AMS527: Numerical Analysis II

Size: px
Start display at page:

Download "AMS527: Numerical Analysis II"

Transcription

1 AMS527: Numerical Analysis II Supplementary Material on Finite Different Methods for Two-Point Boundary-Value Problems Xiangmin Jiao Stony Brook University Xiangmin Jiao Stony Brook University AMS527: Numerical Analysis II / 5

2 A Simple Finite Difference Method Consider simple second-order ODE u (x) = f (x) for 0 < x <, with some given boundary conditions u(0) = α and u() = β FDM computes grid functions of U 0, U,, U m, U m+, where U j is approximation to solution u(x j ) at jth grid point x j = jh and h = /(m + ) is mesh width Replace u (x) by finite difference operator (such as centered difference approximation) D 2 U j = h 2 (U j 2U j + U j+ ), we obtain a set of algebraic equations or h 2 (U j 2U j + U j+ ) = f (x j ) for j =, 2,, m, AU = F Xiangmin Jiao Stony Brook University AMS527: Numerical Analysis II 2 / 5

3 Linear System from Simple FDM h U U 2 U 3 U m U m = f (x ) α/h 2 f (x 2 ) f (x 3 ) f (x m ) f (x m ) β/h 2 Xiangmin Jiao Stony Brook University AMS527: Numerical Analysis II 3 / 5

4 Error Let Û = [u(x ), u(x 2 ),, u(x m )] be vector of true values Error vector is E = U Û, composed of errors at each grid point Error norms typically used are E = max E j j m m E = h E j j= m E 2 = h E j 2 j= E = U Û is referred to as global error Xiangmin Jiao Stony Brook University AMS527: Numerical Analysis II 4 / 5

5 Local Truncation Error (LTE) Local truncation error (LTE), denoted by τ j, ie, τ j = D 2 (u) f (x j ) for j =, 2,, m For centered difference approximation, τ j = h 2 (u j 2u j + u j+ ) f (x j ) [ = u (x j ) + ] 2 h2 u (x j ) + O(h 4 ) f (x j ) = 2 h2 u (x j ) + O(h 4 ) Assume u is bounded, then τ j = O(h 2 ) as h 0 Let τ be vector composed of τ j, then τ = AÛ F, or AÛ = τ + F Therefore, AE = A(U Û) = τ Xiangmin Jiao Stony Brook University AMS527: Numerical Analysis II 5 / 5

6 Stability Suppose a finite difference method for a linear BVP gives a sequence of matrix equations of form A h U h = F h, where h is the mesh width, and the superscript denotes solution on grid with mesh grading h We say the method is stable if (A h ) exists for all h sufficiently small (say h < h 0 ) and if there is a constant C, independent of h, such that (A h ) C for all h < h 0 Xiangmin Jiao Stony Brook University AMS527: Numerical Analysis II 6 / 5

7 Consistency We say that a method is consistent with differential equation and boundary conditions if τ h 0 as h 0 Typically, τ h = O(h p ) for some integer p > 0, and so it is consistent Xiangmin Jiao Stony Brook University AMS527: Numerical Analysis II 7 / 5

8 Convergence A method is said to be convergent if E h 0 as h 0 In general, This is because consitency + stability convergence E h (A h ) τ h C τ h 0 as h 0 This is known as fundamental theorem of finite difference methods This is analogous to Lax equivalence theorem for finite difference methods for the numerical solution of partial differential equations: For a consistent finite difference method for a well-posed linear initial value problem, the method is convergent if and only if it is stable Xiangmin Jiao Stony Brook University AMS527: Numerical Analysis II 8 / 5

9 Stability in 2-Norm Challenge in proof of convergence often lies in verification of stability (instead of consistency) In 2-norm, for symmetric matrices A 2 = ρ(a) = max ρ m λ p and ( ) A 2 = ρ(a ) = min λ p ρ m Therefore, one needs to show eigenvalues of A is bounded away from zero as h 0 Xiangmin Jiao Stony Brook University AMS527: Numerical Analysis II 9 / 5

