum compressble flow Rogsa Ce + Departmet of Matematcs,

More information

Given a table of data poins of an unknown or complicated function f : we want to find a (simpler) function p s.t. px (

Given a table of data poins of an unknown or complicated function f : we want to find a (simpler) function p s.t. px ( Iterpolato 1 Iterpolato Gve a table of data pos of a ukow or complcated fucto f : y 0 1 2 y y y y 0 1 2 we wat to fd a (smpler) fucto p s.t. p ( ) = y for = 0... p s sad to terpolate the table or terpolate

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Numerical simulation of various flows over a square cavity

Numerical simulation of various flows over a square cavity Iteratoal Joural of Mechacal Egeerg ad Research, ISSN 0973-4562 Vol. 5 No.1 (2015) Research Ida Publcatos; http://www.rpublcato.com/jmer.htm Numercal smulato of varous flows over a square cavty N.Sethl

More information

A Helmholtz energy equation of state for calculating the thermodynamic properties of fluid mixtures

A Helmholtz energy equation of state for calculating the thermodynamic properties of fluid mixtures A Helmholtz eergy equato of state for calculatg the thermodyamc propertes of flud mxtures Erc W. Lemmo, Reer Tller-Roth Abstract New Approach based o hghly accurate EOS for the pure compoets combed at

More information

The numerical simulation of compressible flow in a Shubin nozzle using schemes of Bean-Warming and flux vector splitting

The numerical simulation of compressible flow in a Shubin nozzle using schemes of Bean-Warming and flux vector splitting The umercal smulato of compressble flow a Shub ozzle usg schemes of Bea-Warmg ad flux vector splttg Gh. Paygaeh a, A. Hadd b,*, M. Hallaj b ad N. Garjas b a Departmet of Mechacal Egeerg, Shahd Rajaee Teacher

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

A FINITE DIFFERENCE SCHEME FOR A FLUID DYNAMIC TRAFFIC FLOW MODEL APPENDED WITH TWO-POINT BOUNDARY CONDITION

A FINITE DIFFERENCE SCHEME FOR A FLUID DYNAMIC TRAFFIC FLOW MODEL APPENDED WITH TWO-POINT BOUNDARY CONDITION GANIT J. Bagladesh Math. Soc. (ISSN 66-3694 3 ( 43-5 A FINITE DIFFERENCE SCHEME FOR A FLUID DYNAMIC TRAFFIC FLOW MODEL APPENDED WITH TWO-POINT BOUNDARY CONDITION M. O. Ga, M. M. Hossa ad L. S. Adallah

More information

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin Learzato of the Swg Equato We wll cover sectos.5.-.6 ad begg of Secto 3.3 these otes. 1. Sgle mache-fte bus case Cosder a sgle mache coected to a fte bus, as show Fg. 1 below. E y1 V=1./_ Fg. 1 The admttace

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

A third-order unconditionally positivity-preserving scheme for. production-destruction equations with applications to non-equilibrium flows.

A third-order unconditionally positivity-preserving scheme for. production-destruction equations with applications to non-equilibrium flows. A thrd-order ucodtoally postvty-preservg scheme for producto-destructo equatos wth applcatos to o-equlbrum flows Jutao Huag 1, Wefeg Zhao 2 ad Ch-Wag Shu 3 Abstract I ths paper, we exted our prevous work

More information

Stability For a stable numerical scheme, the errors in the initial condition will not grow unboundedly with time.

Stability For a stable numerical scheme, the errors in the initial condition will not grow unboundedly with time. .3.5. Stablty Aalyss Readg: Taehll et al. Secto 3.6. Stablty For a stable umercal scheme, the errors the tal codto wll ot grow uboudedly wth tme. I ths secto, we dscuss the methods for determg the stablty

More information

Manipulator Dynamics. Amirkabir University of Technology Computer Engineering & Information Technology Department

Manipulator Dynamics. Amirkabir University of Technology Computer Engineering & Information Technology Department Mapulator Dyamcs mrkabr Uversty of echology omputer Egeerg formato echology Departmet troducto obot arm dyamcs deals wth the mathematcal formulatos of the equatos of robot arm moto. hey are useful as:

