Big Ideas in Science: Symmetry

Size: px
Start display at page:

Download "Big Ideas in Science: Symmetry"

Transcription

1 February 7, 05 Big Ideas in Science: Symmetry Perfect Symmetry Tim Burness School of Mathematics

2

3 Symmetry in science Physics (Next week s lecture!): I I The physical laws of the universe (e.g. conservation of energy) Relativity and quantum physics Chemistry: The symmetry of molecules and crystals Biology: Bilateral symmetry in multicellular organisms Computer science: The design and implementation of algorithms: Symmetry faster, more efficient computation Psychology: Visual symmetry perception etc. etc....

4 Symmetry in mathematics: Perfect symmetry

5 Symmetry in mathematics C A x + y + z =

6 Example: The symmetry of addition Problem: Calculate the sum of the first 50 odd numbers Answer: (00 50)/ = 500 = 50 Generalisation: The sum of the first n odd numbers is (n 3) + (n ) = (n n)/ =n

7 (n 3) + (n ) = n n n 3 n n

8 Problem: Calculate Reversing the summation is not helpful, since = and so on. This broken symmetry is reflected in the complexity of the solution: Answer:

9 Example: Solving equations Problem: Find the solutions to the equation x =0 y 4 y = x x Solutions: x =0

10 The equation x =0 y 3 y = x 3 3 x Solutions: x =and x =

11 The equation x =0 y y = x 3 3 x 3 Solutions: x = p and x = p

12 The equation x +=0 y 5 y = x x By symmetry, we expect to find two solutions, but what are they?

13 p To solve the equation x +=0we need to invent a new number i = p such that i =, so i +=( i) +=0 Solutions: x = i and x = i Note: This is similar to how we solve the equation x +=0, by inventing the number. Negative numbers were not widely accepted until the 6th century!

14 Complex numbers We now have a new number system, the complex numbers C = {a + bi : a and b are real numbers} e.g. 3i and p + i are complex numbers. We add and multiply in a natural way, remembering i =, e.g. ( 3i)+( 4+7i) =( 4) + ( 3i +7i) = +4i ( 3i) ( 4+7i) =( 4) + ( 7i)+( 3i 4) + ( 3i 7i) = 8 + 4i + i i =( 8 + ) + (4i + i) = 3 + 6i

15 The complex plane We can associate the complex number a + bi with the point in the plane with coordinates (a, b). Conversely, any point in the plane corresponds to a complex number. Im 3 3+i 3 Re

16 Applications Complex numbers have fundamental applications throughout mathematics, science, engineering and technology. For example: Quantum physics Relativity Fluid dynamics Electrical engineering Digital signal processing etc. etc.

17 The quadratic formula We can use complex numbers to solve any quadratic equation. Consider ax + bx + c =0 where a, b and c are numbers (with a 6= 0). The solutions are given by the familiar quadratic formula: x = b ± p b 4ac a Example: x 0x + 40 = 0: a =, b = 0, c = 40 x = 0 ± p =5± p 60 = 5 ± p 5 = 5 ± p 5i

18 Symmetry in the solutions Im 4 5+ p 5i Re p 5i

19 Girolamo Cardano

20 Higher degree equations Cardano also studied extensions of the quadratic formula to cubic and quartic equations. The formulae are complicated(!) e.g. x = + 3 v b u 3a + t 3 b 3 7a 3 v u t b 3 7a 3 bc a + d s b 3 + a 4 7a 3 bc a + d s b 3 a 4 7a 3 bc a + d + c a 7 a bc a + d + c a 7 a b 3 3a b 3 3a is a solution of the cubic equation ax 3 + bx + cx + d =0 Problem: Is there a similar formula for solutions of the quintic equation ax 5 + bx 4 + cx 3 + dx + ex + f =0

21 A mathematical theory of symmetry By studying the symmetries of the solutions, Évariste Galois showed that there is no such formula for the quintic equation! By encoding the symmetries in an algebraic object called a group, this incredible breakthrough marked the birth of a mathematical theory of symmetry.

22 Groups and symmetry: An example!!!. Fold paper in half long-ways, then open it out flat. Turn bottom left corner up to touch the fold line, making a sharp point with the bottom right corner, and fold 3. Fold the two red edges together, and then tuck in the top corner

23 4. Label the corners,,3 on both sides, so each corner has the same label front and back 5. Imagine the outline of an equilateral triangle on your desk: 6. Check that there are six different ways (keeping track of the corners) to place your paper triangle onto this outline

24 The six configurations

25 The symmetries of an equilateral triangle I I Identity symmetry 3 3 C A 3 3 C A 3 3 Clockwise rotation Anticlockwise rotation

26 The symmetries of an equilateral triangle T T Top corner flip 3 3 L R 3 3 L R 3 3 Left corner flip Right corner flip

27 Combining symmetries We can multiply two symmetries by performing one after the other, e.g. 3 T 3 A 3 so 3 T?A 3 and the product T?A is itself a symmetry. More precisely, T?A = R

28 The symmetry group? I C A T L R I I C A T L R C C A I R T L A A I C L R T T T L R I C A L L R T A I C R R T L C A I The symmetries of an equilateral triangle are encoded by its symmetry group ({I, C, A, T, L, R},?) Big idea: We can study and compare mathematical objects by investigating the (algebraic) properties of their corresponding symmetry groups.

29 Properties? I C A T L R I I C A T L R C C A I R T L A A I C L R T T T L R I C A L L R T A I C R R T L C A I I?X = X?I = X for any symmetry X Each symmetry occurs exactly once in each row and column In particular, each symmetry has an inverse, e.g. C?A = A?C = I, so A is the inverse of C Order matters, e.g. C?T 6= T?C

30 Group Theory The concept of a symmetry group can be generalised, leading to the notion of an abstract group, which are fundamental objects in Pure Mathematics. Groups arise naturally in many different contexts, e.g. (Z, +) is a group, where Z = {..., 3,,, 0,,, 3,...} (C, +) is a group ({,,i, i}, ) is a group. Here is the group table: i i i i i i i i i i i i Groups of matrices, groups of functions... etc. etc.