10 Stability of Model Problem The m eigenvalues of A are λ p = 2 (cos(pπh) ) for p =, 2,, m, h2 and their corresponding eigenvector u p has jth component u p j = sin(pπjh) Smallest eigenvalue of A (in magnitude) is λ = 2 (cos(πh) ) h2 = 2 ( h 2 2 π2 h 2 + ) 24 π4 h 4 + O(h 6 ) = π 2 + O(h 2 ), which is bounded away from 0 as h 0 Therefore, E h 2 τ h π 2 2, so E 2 = O(h 2 ) It can also be shown that E = O(h 2 ), but it is more involved Xiangmin Jiao Stony Brook University AMS527: Numerical Analysis II 0 / 5

11 Neumann Boundary Conditions Consider simple second-order ODE with boundary conditions u (x) = f (x) for 0 < x <, u (0) = σ, u() = β Discretize interval [0, ] by introducing m interior points such that 0 = x 0 < x < x 2 < < x m < x m < x m+ = First Attempt: Approximate u (0) = 0 using one-sided derivative U U 0 = σ h Xiangmin Jiao Stony Brook University AMS527: Numerical Analysis II / 5

12 First Attempt Then equation becomes h h h 2 0 h 2 Local truncation error is O(h), because U 0 U U 2 U m U m+ τ 0 = h 2 (hu(x ) hu(x 0 )) σ = u (x 0 ) + 2 hu (x 0 ) + O(h 2 ) σ = 2 hu (x 0 ) + O(h 2 ), This translates into a global error of O(h) = σ f (x ) f (x 2 ) f (x m ) β Xiangmin Jiao Stony Brook University AMS527: Numerical Analysis II 2 / 5

13 First Second-Order Accurate Approach Use centered approximation to u (0) = σ by introducing U h 2 (U 2U 0 + U ) = f (x 0 ) 2h (U U ) = σ Eliminate U from the two equations and we obtain We then have h h h 2 h ( U 0 + U ) = σ + h 2 f (x 0) 0 h 2 U 0 U U 2 U m U m+ = σ + h 2 f (x 0) f (x ) f (x 2 ) f (x m ) β Xiangmin Jiao Stony Brook University AMS527: Numerical Analysis II 3 / 5

14 Second Second-Order Accurate Approach Use second-order one-sided approximation to u (0) = σ ( 3 h 2 U 0 2U + ) 2 U 2 = σ We then have 3 2 h 2h h 2 2 h 0 h 2 U 0 U U 2 U m U m+ = σ f (x ) f (x 2 ) f (x m ) β This approach increases bandwidth of matrix, but is more general and easier to generalize to higher order accuracy and to nonuniform grids Xiangmin Jiao Stony Brook University AMS527: Numerical Analysis II 4 / 5

15 References Randall J LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, SIAM, 2007 Xiangmin Jiao Stony Brook University AMS527: Numerical Analysis II 5 / 5

Finite difference method for elliptic problems: I

Finite difference method for elliptic problems: I Finite difference method for elliptic problems: I Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 3: Positive-Definite Systems; Cholesky Factorization Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 11 Symmetric

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 16: Rayleigh Quotient Iteration Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 10 Solving Eigenvalue Problems All

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 24: Preconditioning and Multigrid Solver Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 5 Preconditioning Motivation:

More information

Numerical Analysis of Differential Equations Numerical Solution of Elliptic Boundary Value

Numerical Analysis of Differential Equations Numerical Solution of Elliptic Boundary Value Numerical Analysis of Differential Equations 188 5 Numerical Solution of Elliptic Boundary Value Problems 5 Numerical Solution of Elliptic Boundary Value Problems TU Bergakademie Freiberg, SS 2012 Numerical

More information

12 The Heat equation in one spatial dimension: Simple explicit method and Stability analysis

12 The Heat equation in one spatial dimension: Simple explicit method and Stability analysis ATH 337, by T. Lakoba, University of Vermont 113 12 The Heat equation in one spatial dimension: Simple explicit method and Stability analysis 12.1 Formulation of the IBVP and the minimax property of its

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 3: Finite Elements in 2-D Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods 1 / 18 Outline 1 Boundary

