Given a sample of n observations measured on k IVs and one DV, we obtain the equation

Size: px
Start display at page:

Download "Given a sample of n observations measured on k IVs and one DV, we obtain the equation"

Transcription

1 Psychology 8 Lecture #13 Outline Prediction and Cross-Validation One of the primary uses of MLR is for prediction of the value of a dependent variable for future observations, or observations that were not part of the original sample. In order for a MLR equation to have utility for prediction it must generalize beyond the sample that was used to derive it. A variety of methods are available for assessing such generalizability, and also for improving it. Here we consider how to obtain information about the performance of a MLR equation when applied to new observations. Derivation of the MLR equation Given a sample of n observations measured on k IVs and one DV, we obtain the equation Y ˆ = B + B X + B X + L B k X k such that Σe is minimized. We also obtain the SMC R.

2 It must always be kept in mind that this equation is obtained to fit the observed sample as well as possible. The resulting regression coefficients will be influenced by any idiosyncrasies of that sample. As a result, the equation will differ from what would be obtained in the population or in another sample. The equation will make the most accurate predictions of Y in the observed sample, but the same equation may not make the most optimal predictions for new individuals. Prediction of Y for new observations After the MLR equation is obtained from the observed sample, suppose we wish to use it to make a prediction of Y for a new observation for whom the scores on the IVs are available. Let those scores be designated X 1o, X o,..., X ko. Using the MLR equation we can obtain the predicted Y value for this individual: Y ˆ = B + B X + B X + L+ o 0 1 1o o B k X ko The question at this point is how precise this prediction is likely to be.

3 We can address this question by forming a prediction interval around the predicted score. This procedure provides us with an interval estimate of this individual s actual Y score. We first need the standard error of new Y scores around the predicted score: sd SE β z Y Yˆ jo ij io jo = + + ˆ n 1 Y o Yo n 1 R j 1 R j The first summation is over the IVs (subscripted j) and the second summation is over all pairs of IVs (subscripted i and j). There are two important features of this expression. First note that the z values represent distance from the mean on the IVs for the new observation. For an observation more distant from the means of the IVs, the standard error will increase, meaning that predictions will be less precise. Another important feature of this expression involves the term R j, which refers to the SMC obtained when predicting IV X j from all other IVs. Note that when these values are high, meaning multicollinearity is high, the magnitude of the terms in the two summations will increase, in turn increasing the size z z 3

4 of the entire standard error. Thus, when multicollinearity is high, predictions will become less precise. Using this standard error we can construct a prediction interval by the usual methods: Yˆ t sd Y Yˆ t sd o α / Y Yˆ o o + o o α / Y Yˆ This prediction interval will be wider when multicollinearity is high and for observations more deviant from the means of the IVs. That is, predictions for new observations will be less precise in those circumstances. Validation of a MLR equation on new data When an MLR equation is to be used for prediction purposes it is useful to obtain empirical evidence as to its generalizability, or its capacity to make accurate predictions for new samples of data. This process is sometimes referred to as validating the regression equation. One way to address this issue is to literally obtain a new sample of observations. That is, after the MLR equation is developed from the original sample, the investigator conducts a new study, replicating the original one as closely as possible, and uses the new o o 4

5 5 data to assess the predictive validity of the MLR equation. Logistically, this procedure can work as follows: The MLR equation is derived in the original sample. A new sample is obtained, providing measures on IVs and DV. The MLR equation is applied to the individuals in the new sample, producing predicted values of the DV. The correlation between the observed and predicted values of the DV in the new sample is obtained. That correlation reflects the performance of the MLR equation in the new sample. This procedure is usually viewed as impractical because of the requirement to conduct a new study to obtain validation data, as well as the difficulty in truly replicating the original study. An alternative, more practical procedure is crossvalidation.