31 Simple groups Let G = {I, C, A, T, L, R} be the symmetry group of an equilateral triangle.? I C A T L R I I C A T L R C C A I R T L A A I C L R T T T L R I C A L L R T A I C R R T L C A I Consider the subgroups H = {I, C, A} and K = {I, T}. Every element of G is of the form X?Y, where X is in H and Y is in K, so G = H?K is a factorisation of G.

32 The atoms of symmetry We have factorised G = H?Kas a product of H and K. Here H and K are special because they cannot be factorised any further. Groups like this are called simple groups they play the role of prime numbers in group theory. Key fact: Every group can be factorised as a product of simple groups, so the simple groups are the basic building blocks of all groups. Big idea: Simple groups encode the atoms of symmetry. Big problem: Find all the simple groups!

33 The Classification Theorem The Classification of Finite Simple Groups is one of the most amazing achievements in the history of mathematics! Theorem. Any finite simple group is one of the following:. A group with a prime number of elements. A group of alternating or Lie type 3. One of 6 sporadic groups This problem occupied a global team of mathematicians for several decades the theorem was announced in 980 The proof is incredibly complicated it is over 0000 pages long! The theorem provides us with a periodic table of groups, which gives a complete description of the atoms of symmetry

34 PSLn+(q), Ln+(q) q n(n+)/ n i+ (q ) (n+,q ) i= F but is the (index ) commutator subgroup of It is usually given honorary Lie type status. The groups starting on the second row are the classical groups. The sporadic suzuki group is unrelated to the families of Suzuki groups. Copyright c 0 Ivan Andrus q 36 (q )(q9 )(q8 ) (q6 )(q5 )(q ) (3, q ) F q 63 9 i (, q ) (q ) i= i6=, q 0 30 (q )(q4 ) 0 (q )(q8 )(q4 ) (q )(q8 )(q ) in the upper left are other names by which they may be known. For specific non-sporadic groups these are used to indicate isomorphims. All such isomorphisms appear on the table except the family Bn( m ) = Cn( m ). with the following exceptions: Bn(q) and Cn(q) for q odd, n > ; A8 = A3() and A(4) of order q 4 (q )(q8 ) 6 (q )(q ) q 6 6 (q )(q ) q (q 8 + q 4 + ) 6 (q )(q ) q 36 (q )(q9 + )(q 8 ) (q 6 )(q5 + )(q ) (3, q + ) 3 4 q (q + )(q ) q (q 6 + )(q 4 ) (q 3 + )(q ) q 3 (q 3 + )(q ) On+(q), Wn+(q) q n n i (q ) (, q ) i= q n n i (q ) (, q ) i= q n(n ) (q n ) n i (q ) (4,q n ) q n(n ) (q n n +) i (q ) (4,q n +) i= q n(n+)/ n+ (q i ( (n+,q+) )i ) i= F7, HHM, HTH The Periodic Table Of Finite Simple Groups 0, C, Z Dynkin Diagrams of Simple Lie Algebras An 3 n F4 i C A(4), A(5) A5 A() A(7) Bn h 3 n Dn 3 4 n G i A3(4) B(3) C3(3) D4() D 4 ( ) G() 0 A (9) C3 60 A(9), B() 0 A6 68 G(3) 0 A(8) Cn i 3 n E6,7, B(4) C3(5) D4(3) D 4 (3 ) A (6) 3 C Tits A7 A() E6() E7() E8() F4() G(3) 3D 4 ( 3 ) E 6 ( ) B ( 3 ) F 4 () 0 G (3 3 ) B3() C4(3) D5() D 5 ( ) A (5) C A3() A8 A(3) E6(3) E7(3) E8(3) F4(3) G(4) 3D 4 (3 3 ) E 6 (3 ) B ( 5 ) F 4 ( 3 ) G (3 5 ) B(5) C3(7) D4(5) D 4 (4 ) A 3 (9) C A9 A(7) E6(4) E7(4) E8(4) F4(4) G(5) 3D 4 (4 3 ) E 6 (4 ) B ( 7 ) F 4 ( 5 ) G (3 7 ) B(7) C3(9) D5(3) D 4 (5 ) A (64) C PSpn(q) O + n (q) O n (q) PSUn+(q) Zp An An(q) E6(q) E7(q) E8(q) F4(q) G(q) 3D 4 (q 3 ) E 6 (q ) B( n+ ) F 4( n+ ) G(3 n+ ) Bn(q) Cn(q) Dn(q) D n(q ) A n(q ) Cp n! i= p Alternating Groups Classical Chevalley Groups Chevalley Groups Classical Steinberg Groups Steinberg Groups Suzuki Groups Ree Groups and Tits Group Sporadic Groups Cyclic Groups The Tits group 4 ()0 is not a group of Lie type, 4 (). Alternates Symbol Order For sporadic groups and families, alternate names Finite simple groups are determined by their order M M Sz O NS, O S Suz O N M M3 M Co3 Co Co J(), J() J F5, D HN HJ J LyS Ly HJM J F3, E Th J4 HS M() M(3) Fi Fi McL He F3+, M(4) 0 F Fi4 0 B Ru F, M M

35 Summary Symmetry is a central idea in mathematics, which arises in many different ways Symmetries can be exploited to find simple and elegant solutions Seeking symmetry has led to many fundamental breakthroughs that have revolutionised science and technology Mathematicians have developed the powerful language of group theory to study symmetry in all its forms, with many far reaching applications

36 Further reading Podcast series by Ian Stewart: Video by Marcus du Sautoy: du sautoy symmetry reality s riddle.html Video by Tim Burness and John Conway: Ian Stewart, Why Beauty is Truth: The History of Symmetry, 008 Ian Stewart, Symmetry: A Very Short Introduction, 03 Marcus du Sautoy, Finding Moonshine: A Mathematician s Journey Through Symmetry, 009

Lecture 5.7: Finite simple groups

Lecture 5.7: Finite simple groups Lecture 5.7: Finite simple groups Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 410, Modern Algebra M. Macauley (Clemson) Lecture 5.7:

More information

Neuigkeiten über Lie-Algebren

Neuigkeiten über Lie-Algebren 1 PSLn+1(q), Ln+1(q) q n(n+1)/ n (q i+1 1) (n+1,q 1) i=1 The Tits group F4 () is not a group of Lie type, but is the (index ) commutator subgroup of F4 (). It is usually given honorary Lie type status.