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 12: Gaussian Elimination and LU Factorization Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 10 Gaussian Elimination

More information

Finite Difference Methods for Boundary Value Problems

Finite Difference Methods for Boundary Value Problems Finite Difference Methods for Boundary Value Problems October 2, 2013 () Finite Differences October 2, 2013 1 / 52 Goals Learn steps to approximate BVPs using the Finite Difference Method Start with two-point

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 2: Orthogonal Vectors and Matrices; Vector Norms Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 11 Outline 1 Orthogonal

More information

Finite difference methods for the diffusion equation

Finite difference methods for the diffusion equation Finite difference methods for the diffusion equation D150, Tillämpade numeriska metoder II Olof Runborg May 0, 003 These notes summarize a part of the material in Chapter 13 of Iserles. They are based

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis (Numerical Linear Algebra for Computational and Data Sciences) Lecture 14: Eigenvalue Problems; Eigenvalue Revealing Factorizations Xiangmin Jiao Stony Brook University Xiangmin

More information

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems Index A-conjugate directions, 83 A-stability, 171 A( )-stability, 171 absolute error, 243 absolute stability, 149 for systems of equations, 154 absorbing boundary conditions, 228 Adams Bashforth methods,

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 25: Introduction to Discontinuous Galerkin Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 1: Course Overview & Matrix-Vector Multiplication Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 20 Outline 1 Course

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 5: Projectors and QR Factorization Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 14 Outline 1 Projectors 2 QR Factorization

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations We call Ordinary Differential Equation (ODE) of nth order in the variable x, a relation of the kind: where L is an operator. If it is a linear operator, we call the equation

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 1: Course Overview; Matrix Multiplication Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

Numerical Analysis of Differential Equations Numerical Solution of Parabolic Equations

Numerical Analysis of Differential Equations Numerical Solution of Parabolic Equations Numerical Analysis of Differential Equations 215 6 Numerical Solution of Parabolic Equations 6 Numerical Solution of Parabolic Equations TU Bergakademie Freiberg, SS 2012 Numerical Analysis of Differential

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 16: Eigenvalue Problems; Similarity Transformations Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 18 Eigenvalue

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 09: Accuracy and Stability Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 12 Outline 1 Condition Number of Matrices

More information

Theory of Iterative Methods

Theory of Iterative Methods Based on Strang s Introduction to Applied Mathematics Theory of Iterative Methods The Iterative Idea To solve Ax = b, write Mx (k+1) = (M A)x (k) + b, k = 0, 1,,... Then the error e (k) x (k) x satisfies

More information

FDM for parabolic equations

FDM for parabolic equations FDM for parabolic equations Consider the heat equation where Well-posed problem Existence & Uniqueness Mass & Energy decreasing FDM for parabolic equations CNFD Crank-Nicolson + 2 nd order finite difference

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 21: Sensitivity of Eigenvalues and Eigenvectors; Conjugate Gradient Method Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis

More information

The residual again. The residual is our method of judging how good a potential solution x! of a system A x = b actually is. We compute. r = b - A x!

The residual again. The residual is our method of judging how good a potential solution x! of a system A x = b actually is. We compute. r = b - A x! The residual again The residual is our method of judging how good a potential solution x! of a system A x = b actually is. We compute r = b - A x! which gives us a measure of how good or bad x! is as a

More information

arxiv: v5 [math.na] 1 Sep 2018

arxiv: v5 [math.na] 1 Sep 2018 High-Order Adaptive Extended Stencil FEM (AES-FEM) Part I: Convergence and Superconvergence Xiangmin Jiao Rebecca Conley Tristan J. Delaney arxiv:1603.09325v5 [math.na] 1 Sep 2018 Abstract Finite elements

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 9 Minimizing Residual CG

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 19: More on Arnoldi Iteration; Lanczos Iteration Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 17 Outline 1

More information

Chapter 10 Exercises

Chapter 10 Exercises Chapter 10 Exercises From: Finite Difference Methods for Ordinary and Partial Differential Equations by R. J. LeVeque, SIAM, 2007. http://www.amath.washington.edu/ rl/fdmbook Exercise 10.1 (One-sided and

More information

x n+1 = x n f(x n) f (x n ), n 0.

x n+1 = x n f(x n) f (x n ), n 0. 1. Nonlinear Equations Given scalar equation, f(x) = 0, (a) Describe I) Newtons Method, II) Secant Method for approximating the solution. (b) State sufficient conditions for Newton and Secant to converge.