6 6 Cross-Validation In cross-validation the original sample is split into two parts. One part is called the derivation sample, and the other part is called the validation sample. The splitting of the sample raises two questions. 1) What portion of the sample should be in each part? If sample size is very large, it is often best to split the sample in half. For smaller samples, it is more conventional to split the sample such that /3 of the observations are in the derivation sample and 1/3 are in the validation sample. ) How should the sample be split? The most common approach is to divide the sample randomly, thus theoretically eliminating any systematic differences. One alternative is to define matched pairs of subjects in the original sample and to assign one member of each pair to the derivation sample and the other to the validation sample. Once the sample is split, MLR is applied to the derivation sample, yielding a regression equation and a SMC, designated R D.

7 7 The MLR equation obtained from the derivation sample is then applied to the observations in the validation sample, yielding predicted Y values for those observations. We then obtain the squared correlation between observed and predicted Y values in the validation sample. That value is designated R V. It is often called a cross-validated squared multiple correlation. Of particular interest is the comparison of R D and R V. Note that R D has been maximized by MLR. That is, the regression equation is defined so that the predictions of Y are as precise as possible in the derivation sample. The equation is affected by idiosyncrasies of that sample. When that same equation is applied to a different sample (the validation sample), that sample probably exhibits different idiosyncrasies. As a result, the equation probably will not work as well, and the predictions are likely to be less accurate, meaning that we are likely to see R V < R D. This does not have to happen, but it nearly always does.

8 This reduction in the SMC under cross-validation provides an indication of the predictive validity of the MLR equation. A large reduction may indicate poor predictive validity, or poor cross-validation. A small reduction may indicate little loss of predictive precision when the equation is used outside of the original sample. There are several drawbacks to this cross-validation procedure: 1) Sampling variability: The outcome will vary depending on the splitting of the original sample. This variability may be quite large when n is not large. ) Increased standard errors of coefficients: When the sample is split, the MLR equation is estimated using only a subset of the original sample. This smaller derivation sample causes regression coefficients to have larger standard errors, meaning they are less stable, less precise. 3) In general, because of (1) and (), cross-validation methods are impractical when n is small. 8

9 9 Fortunately there is an alternative approach. It is possible to estimate the value of the cross-validated SMC without splitting the sample and carrying out the procedures just described. Given an original sample of size n, we can estimate the cross-validated SMC that would be obtained if the resulting MLR equation were applied to another sample of the same size: R n = 1 (1 R ) n ˆ + k k It is important to distinguish this adjusted R value from one we studied earlier. In our study of inferences in MLR we noted that the sample SMC is a biased estimate of the population SMC, and we made use of a correction for shrinkage that produced an unbiased estimate of the population SMC: ~ R = 1 (1 R n 1 ) n k 1 The two different corrections are often confused. They provide two very different pieces of information. The first one above estimates the SMC that would be obtained when the MLR equation obtained in one sample is applied to a new sample. The second provides an estimate of the population SMC.

10 We focus here on the estimate of the cross-validated SMC. Note that this value will be smaller than the R in the original sample: R ˆ < R This reduction is due to the fact that the MLR equation derived in the original sample will tend not to work as well in new samples. It is useful to consider what factors will affect the degree of this reduction in the SMC: The reduction will be smaller when: The original R is larger. Sample size n is larger. The number of IVs k is smaller. So regression equations cross-validate best when R is large, n is large, and k is small. When R is small, n is small, and k is large, it can be expected that a regression equation will cross-validate very poorly. The last point is especially relevant. Regression equations cross-validate better when the number of IVs is smaller, holding other factors constant. Thus, it is disadvantageous to include too many IVs in a regression model. Generalizability will be improved if we can exclude IVs that do not contribute to explaining the variance in Y. 10

11 11 Alternative weighting methods The reason for reduction in R when the MLR equation is used in a new sample is that the estimates of the regression coefficients can be very sensitive to idiosyncrasies of the original sample, especially when n is not large. This phenomenon is attributable to the use of the least-squares principle. The regression coefficients, often called least-squares weights, are estimated so as to minimize the sum of squared residuals in the original sample and thus are very sensitive to the nature of that sample. In turn, those same weights may result in a substantial loss in predictive accuracy when applied to a new sample. Given this fact, it may be useful to consider whether a different method for defining the coefficients to be used in the prediction equation might provide better performance under cross-validation. One approach that seems to have this characteristic is called unit-weighting. It works like this. Consider a conventional cross-validation design involving a split sample.