More information

Symmetry Anyone? Willy Hereman. After Dinner Talk SANUM 2008 Conference Thursday, March 27, 2007, 9:00p.m.

Symmetry Anyone? Willy Hereman. After Dinner Talk SANUM 2008 Conference Thursday, March 27, 2007, 9:00p.m. Symmetry Anyone? Willy Hereman After Dinner Talk SANUM 2008 Conference Thursday, March 27, 2007, 9:00pm Tribute to Organizers Karin Hunter Karin Hunter Andre Weideman Karin Hunter Andre Weideman Ben Herbst

More information

SYMMETRY AND THE MONSTER The Classification of Finite Simple Groups

SYMMETRY AND THE MONSTER The Classification of Finite Simple Groups SYMMETRY AND THE MONSTER The Classification of Finite Simple Groups Freshman Seminar University of California, Irvine Bernard Russo University of California, Irvine Spring 2015 Bernard Russo (UCI) SYMMETRY

More information

Latin squares. Clock arithmetic. Modular arithmetic. Binary operations 18/09/2013. Members only an introduction to groups

Latin squares. Clock arithmetic. Modular arithmetic. Binary operations 18/09/2013. Members only an introduction to groups Members only an introduction to groups Sue de Pomerai MEI (FMSP Deputy rogramme Leader) 1 2 4 2 4 1 4 1 2 4 1 2 Latin squares A Latin square is an n n table filled with n different symbols in such a way

More information

1.1 The program of Lie

1.1 The program of Lie 1 Introduction Lie groups were initially introduced as a tool to solve or simplify ordinary and partial differential equations. The model for this application was Galois use of finite groups to solve algebraic

More information

The Jordan Hölder Theorem

The Jordan Hölder Theorem Chapter 4 The Jordan Hölder Theorem Definition 4.1 Let G be a group. A subnormal series of G is a finite chain of subgroups G = G 0 >G 1 >G 2 > >G n = 1 such that G i+1 is a normal subgroup of G i for

More information

Topic 7: Polynomials. Introduction to Polynomials. Table of Contents. Vocab. Degree of a Polynomial. Vocab. A. 11x 7 + 3x 3

Topic 7: Polynomials. Introduction to Polynomials. Table of Contents. Vocab. Degree of a Polynomial. Vocab. A. 11x 7 + 3x 3 Topic 7: Polynomials Table of Contents 1. Introduction to Polynomials. Adding & Subtracting Polynomials 3. Multiplying Polynomials 4. Special Products of Binomials 5. Factoring Polynomials 6. Factoring

More information

Quadratic equations: complex solutions

Quadratic equations: complex solutions October 28 (H), November 1 (A), 2016 Complex number system page 1 Quadratic equations: complex solutions An issue that can arise when solving a quadratic equation by the Quadratic Formula is the need to

More information

Permutation Group Algorithms

Permutation Group Algorithms Permutation Group Algorithms 2016 1 / 32 Permutation Group Algorithms Zoltán Halasi Eötvös Loránd University 2016 More group theory Permutation Group Algorithms 2016 2 / 32 Going into deeper to the structure

More information

Algebra III Chapter 2 Note Packet. Section 2.1: Polynomial Functions

Algebra III Chapter 2 Note Packet. Section 2.1: Polynomial Functions Algebra III Chapter 2 Note Packet Name Essential Question: Section 2.1: Polynomial Functions Polynomials -Have nonnegative exponents -Variables ONLY in -General Form n ax + a x +... + ax + ax+ a n n 1

More information

MATH 433 Applied Algebra Lecture 22: Review for Exam 2.

MATH 433 Applied Algebra Lecture 22: Review for Exam 2. MATH 433 Applied Algebra Lecture 22: Review for Exam 2. Topics for Exam 2 Permutations Cycles, transpositions Cycle decomposition of a permutation Order of a permutation Sign of a permutation Symmetric

More information

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3].

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3]. Appendix : A Very Brief Linear ALgebra Review Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics Very often in this course we study the shapes

More information

Polynomial Functions

Polynomial Functions Polynomial Functions Equations and Graphs Characteristics The Factor Theorem The Remainder Theorem http://www.purplemath.com/modules/polyends5.htm 1 A cross-section of a honeycomb has a pattern with one

More information

Ma/CS 6a Class 18: Groups

Ma/CS 6a Class 18: Groups Ma/CS 6a Class 18: Groups = Rotation 90 Vertical flip Diagonal flip 2 By Adam Sheffer A Group A group consists of a set G and a binary operation, satisfying the following. Closure. For every x, y G, we

More information

How large can a finite group of matrices be? Blundon Lecture UNB Fredericton 10/13/2007

How large can a finite group of matrices be? Blundon Lecture UNB Fredericton 10/13/2007 GoBack How large can a finite group of matrices be? Blundon Lecture UNB Fredericton 10/13/2007 Martin Lorenz Temple University, Philadelphia Overview Groups... and some of their uses Martin Lorenz How