More information

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos

Basic concept of reactive flows. Basic concept of reactive flows Combustion Mixing and reaction in high viscous fluid Application of Chaos Introducton to Toshhsa Ueda School of Scence for Open and Envronmental Systems Keo Unversty, Japan Combuston Mxng and reacton n hgh vscous flud Applcaton of Chaos Keo Unversty 1 Keo Unversty 2 What s reactve

More information

MA/CSSE 473 Day 27. Dynamic programming

MA/CSSE 473 Day 27. Dynamic programming MA/CSSE 473 Day 7 Dyamc Programmg Bomal Coeffcets Warshall's algorthm (Optmal BSTs) Studet questos? Dyamc programmg Used for problems wth recursve solutos ad overlappg subproblems Typcally, we save (memoze)

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Objectives of Multiple Regression

Objectives of Multiple Regression Obectves of Multple Regresso Establsh the lear equato that best predcts values of a depedet varable Y usg more tha oe eplaator varable from a large set of potetal predctors {,,... k }. Fd that subset of

More information

MOLECULAR VIBRATIONS

MOLECULAR VIBRATIONS MOLECULAR VIBRATIONS Here we wsh to vestgate molecular vbratos ad draw a smlarty betwee the theory of molecular vbratos ad Hückel theory. 1. Smple Harmoc Oscllator Recall that the eergy of a oe-dmesoal

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem Joural of Amerca Scece ;6( Cubc Nopolyomal Sple Approach to the Soluto of a Secod Order Two-Pot Boudary Value Problem W.K. Zahra, F.A. Abd El-Salam, A.A. El-Sabbagh ad Z.A. ZAk * Departmet of Egeerg athematcs

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

2.3. Quantitative Properties of Finite Difference Schemes. Reading: Tannehill et al. Sections and

2.3. Quantitative Properties of Finite Difference Schemes. Reading: Tannehill et al. Sections and .3. Quattatve Propertes of Fte Dfferece Schemes.3.1. Cosstecy, Covergece ad Stablty of F.D. schemes Readg: Taehll et al. Sectos 3.3.3 ad 3.3.4. Three mportat propertes of F.D. schemes: Cosstecy A F.D.

More information

16 Homework lecture 16

16 Homework lecture 16 Quees College, CUNY, Departmet of Computer Scece Numercal Methods CSCI 361 / 761 Fall 2018 Istructor: Dr. Sateesh Mae c Sateesh R. Mae 2018 16 Homework lecture 16 Please emal your soluto, as a fle attachmet,

More information

Statistics of Random DNA

Statistics of Random DNA Statstcs of Radom DNA Aruma Ray Aaro Youg SUNY Geeseo Bomathematcs Group The Am To obta the epectato ad varaces for the ethalpy chage ΔH, etropy chage ΔS ad the free eergy chage ΔG for a radom -mer of

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

Applying the condition for equilibrium to this equilibrium, we get (1) n i i =, r G and 5 i

Applying the condition for equilibrium to this equilibrium, we get (1) n i i =, r G and 5 i CHEMICAL EQUILIBRIA The Thermodyamc Equlbrum Costat Cosder a reversble reacto of the type 1 A 1 + 2 A 2 + W m A m + m+1 A m+1 + Assgg postve values to the stochometrc coeffcets o the rght had sde ad egatve

More information

A comparative study of flux-limiting methods for numerical simulation of gas-solid reactions with Arrhenius type reaction kinetics

A comparative study of flux-limiting methods for numerical simulation of gas-solid reactions with Arrhenius type reaction kinetics A comparatve study of flux-lmtg methods for umercal smulato of gas-sold reactos wth Arrheus type reacto ketcs Hassa Hassazadeh, Jalal Abed, ad Mehra Poolad-arvsh epartmet of Chemcal ad Petroleum Egeerg,

More information

General Method for Calculating Chemical Equilibrium Composition

General Method for Calculating Chemical Equilibrium Composition AE 6766/Setzma Sprg 004 Geeral Metod for Calculatg Cemcal Equlbrum Composto For gve tal codtos (e.g., for gve reactats, coose te speces to be cluded te products. As a example, for combusto of ydroge wt