12 In the derivation sample, obtain the correlation of each IV with the DV; these values are designated r Yj. For each X j, simply determine whether the sign of r Yj is positive or negative. Define the weights for the IVs as follows: If r Yj > 0, then U j = 1. If r Yj < 0, then U j = -1. Then define a prediction equation using standardized variables as: 1 z ˆ = U z + U z + L+ U Y 1 1 k z k This is a greatly simplified prediction equation. The Us are not least-squares weights, but rather are unit weights with either a positive or negative sign. As such, they are far less influenced by the chance characteristics of the derivation sample. The predictive accuracy of these unit weights can be evaluated in the derivation sample by obtaining the squared correlation between observed and predicted scores on the DV; call that value R DU. Note that this value will be smaller than R D obtained using leastsquares weights. That is, R DU < R D.

13 The cross-validated predictive accuracy can be evaluated by applying the unit-weight equation in the validation sample and then obtaining the squared correlation between the resulting predicted and observed scores on the DV. Call this value R VU. Of particular interest here is a comparison of the cross-validated SMCs obtained using least-squares weights v. unit weights. Much research has shown a clear tendency for R VU > R V. That is, the unit weights tend to provide better predictive accuracy in the validation sample than do the least-squares weights. This is an important finding that is relevant to true prediction problems in practice. Unit weights may provide better predictive accuracy for new samples than do least-squares weights. This finding will tend to hold more consistently when n is not large and k is not small. For large n and small k, least-squares weights will still often provide better generalizability. In practice, if prediction is the primary objective, the investigator should try both methods. 13

Psychology 282 Lecture #3 Outline

Psychology 282 Lecture #3 Outline Psychology 8 Lecture #3 Outline Simple Linear Regression (SLR) Given variables,. Sample of n observations. In study and use of correlation coefficients, and are interchangeable. In regression analysis,

More information

Psychology 282 Lecture #4 Outline Inferences in SLR

Psychology 282 Lecture #4 Outline Inferences in SLR Psychology 282 Lecture #4 Outline Inferences in SLR Assumptions To this point we have not had to make any distributional assumptions. Principle of least squares requires no assumptions. Can use correlations

More information

Deciphering Math Notation. Billy Skorupski Associate Professor, School of Education

Deciphering Math Notation. Billy Skorupski Associate Professor, School of Education Deciphering Math Notation Billy Skorupski Associate Professor, School of Education Agenda General overview of data, variables Greek and Roman characters in math and statistics Parameters vs. Statistics

More information

General linear models. One and Two-way ANOVA in SPSS Repeated measures ANOVA Multiple linear regression

General linear models. One and Two-way ANOVA in SPSS Repeated measures ANOVA Multiple linear regression General linear models One and Two-way ANOVA in SPSS Repeated measures ANOVA Multiple linear regression 2-way ANOVA in SPSS Example 14.1 2 3 2-way ANOVA in SPSS Click Add 4 Repeated measures The stroop

More information

Notes 3: Statistical Inference: Sampling, Sampling Distributions Confidence Intervals, and Hypothesis Testing

Notes 3: Statistical Inference: Sampling, Sampling Distributions Confidence Intervals, and Hypothesis Testing Notes 3: Statistical Inference: Sampling, Sampling Distributions Confidence Intervals, and Hypothesis Testing 1. Purpose of statistical inference Statistical inference provides a means of generalizing

More information

Business Statistics. Lecture 9: Simple Regression

Business Statistics. Lecture 9: Simple Regression Business Statistics Lecture 9: Simple Regression 1 On to Model Building! Up to now, class was about descriptive and inferential statistics Numerical and graphical summaries of data Confidence intervals