More information

Section A.6. Solving Equations. Math Precalculus I. Solving Equations Section A.6

Section A.6. Solving Equations. Math Precalculus I. Solving Equations Section A.6 Section A.6 Solving Equations Math 1051 - Precalculus I A.6 Solving Equations Simplify 1 2x 6 x + 2 x 2 9 A.6 Solving Equations Simplify 1 2x 6 x + 2 x 2 9 Factor: 2x 6 = 2(x 3) x 2 9 = (x 3)(x + 3) LCD

More information

A Sampling of Symmetry and Solvability. Sarah Witherspoon Professor of Mathematics Texas A&M University

A Sampling of Symmetry and Solvability. Sarah Witherspoon Professor of Mathematics Texas A&M University A Sampling of Symmetry and Solvability Sarah Witherspoon Professor of Mathematics Texas A&M University Polynomial Equations Examples: x 9 2x 4 5 = 0, x 2 y 3 3y 2 = 0, x 2 + y 2 + z 2 = 1 Solving polynomial

More information

17 More Groups, Lagrange s Theorem and Direct Products

17 More Groups, Lagrange s Theorem and Direct Products 7 More Groups, Lagrange s Theorem and Direct Products We consider several ways to produce groups. 7. The Dihedral Group The dihedral group D n is a nonabelian group. This is the set of symmetries of a

More information

11-6. Solving All Polynomial Equations. Vocabulary. What Types of Numbers Are Needed to Solve Polynomial Equations? Lesson

11-6. Solving All Polynomial Equations. Vocabulary. What Types of Numbers Are Needed to Solve Polynomial Equations? Lesson Chapter 11 Lesson 11-6 Solving All Polynomial Equations Vocabulary double root, root of multiplicity 2 multiplicity BIG IDEA Every polynomial equation of degree n 1 has exactly n solutions, counting multiplicities.

More information

2.1 Quadratic Functions

2.1 Quadratic Functions Date:.1 Quadratic Functions Precalculus Notes: Unit Polynomial Functions Objective: The student will sketch the graph of a quadratic equation. The student will write the equation of a quadratic function.

More information

THERE IS NO Sz(8) IN THE MONSTER

THERE IS NO Sz(8) IN THE MONSTER THERE IS NO Sz(8) IN THE MONSTER ROBERT A. WILSON Abstract. As a contribution to an eventual solution of the problem of the determination of the maximal subgroups of the Monster we show that there is no

More information

APPENDIX : PARTIAL FRACTIONS

APPENDIX : PARTIAL FRACTIONS APPENDIX : PARTIAL FRACTIONS Appendix : Partial Fractions Given the expression x 2 and asked to find its integral, x + you can use work from Section. to give x 2 =ln( x 2) ln( x + )+c x + = ln k x 2 x+

More information

Symmetries and Polynomials

Symmetries and Polynomials Symmetries and Polynomials Aaron Landesman and Apurva Nakade June 30, 2018 Introduction In this class we ll learn how to solve a cubic. We ll also sketch how to solve a quartic. We ll explore the connections

More information

3.9 My Irrational and Imaginary Friends A Solidify Understanding Task

3.9 My Irrational and Imaginary Friends A Solidify Understanding Task 3.9 My Irrational and Imaginary Friends A Solidify Understanding Task Part 1: Irrational numbers Find the perimeter of each of the following figures. Express your answer as simply as possible. 2013 www.flickr.com/photos/lel4nd

More information

Rings. Chapter 1. Definition 1.2. A commutative ring R is a ring in which multiplication is commutative. That is, ab = ba for all a, b R.

Rings. Chapter 1. Definition 1.2. A commutative ring R is a ring in which multiplication is commutative. That is, ab = ba for all a, b R. Chapter 1 Rings We have spent the term studying groups. A group is a set with a binary operation that satisfies certain properties. But many algebraic structures such as R, Z, and Z n come with two binary

More information

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010 A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 00 Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics

More information

Twitter: @Owen134866 www.mathsfreeresourcelibrary.com Prior Knowledge Check 1) Simplify: a) 3x 2 5x 5 b) 5x3 y 2 15x 7 2) Factorise: a) x 2 2x 24 b) 3x 2 17x + 20 15x 2 y 3 3) Use long division to calculate:

More information

1.3 Distance and Midpoint Formulas

1.3 Distance and Midpoint Formulas Graduate Teacher Department of Mathematics San Diego State University Dynamical Systems Program August 29, 2011 In mathematics, a theorem is a statement that has been proven on the basis of previously

More information

PERFECT COMMUTING GRAPHS. 1. Introduction

PERFECT COMMUTING GRAPHS. 1. Introduction PERFECT COMMUTING GRAPHS JOHN R. BRITNELL AND NICK GILL Abstract. We classify the finite quasisimple groups whose commuting graph is perfect and we give a general structure theorem for finite groups whose

More information

1 The Galois Group of a Quadratic

1 The Galois Group of a Quadratic Algebra Prelim Notes The Galois Group of a Polynomial Jason B. Hill University of Colorado at Boulder Throughout this set of notes, K will be the desired base field (usually Q or a finite field) and F

More information

A2 HW Imaginary Numbers

A2 HW Imaginary Numbers Name: A2 HW Imaginary Numbers Rewrite the following in terms of i and in simplest form: 1) 100 2) 289 3) 15 4) 4 81 5) 5 12 6) -8 72 Rewrite the following as a radical: 7) 12i 8) 20i Solve for x in simplest

More information

Math 249B. Tits systems

Math 249B. Tits systems Math 249B. Tits systems 1. Introduction Let (G, T ) be a split connected reductive group over a field k, and Φ = Φ(G, T ). Fix a positive system of roots Φ + Φ, and let B be the unique Borel k-subgroup