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

On Numerical Methods for Plasma 3-T Radiation Diffusion in Two and Three Dimensions

On Numerical Methods for Plasma 3-T Radiation Diffusion in Two and Three Dimensions It'l Cof. Scetfc Computg CSC'16 83 O Numercal Methods for Plasma 3-T Radato Dffuso Two ad Three Dmesos Wllam W. Da ad Athoy J. Scaapeco Los Alamos Natoal Laboratory Los Alamos, New Mexco, USA Abstract

More information

Generalization of the Dissimilarity Measure of Fuzzy Sets

Generalization of the Dissimilarity Measure of Fuzzy Sets Iteratoal Mathematcal Forum 2 2007 o. 68 3395-3400 Geeralzato of the Dssmlarty Measure of Fuzzy Sets Faramarz Faghh Boformatcs Laboratory Naobotechology Research Ceter vesa Research Isttute CECR Tehra

More information

,...R) where r = H (1.4) + Tn + Vof. etic energy terms are: here. ZA ZB Vee = & Vnn = (1.6) (1.4) H = Te + Tn + Ven + Vee + Vnn. i A r i.

,...R) where r = H (1.4) + Tn + Vof. etic energy terms are: here. ZA ZB Vee = & Vnn = (1.6) (1.4) H = Te + Tn + Ven + Vee + Vnn. i A r i. where r H r, r (r,,...r), r, RE R (r, RR),.., R represet theelectros. electro (.3) ad uclear coor,all,.ucle ates of ad all Itutvely, ollowgdates, SE: respectvely, ad H (r, R) E (r, R), we feel t are very

More information

Finite Difference Approximations for Fractional Reaction-Diffusion Equations and the Application In PM2.5

Finite Difference Approximations for Fractional Reaction-Diffusion Equations and the Application In PM2.5 Iteratoal Symposum o Eergy Scece ad Chemcal Egeerg (ISESCE 5) Fte Dfferece Appromatos for Fractoal Reacto-Dffuso Equatos ad the Applcato I PM5 Chagpg Xe, a, Lag L,b, Zhogzha Huag,c, Jya L,d, PegLag L,e

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

[ L] υ = (3) [ L] n. Q: What are the units of K in Eq. (3)? (Why is units placed in quotations.) What is the relationship to K in Eq. (1)?

[ L] υ = (3) [ L] n. Q: What are the units of K in Eq. (3)? (Why is units placed in quotations.) What is the relationship to K in Eq. (1)? Chem 78 Spr. M. Wes Bdg Polyomals Bdg Polyomals We ve looked at three cases of lgad bdg so far: The sgle set of depedet stes (ss[]s [ ] [ ] Multple sets of depedet stes (ms[]s, or m[]ss All or oe, or two-state

More information

STA302/1001-Fall 2008 Midterm Test October 21, 2008

STA302/1001-Fall 2008 Midterm Test October 21, 2008 STA3/-Fall 8 Mdterm Test October, 8 Last Name: Frst Name: Studet Number: Erolled (Crcle oe) STA3 STA INSTRUCTIONS Tme allowed: hour 45 mutes Ads allowed: A o-programmable calculator A table of values from

More information

MMJ 1113 FINITE ELEMENT METHOD Introduction to PART I

MMJ 1113 FINITE ELEMENT METHOD Introduction to PART I MMJ FINITE EEMENT METHOD Cotut requremets Assume that the fuctos appearg uder the tegral the elemet equatos cota up to (r) th order To esure covergece N must satsf Compatblt requremet the fuctos must have

More information

Numerical Analysis Formulae Booklet

Numerical Analysis Formulae Booklet Numercal Aalyss Formulae Booklet. Iteratve Scemes for Systems of Lear Algebrac Equatos:.... Taylor Seres... 3. Fte Dfferece Approxmatos... 3 4. Egevalues ad Egevectors of Matrces.... 3 5. Vector ad Matrx