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Numerical Methods for Partial Differential Equations Finite Difference Methods

More information

Inverse Problems. Lab 19

Inverse Problems. Lab 19 Lab 19 Inverse Problems An important concept in mathematics is the idea of a well posed problem. The concept initially came from Jacques Hadamard. A mathematical problem is well posed if 1. a solution

More information

Final year project. Methods for solving differential equations

Final year project. Methods for solving differential equations Final year project Methods for solving differential equations Author: Tej Shah Supervisor: Dr. Milan Mihajlovic Date: 5 th May 2010 School of Computer Science: BSc. in Computer Science and Mathematics

More information

Finite Differences: Consistency, Stability and Convergence

Finite Differences: Consistency, Stability and Convergence Finite Differences: Consistency, Stability and Convergence Varun Shankar March, 06 Introduction Now that we have tackled our first space-time PDE, we will take a quick detour from presenting new FD methods,

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

MATH 5524 MATRIX THEORY Pledged Problem Set 2

MATH 5524 MATRIX THEORY Pledged Problem Set 2 MATH 5524 MATRIX THEORY Pledged Problem Set 2 Posted Tuesday 25 April 207 Due by 5pm on Wednesday 3 May 207 Complete any four problems, 25 points each You are welcome to complete more problems if you like,

More information

1. Introduction We consider the following self-adjoint singularly perturbed boundary value problem: ɛu + p(x)u = q(x), p(x) > 0,

1. Introduction We consider the following self-adjoint singularly perturbed boundary value problem: ɛu + p(x)u = q(x), p(x) > 0, TWMS J. Pure Appl. Math. V., N., 00, pp. 6-5 NON-POLYNOMIAL SPLINE APPROXIMATIONS FOR THE SOLUTION OF SINGULARLY-PERTURBED BOUNDARY VALUE PROBLEMS J. RASHIDINIA, R. MOHAMMADI Abstract. We consider the

More information

PDEs, part 3: Hyperbolic PDEs

PDEs, part 3: Hyperbolic PDEs PDEs, part 3: Hyperbolic PDEs Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2011 Hyperbolic equations (Sections 6.4 and 6.5 of Strang). Consider the model problem (the

More information

Lecture 1 INF-MAT3350/ : Some Tridiagonal Matrix Problems

Lecture 1 INF-MAT3350/ : Some Tridiagonal Matrix Problems Lecture 1 INF-MAT3350/4350 2007: Some Tridiagonal Matrix Problems Tom Lyche University of Oslo Norway Lecture 1 INF-MAT3350/4350 2007: Some Tridiagonal Matrix Problems p.1/33 Plan for the day 1. Notation

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 16: Reduction to Hessenberg and Tridiagonal Forms; Rayleigh Quotient Iteration Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

= main diagonal, in the order in which their corresponding eigenvectors appear as columns of E.

= main diagonal, in the order in which their corresponding eigenvectors appear as columns of E. 3.3 Diagonalization Let A = 4. Then and are eigenvectors of A, with corresponding eigenvalues 2 and 6 respectively (check). This means 4 = 2, 4 = 6. 2 2 2 2 Thus 4 = 2 2 6 2 = 2 6 4 2 We have 4 = 2 0 0

More information

Introduction to the Numerical Solution of IVP for ODE

Introduction to the Numerical Solution of IVP for ODE Introduction to the Numerical Solution of IVP for ODE 45 Introduction to the Numerical Solution of IVP for ODE Consider the IVP: DE x = f(t, x), IC x(a) = x a. For simplicity, we will assume here that

More information

Final Examination. CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Spring 2016), Stanford University

Final Examination. CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Spring 2016), Stanford University Final Examination CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Spring 2016), Stanford University The exam runs for 3 hours. The exam contains seven problems. You must complete the