More information

Summer Induction Work

Summer Induction Work Further Maths Summer Induction Work Deadline: Friday 7th September The Hazeley Academy Further Mathematics OCR (MEI): Further Core Pure, Mechanics, Statistics Objectives: To reinforce understanding of

More information

GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2)

GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2) GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2) KEITH CONRAD We will describe a procedure for figuring out the Galois groups of separable irreducible polynomials in degrees 3 and 4 over

More information

Twitter: @Owen134866 www.mathsfreeresourcelibrary.com Prior Knowledge Check 1) Factorise each polynomial: a) x 2 6x + 5 b) x 2 16 c) 9x 2 25 2) Simplify the following algebraic fractions fully: a) x 2

More information

Computations in inverse Galois theory

Computations in inverse Galois theory Computations in inverse Galois theory Johan Bosman Supervisor: Bas Edixhoven Nederlands Mathematisch Congres April 13, 2007, Leiden The quadratic polynomial has zeroes Galois theory Motivating examples

More information

Galois fields/1. (M3) There is an element 1 (not equal to 0) such that a 1 = a for all a.

Galois fields/1. (M3) There is an element 1 (not equal to 0) such that a 1 = a for all a. Galois fields 1 Fields A field is an algebraic structure in which the operations of addition, subtraction, multiplication, and division (except by zero) can be performed, and satisfy the usual rules. More

More information

Edexcel GCE Further Pure Mathematics (FP1) Required Knowledge Information Sheet. Daniel Hammocks

Edexcel GCE Further Pure Mathematics (FP1) Required Knowledge Information Sheet. Daniel Hammocks Edexcel GCE Further Pure Mathematics (FP1) Required Knowledge Information Sheet FP1 Formulae Given in Mathematical Formulae and Statistical Tables Booklet Summations o =1 2 = 1 + 12 + 1 6 o =1 3 = 1 64

More information

Matrix operations Linear Algebra with Computer Science Application

Matrix operations Linear Algebra with Computer Science Application Linear Algebra with Computer Science Application February 14, 2018 1 Matrix operations 11 Matrix operations If A is an m n matrix that is, a matrix with m rows and n columns then the scalar entry in the

More information

2. The center of G, denoted by Z(G), is the abelian subgroup which commutes with every elements of G. The center always contains the unit element e.

2. The center of G, denoted by Z(G), is the abelian subgroup which commutes with every elements of G. The center always contains the unit element e. Chapter 2 Group Structure To be able to use groups in physics, or mathematics, we need to know what are the important features distinguishing one group from another. This is under the heading of group

More information

ax 2 + bx + c = 0 What about any cubic equation?

ax 2 + bx + c = 0 What about any cubic equation? (Trying to) solve Higher order polynomial euations. Some history: The uadratic formula (Dating back to antiuity) allows us to solve any uadratic euation. What about any cubic euation? ax 2 + bx + c = 0

More information

GALOIS THEORY : LECTURE 4 LEO GOLDMAKHER

GALOIS THEORY : LECTURE 4 LEO GOLDMAKHER GALOIS THEORY : LECTURE 4 LEO GOLDMAKHER 1. A BRIEF REVIEW OF S n The rest of the lecture relies on familiarity with the symmetric group of n elements, denoted S n (this is the group of all permutations

More information

Sporadic and related groups. Lecture 15 Matrix representations of sporadic groups.

Sporadic and related groups. Lecture 15 Matrix representations of sporadic groups. Sporadic and related groups. Lecture 15 Matrix representations of sporadic groups. Section 1 fields of characteristic zero Several of the sporadic groups were contstructed as matrix groups in characteristic

More information

Mathematics 1 Lecture Notes Chapter 1 Algebra Review

Mathematics 1 Lecture Notes Chapter 1 Algebra Review Mathematics 1 Lecture Notes Chapter 1 Algebra Review c Trinity College 1 A note to the students from the lecturer: This course will be moving rather quickly, and it will be in your own best interests to

More information

A quadratic expression is a mathematical expression that can be written in the form 2

A quadratic expression is a mathematical expression that can be written in the form 2 118 CHAPTER Algebra.6 FACTORING AND THE QUADRATIC EQUATION Textbook Reference Section 5. CLAST OBJECTIVES Factor a quadratic expression Find the roots of a quadratic equation A quadratic expression is

More information

AS1051: Mathematics. 0. Introduction

AS1051: Mathematics. 0. Introduction AS1051: Mathematics 0 Introduction The aim of this course is to review the basic mathematics which you have already learnt during A-level, and then develop it further You should find it almost entirely

More information

Algebra 2 Early 1 st Quarter

Algebra 2 Early 1 st Quarter Algebra 2 Early 1 st Quarter CCSS Domain Cluster A.9-12 CED.4 A.9-12. REI.3 Creating Equations Reasoning with Equations Inequalities Create equations that describe numbers or relationships. Solve equations

More information

MAIDSTONE GRAMMAR SCHOOL FOR GIRLS

MAIDSTONE GRAMMAR SCHOOL FOR GIRLS MAIDSTONE GRAMMAR SCHOOL FOR GIRLS King Edward VI High School DEPARTMENT OF MATHEMATICS Introduction to A level Maths INDUCTION BOOKLET CONTENTS Reading List... 3 Section 1: FRACTIONS... 4 Section : EXPANDING...