More information

A MLPG Meshless Method for Numerical Simulaton of Unsteady Incompressible Flows

A MLPG Meshless Method for Numerical Simulaton of Unsteady Incompressible Flows Joural of Appled Flud Mechacs, Vol. x, No. x, pp. x-x, 00x. Avalable ole at www.afmole.et, ISSN 735-3645. A MLPG Meshless Method for Numercal Smulato of Usteady Icompressble Flows Ira Saeedpaah Assstat

More information

Lecture 5: Interpolation. Polynomial interpolation Rational approximation

Lecture 5: Interpolation. Polynomial interpolation Rational approximation Lecture 5: Iterpolato olyomal terpolato Ratoal appromato Coeffcets of the polyomal Iterpolato: Sometme we kow the values of a fucto f for a fte set of pots. Yet we wat to evaluate f for other values perhaps

More information

Evolution Operators and Boundary Conditions for Propagation and Reflection Methods

Evolution Operators and Boundary Conditions for Propagation and Reflection Methods voluto Operators ad for Propagato ad Reflecto Methods Davd Yevck Departmet of Physcs Uversty of Waterloo Physcs 5/3/9 Collaborators Frak Schmdt ZIB Tlma Frese ZIB Uversty of Waterloo] atem l-refae Nortel

More information

Lecture 2 - What are component and system reliability and how it can be improved?

Lecture 2 - What are component and system reliability and how it can be improved? Lecture 2 - What are compoet ad system relablty ad how t ca be mproved? Relablty s a measure of the qualty of the product over the log ru. The cocept of relablty s a exteded tme perod over whch the expected

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen. .5 x 54.5 a. x 7. 786 7 b. The raked observatos are: 7.4, 7.5, 7.7, 7.8, 7.9, 8.0, 8.. Sce the sample sze 7 s odd, the meda s the (+)/ 4 th raked observato, or meda 7.8 c. The cosumer would more lkely

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set.

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set. Addtoal Decrease ad Coquer Algorthms For combatoral problems we mght eed to geerate all permutatos, combatos, or subsets of a set. Geeratg Permutatos If we have a set f elemets: { a 1, a 2, a 3, a } the

More information

3D Transient Modeling of Hall Thrusters: a Fully Fluid Approach

3D Transient Modeling of Hall Thrusters: a Fully Fluid Approach 3D Traset Modelg of Hall Thrusters: a Fully Flud Approach IEPC-2009-078 Preseted at the 31st Iteratoal Electrc Propulso Coferece, Uversty of Mchga A Arbor, Mchga USA September 20 24, 2009 De Marco Erco

More information

2.3. Quantitative Properties of Finite Difference Schemes. Reading: Tannehill et al. Sections and

2.3. Quantitative Properties of Finite Difference Schemes. Reading: Tannehill et al. Sections and .3. Quattatve Propertes of Fte Dfferece Schemes.3.. Cosstecy, Covergece ad Stablty of F.D. schemes Readg: Taehll et al. Sectos 3.3.3 ad 3.3.4. Three mportat propertes of F.D. schemes: Cosstecy A F.D. represetato

More information

Chemistry 163B Introduction to Multicomponent Systems and Partial Molar Quantities

Chemistry 163B Introduction to Multicomponent Systems and Partial Molar Quantities Chemstry 163 Itroducto to Multcompoet Systems ad Partal Molar Quattes 1 the problem of partal mmolar quattes mx: 10 moles ethaol C H 5 OH (580 ml) wth 1 mole water H O (18 ml) get (580+18)=598 ml of soluto?

More information

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis)

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis) We have covered: Selecto, Iserto, Mergesort, Bubblesort, Heapsort Next: Selecto the Qucksort The Selecto Problem - Varable Sze Decrease/Coquer (Practce wth algorthm aalyss) Cosder the problem of fdg the

More information

13. Artificial Neural Networks for Function Approximation

13. Artificial Neural Networks for Function Approximation Lecture 7 3. Artfcal eural etworks for Fucto Approxmato Motvato. A typcal cotrol desg process starts wth modelg, whch s bascally the process of costructg a mathematcal descrpto (such as a set of ODE-s)

More information

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS Course Project: Classcal Mechacs (PHY 40) Suja Dabholkar (Y430) Sul Yeshwath (Y444). Itroducto Hamltoa mechacs s geometry phase space. It deals