More information

Finite difference method for heat equation

Finite difference method for heat equation Finite difference method for heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

More information

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 1. Runge-Kutta Methods

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 1. Runge-Kutta Methods Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Mathematics National Institute of Technology Durgapur Durgapur-71309 email: anita.buie@gmail.com 1 . Chapter 8 Numerical Solution of

More information

Jordan Journal of Mathematics and Statistics (JJMS) 5(3), 2012, pp A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS

Jordan Journal of Mathematics and Statistics (JJMS) 5(3), 2012, pp A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS Jordan Journal of Mathematics and Statistics JJMS) 53), 2012, pp.169-184 A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS ADEL H. AL-RABTAH Abstract. The Jacobi and Gauss-Seidel iterative

More information

Outline. 1 Boundary Value Problems. 2 Numerical Methods for BVPs. Boundary Value Problems Numerical Methods for BVPs

Outline. 1 Boundary Value Problems. 2 Numerical Methods for BVPs. Boundary Value Problems Numerical Methods for BVPs Boundary Value Problems Numerical Methods for BVPs Outline Boundary Value Problems 2 Numerical Methods for BVPs Michael T. Heath Scientific Computing 2 / 45 Boundary Value Problems Numerical Methods for

More information

Mat1062: Introductory Numerical Methods for PDE

Mat1062: Introductory Numerical Methods for PDE Mat1062: Introductory Numerical Methods for PDE Mary Pugh January 13, 2009 1 Ownership These notes are the joint property of Rob Almgren and Mary Pugh 2 Boundary Conditions We now want to discuss in detail

More information

Finite Differences for Differential Equations 28 PART II. Finite Difference Methods for Differential Equations

Finite Differences for Differential Equations 28 PART II. Finite Difference Methods for Differential Equations Finite Differences for Differential Equations 28 PART II Finite Difference Methods for Differential Equations Finite Differences for Differential Equations 29 BOUNDARY VALUE PROBLEMS (I) Solving a TWO

More information

Numerical Methods for Engineers and Scientists

Numerical Methods for Engineers and Scientists Numerical Methods for Engineers and Scientists Second Edition Revised and Expanded Joe D. Hoffman Department of Mechanical Engineering Purdue University West Lafayette, Indiana m MARCEL D E К К E R MARCEL

More information

Lecture 4.2 Finite Difference Approximation

Lecture 4.2 Finite Difference Approximation Lecture 4. Finite Difference Approimation 1 Discretization As stated in Lecture 1.0, there are three steps in numerically solving the differential equations. They are: 1. Discretization of the domain by

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 7: More on Householder Reflectors; Least Squares Problems Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 15 Outline

More information

2 Two-Point Boundary Value Problems

2 Two-Point Boundary Value Problems 2 Two-Point Boundary Value Problems Another fundamental equation, in addition to the heat eq. and the wave eq., is Poisson s equation: n j=1 2 u x 2 j The unknown is the function u = u(x 1, x 2,..., x

More information

Poisson Solvers. William McLean. April 21, Return to Math3301/Math5315 Common Material.

Poisson Solvers. William McLean. April 21, Return to Math3301/Math5315 Common Material. Poisson Solvers William McLean April 21, 2004 Return to Math3301/Math5315 Common Material 1 Introduction Many problems in applied mathematics lead to a partial differential equation of the form a 2 u +

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Discretization of Boundary Conditions Discretization of Boundary Conditions On

More information

Code: 101MAT4 101MT4B. Today s topics Finite-difference method in 2D. Poisson equation Wave equation

Code: 101MAT4 101MT4B. Today s topics Finite-difference method in 2D. Poisson equation Wave equation Code: MAT MTB Today s topics Finite-difference method in D Poisson equation Wave equation Finite-difference method for elliptic PDEs in D Recall that u is the short version of u x + u y Dirichlet BVP:

More information

Evaluation of Chebyshev pseudospectral methods for third order differential equations

Evaluation of Chebyshev pseudospectral methods for third order differential equations Numerical Algorithms 16 (1997) 255 281 255 Evaluation of Chebyshev pseudospectral methods for third order differential equations Rosemary Renaut a and Yi Su b a Department of Mathematics, Arizona State