More information

Quartic Equation. By CH vd Westhuizen A unique Solution assuming Complex roots. Ax^4 + Bx^3 + Cx^2 + Dx + E = 0

Quartic Equation. By CH vd Westhuizen A unique Solution assuming Complex roots. Ax^4 + Bx^3 + Cx^2 + Dx + E = 0 Quartic Equation By CH vd Westhuizen A unique Solution assuming Complex roots The general Quartic is given by Ax^4 + Bx^3 + Cx^ + Dx + E = 0 As in the third order polynomial we are first going to reduce

More information

Mark Scheme (Results) January Pearson Edexcel International A Level in Further Pure Mathematics 1 (WFM01/01)

Mark Scheme (Results) January Pearson Edexcel International A Level in Further Pure Mathematics 1 (WFM01/01) Mark Scheme (Results) January 016 Pearson Edexcel International A Level in Further Pure Mathematics 1 (WFM01/01) Edexcel and BTEC Qualifications Edexcel and BTEC qualifications are awarded by Pearson,

More information

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch Definitions, Theorems and Exercises Abstract Algebra Math 332 Ethan D. Bloch December 26, 2013 ii Contents 1 Binary Operations 3 1.1 Binary Operations............................... 4 1.2 Isomorphic Binary

More information

ACT MATH MUST-KNOWS Pre-Algebra and Elementary Algebra: 24 questions

ACT MATH MUST-KNOWS Pre-Algebra and Elementary Algebra: 24 questions Pre-Algebra and Elementary Algebra: 24 questions Basic operations using whole numbers, integers, fractions, decimals and percents Natural (Counting) Numbers: 1, 2, 3 Whole Numbers: 0, 1, 2, 3 Integers:

More information

Section 3.1 Quadratic Functions

Section 3.1 Quadratic Functions Chapter 3 Lecture Notes Page 1 of 72 Section 3.1 Quadratic Functions Objectives: Compare two different forms of writing a quadratic function Find the equation of a quadratic function (given points) Application

More information

Solving Quadratic Equations

Solving Quadratic Equations Concepts: Solving Quadratic Equations, Completing the Square, The Quadratic Formula, Sketching Quadratics Solving Quadratic Equations Completing the Square ax + bx + c = a x + ba ) x + c Factor so the

More information

Algebraic. techniques1

Algebraic. techniques1 techniques Algebraic An electrician, a bank worker, a plumber and so on all have tools of their trade. Without these tools, and a good working knowledge of how to use them, it would be impossible for them

More information

Points of Finite Order

Points of Finite Order Points of Finite Order Alex Tao 23 June 2008 1 Points of Order Two and Three If G is a group with respect to multiplication and g is an element of G then the order of g is the minimum positive integer

More information

Galois theory - Wikipedia, the free encyclopedia

Galois theory - Wikipedia, the free encyclopedia Page 1 of 8 Galois theory From Wikipedia, the free encyclopedia In mathematics, more specifically in abstract algebra, Galois theory, named after Évariste Galois, provides a connection between field theory

More information

SCIE 4101 Fall Math Review Packet #2 Notes Patterns and Algebra I Topics

SCIE 4101 Fall Math Review Packet #2 Notes Patterns and Algebra I Topics SCIE 4101 Fall 014 Math Review Packet # Notes Patterns and Algebra I Topics I consider Algebra and algebraic thought to be the heart of mathematics everything else before that is arithmetic. The first

More information

1 Solving equations 1.1 Kick off with CAS 1. Polynomials 1. Trigonometric symmetry properties 1.4 Trigonometric equations and general solutions 1.5 Literal and simultaneous equations 1.6 Review 1.1 Kick

More information

1.1 Most problems in physics cannot be solved exactly.

1.1 Most problems in physics cannot be solved exactly. 1 Introduction 1.1 Most problems in physics cannot be solved exactly. The few that that can be are solved by exploiting symmetries. The original example is the Kepler problem of a planet moving around

More information

RECOLLECTION THE BRAUER CHARACTER TABLE

RECOLLECTION THE BRAUER CHARACTER TABLE RECOLLECTION REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE LECTURE III: REPRESENTATIONS IN NON-DEFINING CHARACTERISTICS AIM Classify all irreducible representations of all finite simple groups and related

More information

Fairfield Public Schools

Fairfield Public Schools Mathematics Fairfield Public Schools PRE-CALCULUS 40 Pre-Calculus 40 BOE Approved 04/08/2014 1 PRE-CALCULUS 40 Critical Areas of Focus Pre-calculus combines the trigonometric, geometric, and algebraic

More information

Symmetry. Professor Robert A. Wilson. 22nd July Queen Mary, University of London

Symmetry. Professor Robert A. Wilson. 22nd July Queen Mary, University of London Symmetry Professor Robert A. Wilson Queen Mary, University of London 22nd July 2008 INTRODUCTION What do mathematicians do? A mathematician is a machine for turning coffee into theorems P. Erdös What do

More information

Math 312/ AMS 351 (Fall 17) Sample Questions for Final

Math 312/ AMS 351 (Fall 17) Sample Questions for Final Math 312/ AMS 351 (Fall 17) Sample Questions for Final 1. Solve the system of equations 2x 1 mod 3 x 2 mod 7 x 7 mod 8 First note that the inverse of 2 is 2 mod 3. Thus, the first equation becomes (multiply

More information

Building Blocks of Symmetry

Building Blocks of Symmetry Building Blocks of Symmetry Attila Egri-Nagy Eszterházy Károly College Eger, Hungary August 18, 2011 Symmetry is a concept used in many different contexts from art to science. In mathematics symmetry is

More information

Lecture 11 Date:

Lecture 11 Date: Lecture 11 Date: 11.09.014 Scattering Parameters and Circuit Symmetry Even-mode and Odd-mode Analysis Generalized S-Parameters Example T-Parameters Q: OK, but how can we determine the scattering matrix

More information

Solving Quadratic Equations by Formula

Solving Quadratic Equations by Formula Algebra Unit: 05 Lesson: 0 Complex Numbers All the quadratic equations solved to this point have had two real solutions or roots. In some cases, solutions involved a double root, but there were always

More information

Chapter 8B - Trigonometric Functions (the first part)

Chapter 8B - Trigonometric Functions (the first part) Fry Texas A&M University! Spring 2016! Math 150 Notes! Section 8B-I! Page 79 Chapter 8B - Trigonometric Functions (the first part) Recall from geometry that if 2 corresponding triangles have 2 angles of