More information

D. VQ WITH 1ST-ORDER LOSSLESS CODING

D. VQ WITH 1ST-ORDER LOSSLESS CODING VARIABLE-RATE VQ (AKA VQ WITH ENTROPY CODING) Varable-Rate VQ = Quatzato + Lossless Varable-Legth Bary Codg A rage of optos -- from smple to complex A. Uform scalar quatzato wth varable-legth codg, oe

More information

Fractional Order Finite Difference Scheme For Soil Moisture Diffusion Equation And Its Applications

Fractional Order Finite Difference Scheme For Soil Moisture Diffusion Equation And Its Applications IOS Joural of Mathematcs (IOS-JM e-iss: 78-578. Volume 5, Issue 4 (Ja. - Feb. 3, PP -8 www.osrourals.org Fractoal Order Fte Dfferece Scheme For Sol Mosture Dffuso quato Ad Its Applcatos S.M.Jogdad, K.C.Takale,

More information

Computer Graphics. Geometric Modeling. Geometric Modeling. Page. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion

Computer Graphics. Geometric Modeling. Geometric Modeling. Page. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion Computer Graphcs Geometrc Modelg Geometrc Modelg A Example 4 Outle Objectve: Develop methods ad algorthms to mathematcally model shape of real world objects Categores: Wre-Frame Represetato Object s represeted

More information

Numerical Simulation of the Eddy System on the Basis of the Boltzmann Equation

Numerical Simulation of the Eddy System on the Basis of the Boltzmann Equation Numercal Smulato of the Eddy System o the Bass of the Boltzma Equato V.V.Arstov a, O.I.Roveskaya b a Dorodcy Computg Cetre of Russa Academy of Sceces, Moscow, Russa b Uversty of Ude, Ude, Italy Abstract.

More information

Chemistry 163B Introduction to Multicomponent Systems and Partial Molar Quantities

Chemistry 163B Introduction to Multicomponent Systems and Partial Molar Quantities Chemstry 163B Itroducto to Multcompoet Systems ad Partal Molar Quattes 1 the problem of partal mmolar quattes mx: 10 moles ethaol C H 5 OH (580 ml) wth 1 mole water H O (18 ml) get (580+18)=598 ml of soluto?

More information

PHYS Look over. examples 2, 3, 4, 6, 7, 8,9, 10 and 11. How To Make Physics Pay PHYS Look over. Examples: 1, 4, 5, 6, 7, 8, 9, 10,

PHYS Look over. examples 2, 3, 4, 6, 7, 8,9, 10 and 11. How To Make Physics Pay PHYS Look over. Examples: 1, 4, 5, 6, 7, 8, 9, 10, PHYS Look over Chapter 9 Sectos - Eamples:, 4, 5, 6, 7, 8, 9, 0, PHYS Look over Chapter 7 Sectos -8 8, 0 eamples, 3, 4, 6, 7, 8,9, 0 ad How To ake Phscs Pa We wll ow look at a wa of calculatg where the

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

Lecture Note to Rice Chapter 8

Lecture Note to Rice Chapter 8 ECON 430 HG revsed Nov 06 Lecture Note to Rce Chapter 8 Radom matrces Let Y, =,,, m, =,,, be radom varables (r.v. s). The matrx Y Y Y Y Y Y Y Y Y Y = m m m s called a radom matrx ( wth a ot m-dmesoal dstrbuto,

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

Numerical Treatment of Heat and Mass Transfer of MHD Flow of Carreau Fluid with Diffusion and Chemical Reaction through a Non Darcy Porous Medium

Numerical Treatment of Heat and Mass Transfer of MHD Flow of Carreau Fluid with Diffusion and Chemical Reaction through a Non Darcy Porous Medium The Ope Mathematcs Joural 9-5 Ope ccess Numercal Treatmet of Heat ad Mass Trasfer of MHD Flow of Carreau Flud wth Dffuso ad Chemcal Reacto through a No Darcy Porous Medum Mohamed Y. bou-zed * Departmet

More information

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD 3D Geometry for Computer Graphcs Lesso 2: PCA & SVD Last week - egedecomposto We wat to lear how the matrx A works: A 2 Last week - egedecomposto If we look at arbtrary vectors, t does t tell us much.