More information

Qualifying Examination Winter 2017

Qualifying Examination Winter 2017 Qualifying Examination Winter 2017 Examination Committee: Anne Greenbaum, Hong Qian, Eric Shea-Brown Day 1, Tuesday, December 12, 9:30-12:30, LEW 208 You have three hours to complete this exam. Work all

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

The Milne error estimator for stiff problems

The Milne error estimator for stiff problems 13 R. Tshelametse / SAJPAM. Volume 4 (2009) 13-28 The Milne error estimator for stiff problems Ronald Tshelametse Department of Mathematics University of Botswana Private Bag 0022 Gaborone, Botswana. E-mail

More information

Lecture 10: Finite Differences for ODEs & Nonlinear Equations

Lecture 10: Finite Differences for ODEs & Nonlinear Equations Lecture 10: Finite Differences for ODEs & Nonlinear Equations J.K. Ryan@tudelft.nl WI3097TU Delft Institute of Applied Mathematics Delft University of Technology 21 November 2012 () Finite Differences

More information

Hyperbolic Partial Differential Equations

Hyperbolic Partial Differential Equations Chapter 1 Hyperbolic Partial Differential Equations We begin our study of finite difference methods for partial differential equations by considering the important class of partial differential equations

More information

Computation Fluid Dynamics

Computation Fluid Dynamics Computation Fluid Dynamics CFD I Jitesh Gajjar Maths Dept Manchester University Computation Fluid Dynamics p.1/189 Garbage In, Garbage Out We will begin with a discussion of errors. Useful to understand

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Implicit Schemes for the Model Problem The Crank-Nicolson scheme and θ-scheme

More information

1. Differential Equations (ODE and PDE)

1. Differential Equations (ODE and PDE) 1. Differential Equations (ODE and PDE) 1.1. Ordinary Differential Equations (ODE) So far we have dealt with Ordinary Differential Equations (ODE): involve derivatives with respect to only one variable

More information

Midterm Solution

Midterm Solution 18303 Midterm Solution Problem 1: SLP with mixed boundary conditions Consider the following regular) Sturm-Liouville eigenvalue problem consisting in finding scalars λ and functions v : [0, b] R b > 0),

More information

The family of Runge Kutta methods with two intermediate evaluations is defined by

The family of Runge Kutta methods with two intermediate evaluations is defined by AM 205: lecture 13 Last time: Numerical solution of ordinary differential equations Today: Additional ODE methods, boundary value problems Thursday s lecture will be given by Thomas Fai Assignment 3 will

More information

Cubic spline Numerov type approach for solution of Helmholtz equation

Cubic spline Numerov type approach for solution of Helmholtz equation Journal of Linear and Topological Algebra Vol. 03, No. 01, 2014, 47-54 Cubic spline Numerov type approach for solution of Helmholtz equation J. Rashidinia a, H. S. Shekarabi a and M. Aghamohamadi a a Department

More information

MATH 333: Partial Differential Equations

MATH 333: Partial Differential Equations MATH 333: Partial Differential Equations Problem Set 9, Final version Due Date: Tues., Nov. 29, 2011 Relevant sources: Farlow s book: Lessons 9, 37 39 MacCluer s book: Chapter 3 44 Show that the Poisson

More information

Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson

Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Name: TA Name and section: NO CALCULATORS, SHOW ALL WORK, NO OTHER PAPERS ON DESK. There is very little actual work to be done on this exam if

More information

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular form) Given: matrix C = (c i,j ) n,m i,j=1 ODE and num math: Linear algebra (N) [lectures] c phabala 2016 DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix

More information

Math 240 Calculus III

Math 240 Calculus III Generalized Calculus III Summer 2015, Session II Thursday, July 23, 2015 Agenda 1. 2. 3. 4. Motivation Defective matrices cannot be diagonalized because they do not possess enough eigenvectors to make

More information

An Efficient Algorithm Based on Quadratic Spline Collocation and Finite Difference Methods for Parabolic Partial Differential Equations.