More information

Reference Material /Formulas for Pre-Calculus CP/ H Summer Packet

Reference Material /Formulas for Pre-Calculus CP/ H Summer Packet Reference Material /Formulas for Pre-Calculus CP/ H Summer Packet Week # 1 Order of Operations Step 1 Evaluate expressions inside grouping symbols. Order of Step 2 Evaluate all powers. Operations Step

More information

Individual Round Arithmetic

Individual Round Arithmetic Individual Round Arithmetic (1) What is two-thirds times three-quarters? 1/2 (2) True or False: If the average of twenty exam scores is 75.65% (and no one actually had a score of 75.65%) there must be

More information

Èvariste Galois and the resolution of equations by radicals

Èvariste Galois and the resolution of equations by radicals Èvariste Galois and the resolution of equations by radicals A Math Club Event Department of Mathematical Sciences Florida Atlantic University Boca Raton, FL 33431 November 9, 2012 Outline 1 The Problem

More information

MT5836 Galois Theory MRQ

MT5836 Galois Theory MRQ MT5836 Galois Theory MRQ May 3, 2017 Contents Introduction 3 Structure of the lecture course............................... 4 Recommended texts..................................... 4 1 Rings, Fields and

More information

5 Group theory. 5.1 Binary operations

5 Group theory. 5.1 Binary operations 5 Group theory This section is an introduction to abstract algebra. This is a very useful and important subject for those of you who will continue to study pure mathematics. 5.1 Binary operations 5.1.1

More information

6 SQUARES AND SQUARE ROOTS

6 SQUARES AND SQUARE ROOTS 6 SQUARES AND SQUARE ROOTS Exercise 6.1 Q.1. What will be the unit digit of the squares of the following numbers? (i) 81 (ii) 272 (iii) 799 (iv) 3853 (v) 1234 (vi) 26387 (vii) 52698 (viii) 99880 (ix) 12796

More information

1. Definition of a Polynomial

1. Definition of a Polynomial 1. Definition of a Polynomial What is a polynomial? A polynomial P(x) is an algebraic expression of the form Degree P(x) = a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 3 x 3 + a 2 x 2 + a 1 x + a 0 Leading

More information

Algebra I. Course Outline

Algebra I. Course Outline Algebra I Course Outline I. The Language of Algebra A. Variables and Expressions B. Order of Operations C. Open Sentences D. Identity and Equality Properties E. The Distributive Property F. Commutative

More information

SCIE 4101 Spring Math Review Packet #2 Notes Algebra I

SCIE 4101 Spring Math Review Packet #2 Notes Algebra I SCIE 4101 Spring 011 Math Review Packet # Notes Algebra I I consider Algebra and algebraic thought to be the heart of mathematics everything else before that is arithmetic. The first characteristic of

More information

The symmetric group R + :1! 2! 3! 1. R :1! 3! 2! 1.

The symmetric group R + :1! 2! 3! 1. R :1! 3! 2! 1. Chapter 2 The symmetric group Consider the equilateral triangle. 3 1 2 We want to describe all the symmetries, which are the motions (both rotations and flips) which takes the triangle to itself. First

More information

UNCORRECTED SAMPLE PAGES. Extension 1. The binomial expansion and. Digital resources for this chapter

UNCORRECTED SAMPLE PAGES. Extension 1. The binomial expansion and. Digital resources for this chapter 15 Pascal s In Chapter 10 we discussed the factoring of a polynomial into irreducible factors, so that it could be written in a form such as P(x) = (x 4) 2 (x + 1) 3 (x 2 + x + 1). In this chapter we will

More information

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line?

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line? 1 How many natural numbers are between 1.5 and 4.5 on the number line? 2 How many composite numbers are between 7 and 13 on the number line? 3 How many prime numbers are between 7 and 20 on the number

More information

Unit 1 Matrices Notes Packet Period: Matrices

Unit 1 Matrices Notes Packet Period: Matrices Algebra 2/Trig Unit 1 Matrices Notes Packet Name: Period: # Matrices (1) Page 203 204 #11 35 Odd (2) Page 203 204 #12 36 Even (3) Page 211 212 #4 6, 17 33 Odd (4) Page 211 212 #12 34 Even (5) Page 218

More information

1 p mr. r, where p 1 < p 2 < < p r are primes, reduces then to the problem of finding, for i = 1,...,r, all possible partitions (p e 1

1 p mr. r, where p 1 < p 2 < < p r are primes, reduces then to the problem of finding, for i = 1,...,r, all possible partitions (p e 1 Theorem 2.9 (The Fundamental Theorem for finite abelian groups). Let G be a finite abelian group. G can be written as an internal direct sum of non-trival cyclic groups of prime power order. Furthermore

More information

ALGORITHMS FOR COMPUTING QUARTIC GALOIS GROUPS OVER FIELDS OF CHARACTERISTIC 0

ALGORITHMS FOR COMPUTING QUARTIC GALOIS GROUPS OVER FIELDS OF CHARACTERISTIC 0 ALGORITHMS FOR COMPUTING QUARTIC GALOIS GROUPS OVER FIELDS OF CHARACTERISTIC 0 CHAD AWTREY, JAMES BEUERLE, AND MICHAEL KEENAN Abstract. Let f(x) beanirreducibledegreefourpolynomialdefinedover afieldf and

More information

Starting with Two Matrices

Starting with Two Matrices Starting with Two Matrices Gilbert Strang, Massachusetts Institute of Technology. Introduction. The first sections of this paper represent an imaginary lecture, very near the beginning of a linear algebra

More information

Boolean algebra. Examples of these individual laws of Boolean, rules and theorems for Boolean algebra are given in the following table.