More information

Chapter Statistics Background of Regression Analysis

Chapter Statistics Background of Regression Analysis Chapter 06.0 Statstcs Backgroud of Regresso Aalyss After readg ths chapter, you should be able to:. revew the statstcs backgroud eeded for learg regresso, ad. kow a bref hstory of regresso. Revew of Statstcal

More information

Model Fitting, RANSAC. Jana Kosecka

Model Fitting, RANSAC. Jana Kosecka Model Fttg, RANSAC Jaa Kosecka Fttg: Issues Prevous strateges Le detecto Hough trasform Smple parametrc model, two parameters m, b m + b Votg strateg Hard to geeralze to hgher dmesos a o + a + a 2 2 +

More information

Recall MLR 5 Homskedasticity error u has the same variance given any values of the explanatory variables Var(u x1,...,xk) = 2 or E(UU ) = 2 I

Recall MLR 5 Homskedasticity error u has the same variance given any values of the explanatory variables Var(u x1,...,xk) = 2 or E(UU ) = 2 I Chapter 8 Heterosedastcty Recall MLR 5 Homsedastcty error u has the same varace gve ay values of the eplaatory varables Varu,..., = or EUU = I Suppose other GM assumptos hold but have heterosedastcty.

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Math. Aal. Appl. 365 200) 358 362 Cotets lsts avalable at SceceDrect Joural of Mathematcal Aalyss ad Applcatos www.elsever.com/locate/maa Asymptotc behavor of termedate pots the dfferetal mea value

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

Laboratory I.10 It All Adds Up

Laboratory I.10 It All Adds Up Laboratory I. It All Adds Up Goals The studet wll work wth Rema sums ad evaluate them usg Derve. The studet wll see applcatos of tegrals as accumulatos of chages. The studet wll revew curve fttg sklls.

More information

Answer key to problem set # 2 ECON 342 J. Marcelo Ochoa Spring, 2009

Answer key to problem set # 2 ECON 342 J. Marcelo Ochoa Spring, 2009 Aswer key to problem set # ECON 34 J. Marcelo Ochoa Sprg, 009 Problem. For T cosder the stadard pael data model: y t x t β + α + ǫ t a Numercally compare the fxed effect ad frst dfferece estmates. b Compare

More information

EP2200 Queueing theory and teletraffic systems. Queueing networks. Viktoria Fodor KTH EES/LCN KTH EES/LCN

EP2200 Queueing theory and teletraffic systems. Queueing networks. Viktoria Fodor KTH EES/LCN KTH EES/LCN EP2200 Queueg theory ad teletraffc systems Queueg etworks Vktora Fodor Ope ad closed queug etworks Queug etwork: etwork of queug systems E.g. data packets traversg the etwork from router to router Ope

More information

Physics 114 Exam 2 Fall Name:

Physics 114 Exam 2 Fall Name: Physcs 114 Exam Fall 015 Name: For gradg purposes (do ot wrte here): Questo 1. 1... 3. 3. Problem Aswer each of the followg questos. Pots for each questo are dcated red. Uless otherwse dcated, the amout

More information

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems Char for Network Archtectures ad Servces Prof. Carle Departmet of Computer Scece U Müche Aalyss of System Performace IN2072 Chapter 5 Aalyss of No Markov Systems Dr. Alexader Kle Prof. Dr.-Ig. Georg Carle

More information

Kernel-based Methods and Support Vector Machines

Kernel-based Methods and Support Vector Machines Kerel-based Methods ad Support Vector Maches Larr Holder CptS 570 Mache Learg School of Electrcal Egeerg ad Computer Scece Washgto State Uverst Refereces Muller et al. A Itroducto to Kerel-Based Learg

More information

to the estimation of total sensitivity indices

to the estimation of total sensitivity indices Applcato of the cotrol o varate ate techque to the estmato of total sestvty dces S KUCHERENKO B DELPUECH Imperal College Lodo (UK) skuchereko@mperalacuk B IOOSS Electrcté de Frace (Frace) S TARANTOLA Jot

More information