An Efficient Algorithm Based on Quadratic Spline Collocation and Finite Difference Methods for Parabolic Partial Differential Equations. An Efficient Algorithm Based on Quadratic Spline Collocation and Finite Difference Methods for Parabolic Partial Differential Equations by Tong Chen A thesis submitted in conformity with the requirements

More information

A Residual Inverse Power Method

A Residual Inverse Power Method University of Maryland Institute for Advanced Computer Studies Department of Computer Science College Park TR 2007 09 TR 4854 A Residual Inverse Power Method G. W. Stewart February 2007 ABSTRACT The inverse

More information

Fourth Order Symmetric Finite Difference Schemes For The Wave Equation

Fourth Order Symmetric Finite Difference Schemes For The Wave Equation IT Licentiate theses 2-4 Fourth Order Symmetric Finite Difference Schemes For The Wave Equation ABRAHAM ZEMUI UPPSALA UNIVERSITY Department of Information Technology Fourth Order Symmetric Finite Difference

More information

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS Proceedings of ALGORITMY 2009 pp. 1 10 SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS MILOSLAV VLASÁK Abstract. We deal with a numerical solution of a scalar

More information

OT98_LevequeFM2.qxp 6/4/ :20 AM Page 1. Finite Difference Methods for Ordinary and Partial Differential Equations

OT98_LevequeFM2.qxp 6/4/ :20 AM Page 1. Finite Difference Methods for Ordinary and Partial Differential Equations OT98_LevequeFM2.qxp 6/4/2007 10:20 AM Page 1 Finite Difference Methods for Ordinary and Partial Differential Equations OT98_LevequeFM2.qxp 6/4/2007 10:20 AM Page 2 OT98_LevequeFM2.qxp 6/4/2007 10:20 AM

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

Conferences Fictitious domain methods for numerical realization of unilateral problems. J.H. (jointly with T. Kozubek and R. Kučera) p.

Conferences Fictitious domain methods for numerical realization of unilateral problems. J.H. (jointly with T. Kozubek and R. Kučera) p. p. /2 Conferences 28 Fictitious domain methods for numerical realization of unilateral problems J.H. (jointly with T. Kozubek and R. Kučera) Lyon 23-24.6. 28 p. 2/2 Outline Fictitious domain methods -

More information

Family Feud Review. Linear Algebra. October 22, 2013

Family Feud Review. Linear Algebra. October 22, 2013 Review Linear Algebra October 22, 2013 Question 1 Let A and B be matrices. If AB is a 4 7 matrix, then determine the dimensions of A and B if A has 19 columns. Answer 1 Answer A is a 4 19 matrix, while

More information

Numerical Solutions to PDE s

Numerical Solutions to PDE s Introduction Numerical Solutions to PDE s Mathematical Modelling Week 5 Kurt Bryan Let s start by recalling a simple numerical scheme for solving ODE s. Suppose we have an ODE u (t) = f(t, u(t)) for some

More information

Chap 3. Linear Algebra

Chap 3. Linear Algebra Chap 3. Linear Algebra Outlines 1. Introduction 2. Basis, Representation, and Orthonormalization 3. Linear Algebraic Equations 4. Similarity Transformation 5. Diagonal Form and Jordan Form 6. Functions

More information

Spectral element agglomerate AMGe

Spectral element agglomerate AMGe Spectral element agglomerate AMGe T. Chartier 1, R. Falgout 2, V. E. Henson 2, J. E. Jones 4, T. A. Manteuffel 3, S. F. McCormick 3, J. W. Ruge 3, and P. S. Vassilevski 2 1 Department of Mathematics, Davidson

More information

Absorbing Boundary Conditions for Nonlinear Wave Equations

Absorbing Boundary Conditions for Nonlinear Wave Equations Absorbing Boundary Conditions for Nonlinear Wave Equations R. B. Gibson December, 2010 1 1 Linear Wave Equations 1.1 Boundary Condition 1 To begin, we wish to solve where with the boundary condition u

More information

Continuation of cycle-to-cycle connections in 3D ODEs

Continuation of cycle-to-cycle connections in 3D ODEs HET p. 1/2 Continuation of cycle-to-cycle connections in 3D ODEs Yuri A. Kuznetsov joint work with E.J. Doedel, B.W. Kooi, and G.A.K. van Voorn HET p. 2/2 Contents Previous works Truncated BVP s with projection

More information

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015 Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in NUMERICAL ANALYSIS Spring 2015 Instructions: Do exactly two problems from Part A AND two

More information

7 Hyperbolic Differential Equations

7 Hyperbolic Differential Equations Numerical Analysis of Differential Equations 243 7 Hyperbolic Differential Equations While parabolic equations model diffusion processes, hyperbolic equations model wave propagation and transport phenomena.