Boolean algebra. Examples of these individual laws of Boolean, rules and theorems for Boolean algebra are given in the following table. The Laws of Boolean Boolean algebra As well as the logic symbols 0 and 1 being used to represent a digital input or output, we can also use them as constants for a permanently Open or Closed circuit or

More information

CONTENTS COLLEGE ALGEBRA: DR.YOU

CONTENTS COLLEGE ALGEBRA: DR.YOU 1 CONTENTS CONTENTS Textbook UNIT 1 LECTURE 1-1 REVIEW A. p. LECTURE 1- RADICALS A.10 p.9 LECTURE 1- COMPLEX NUMBERS A.7 p.17 LECTURE 1-4 BASIC FACTORS A. p.4 LECTURE 1-5. SOLVING THE EQUATIONS A.6 p.

More information

2018 LEHIGH UNIVERSITY HIGH SCHOOL MATH CONTEST

2018 LEHIGH UNIVERSITY HIGH SCHOOL MATH CONTEST 08 LEHIGH UNIVERSITY HIGH SCHOOL MATH CONTEST. A right triangle has hypotenuse 9 and one leg. What is the length of the other leg?. Don is /3 of the way through his run. After running another / mile, he

More information

Announcements Wednesday, November 7

Announcements Wednesday, November 7 Announcements Wednesday, November 7 The third midterm is on Friday, November 16 That is one week from this Friday The exam covers 45, 51, 52 53, 61, 62, 64, 65 (through today s material) WeBWorK 61, 62

More information

Chapter 5. Modular arithmetic. 5.1 The modular ring

Chapter 5. Modular arithmetic. 5.1 The modular ring Chapter 5 Modular arithmetic 5.1 The modular ring Definition 5.1. Suppose n N and x, y Z. Then we say that x, y are equivalent modulo n, and we write x y mod n if n x y. It is evident that equivalence

More information

MATH 167: APPLIED LINEAR ALGEBRA Chapter 3

MATH 167: APPLIED LINEAR ALGEBRA Chapter 3 MATH 167: APPLIED LINEAR ALGEBRA Chapter 3 Jesús De Loera, UC Davis February 18, 2012 Orthogonal Vectors and Subspaces (3.1). In real life vector spaces come with additional METRIC properties!! We have

More information

Created by T. Madas MIXED SURD QUESTIONS. Created by T. Madas

Created by T. Madas MIXED SURD QUESTIONS. Created by T. Madas MIXED SURD QUESTIONS Question 1 (**) Write each of the following expressions a single simplified surd a) 150 54 b) 21 7 C1A, 2 6, 3 7 Question 2 (**) Write each of the following surd expressions as simple

More information

GEOMETRY AND VECTORS

GEOMETRY AND VECTORS GEOMETRY AND VECTORS Distinguishing Between Points in Space One Approach Names: ( Fred, Steve, Alice...) Problem: distance & direction must be defined point-by-point More elegant take advantage of geometry

More information

2 Lecture 2: Logical statements and proof by contradiction Lecture 10: More on Permutations, Group Homomorphisms 31

2 Lecture 2: Logical statements and proof by contradiction Lecture 10: More on Permutations, Group Homomorphisms 31 Contents 1 Lecture 1: Introduction 2 2 Lecture 2: Logical statements and proof by contradiction 7 3 Lecture 3: Induction and Well-Ordering Principle 11 4 Lecture 4: Definition of a Group and examples 15

More information

CH 61 USING THE GCF IN EQUATIONS AND FORMULAS

CH 61 USING THE GCF IN EQUATIONS AND FORMULAS CH 61 USING THE GCF IN EQUATIONS AND FORMULAS Introduction A while back we studied the Quadratic Formula and used it to solve quadratic equations such as x 5x + 6 = 0; we were also able to solve rectangle

More information

TRIPLE GENERATIONS OF THE LYONS SPORADIC SIMPLE GROUP MALEBOGO JOHN MOTALANE MASTER OF SCIENCE MATHEMATICS UNIVERSITY OF SOUTH AFRICA

TRIPLE GENERATIONS OF THE LYONS SPORADIC SIMPLE GROUP MALEBOGO JOHN MOTALANE MASTER OF SCIENCE MATHEMATICS UNIVERSITY OF SOUTH AFRICA TRIPLE GENERATIONS OF THE LYONS SPORADIC SIMPLE GROUP by MALEBOGO JOHN MOTALANE submitted in accordance with the requirements for the degree MASTER OF SCIENCE in the subject of MATHEMATICS at the UNIVERSITY

More information

NOTES ON LINEAR ALGEBRA CLASS HANDOUT

NOTES ON LINEAR ALGEBRA CLASS HANDOUT NOTES ON LINEAR ALGEBRA CLASS HANDOUT ANTHONY S. MAIDA CONTENTS 1. Introduction 2 2. Basis Vectors 2 3. Linear Transformations 2 3.1. Example: Rotation Transformation 3 4. Matrix Multiplication and Function

More information

Function Junction: Homework Examples from ACE

Function Junction: Homework Examples from ACE Function Junction: Homework Examples from ACE Investigation 1: The Families of Functions, ACE #5, #10 Investigation 2: Arithmetic and Geometric Sequences, ACE #4, #17 Investigation 3: Transforming Graphs,

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 Chapter LINEAR EQUATIONS Introduction to linear equations A linear equation in n unknowns x,

More information

In Z: x + 3 = 2 3x = 2 x = 1 No solution In Q: 3x = 2 x 2 = 2. x = 2 No solution. In R: x 2 = 2 x = 0 x = ± 2 No solution Z Q.

In Z: x + 3 = 2 3x = 2 x = 1 No solution In Q: 3x = 2 x 2 = 2. x = 2 No solution. In R: x 2 = 2 x = 0 x = ± 2 No solution Z Q. THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH 1141 HIGHER MATHEMATICS 1A ALGEBRA. Section 1: - Complex Numbers. 1. The Number Systems. Let us begin by trying to solve various

More information