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 13: Conditioning of Least Squares Problems; Stability of Householder Triangularization Xiangmin Jiao Stony Brook University Xiangmin Jiao

More information

Strict Stability of High-Order Compact Implicit Finite-Difference Schemes: The Role of Boundary Conditions for Hyperbolic PDEs, I

Strict Stability of High-Order Compact Implicit Finite-Difference Schemes: The Role of Boundary Conditions for Hyperbolic PDEs, I Journal of Computational Physics 160, 42 66 (2000) doi:10.1006/jcph.2000.6420, available online at http://www.idealibrary.com on Strict Stability of High-Order Compact Implicit Finite-Difference Schemes:

More information

Linear Algebra Practice Final

Linear Algebra Practice Final . Let (a) First, Linear Algebra Practice Final Summer 3 3 A = 5 3 3 rref([a ) = 5 so if we let x 5 = t, then x 4 = t, x 3 =, x = t, and x = t, so that t t x = t = t t whence ker A = span(,,,, ) and a basis

More information

Computational PDEs. Andreas Dedner

Computational PDEs. Andreas Dedner Computational PDEs Andreas Dedner April 10, 2011 Contents I Background 1 1 Model Problems 2 1.1 Boundary Value Problems.................... 2 1.2 Diffusion.............................. 4 1.3 Wave motion...........................

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations Professor Dr. E F Toro Laboratory of Applied Mathematics University of Trento, Italy eleuterio.toro@unitn.it http://www.ing.unitn.it/toro September 19, 2014 1 / 55 Motivation

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors week -2 Fall 26 Eigenvalues and eigenvectors The most simple linear transformation from R n to R n may be the transformation of the form: T (x,,, x n ) (λ x, λ 2,, λ n x n

More information

Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework

Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework Jan Mandel University of Colorado Denver May 12, 2010 1/20/09: Sec. 1.1, 1.2. Hw 1 due 1/27: problems

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture 9: Diagonalization Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./9 Section. Diagonalization The goal here is to develop a useful

More information

CAAM 336 DIFFERENTIAL EQUATIONS IN SCI AND ENG Examination 1

CAAM 336 DIFFERENTIAL EQUATIONS IN SCI AND ENG Examination 1 CAAM 6 DIFFERENTIAL EQUATIONS IN SCI AND ENG Examination Instructions: Time limit: uninterrupted hours There are four questions worth a total of 5 points Please do not look at the questions until you begin

More information

4.1 Markov Processes and Markov Chains

4.1 Markov Processes and Markov Chains Chapter Markov Processes. Markov Processes and Markov Chains Recall the following example from Section.. Two competing Broadband companies, A and B, each currently have 0% of the market share. Suppose

More information

Numerical Analysis and Methods for PDE I

Numerical Analysis and Methods for PDE I Numerical Analysis and Methods for PDE I A. J. Meir Department of Mathematics and Statistics Auburn University US-Africa Advanced Study Institute on Analysis, Dynamical Systems, and Mathematical Modeling

More information

EXAM MATHEMATICAL METHODS OF PHYSICS. TRACK ANALYSIS (Chapters I-V). Thursday, June 7th,

EXAM MATHEMATICAL METHODS OF PHYSICS. TRACK ANALYSIS (Chapters I-V). Thursday, June 7th, EXAM MATHEMATICAL METHODS OF PHYSICS TRACK ANALYSIS (Chapters I-V) Thursday, June 7th, 1-13 Students who are entitled to a lighter version of the exam may skip problems 1, 8-11 and 16 Consider the differential

More information