More information

Lecture Topic 4: Chapter 7 Sampling and Sampling Distributions

Lecture Topic 4: Chapter 7 Sampling and Sampling Distributions Lecture Topic 4: Chapter 7 Sampling and Sampling Distributions Statistical Inference: The aim is to obtain information about a population from information contained in a sample. A population is the set

More information

Suppose we obtain a MLR equation as follows:

Suppose we obtain a MLR equation as follows: Psychology 8 Lecture #9 Outline Probing Interactions among Continuous Variables Suppose we carry out a MLR analysis using a model that includes an interaction term and we find the interaction effect to

More information

Part I. Sampling design. Overview. INFOWO Lecture M6: Sampling design and Experiments. Outline. Sampling design Experiments.

Part I. Sampling design. Overview. INFOWO Lecture M6: Sampling design and Experiments. Outline. Sampling design Experiments. Overview INFOWO Lecture M6: Sampling design and Experiments Peter de Waal Sampling design Experiments Department of Information and Computing Sciences Faculty of Science, Universiteit Utrecht Lecture 4:

More information

Dr. Maddah ENMG 617 EM Statistics 11/28/12. Multiple Regression (3) (Chapter 15, Hines)

Dr. Maddah ENMG 617 EM Statistics 11/28/12. Multiple Regression (3) (Chapter 15, Hines) Dr. Maddah ENMG 617 EM Statistics 11/28/12 Multiple Regression (3) (Chapter 15, Hines) Problems in multiple regression: Multicollinearity This arises when the independent variables x 1, x 2,, x k, are

More information

ECON The Simple Regression Model

ECON The Simple Regression Model ECON 351 - The Simple Regression Model Maggie Jones 1 / 41 The Simple Regression Model Our starting point will be the simple regression model where we look at the relationship between two variables In

More information

Multilevel Modeling: A Second Course

Multilevel Modeling: A Second Course Multilevel Modeling: A Second Course Kristopher Preacher, Ph.D. Upcoming Seminar: February 2-3, 2017, Ft. Myers, Florida What this workshop will accomplish I will review the basics of multilevel modeling

More information

Review of Multiple Regression

Review of Multiple Regression Ronald H. Heck 1 Let s begin with a little review of multiple regression this week. Linear models [e.g., correlation, t-tests, analysis of variance (ANOVA), multiple regression, path analysis, multivariate

More information

STA121: Applied Regression Analysis

STA121: Applied Regression Analysis STA121: Applied Regression Analysis Linear Regression Analysis - Chapters 3 and 4 in Dielman Artin Department of Statistical Science September 15, 2009 Outline 1 Simple Linear Regression Analysis 2 Using

More information

Inference for the Regression Coefficient

Inference for the Regression Coefficient Inference for the Regression Coefficient Recall, b 0 and b 1 are the estimates of the slope β 1 and intercept β 0 of population regression line. We can shows that b 0 and b 1 are the unbiased estimates

More information

ECNS 561 Multiple Regression Analysis

ECNS 561 Multiple Regression Analysis ECNS 561 Multiple Regression Analysis Model with Two Independent Variables Consider the following model Crime i = β 0 + β 1 Educ i + β 2 [what else would we like to control for?] + ε i Here, we are taking

More information

Lecture 30. DATA 8 Summer Regression Inference

Lecture 30. DATA 8 Summer Regression Inference DATA 8 Summer 2018 Lecture 30 Regression Inference Slides created by John DeNero (denero@berkeley.edu) and Ani Adhikari (adhikari@berkeley.edu) Contributions by Fahad Kamran (fhdkmrn@berkeley.edu) and

More information

Mathematics for Economics MA course

Mathematics for Economics MA course Mathematics for Economics MA course Simple Linear Regression Dr. Seetha Bandara Simple Regression Simple linear regression is a statistical method that allows us to summarize and study relationships between

More information

Linear Model Selection and Regularization

Linear Model Selection and Regularization Linear Model Selection and Regularization Recall the linear model Y = β 0 + β 1 X 1 + + β p X p + ɛ. In the lectures that follow, we consider some approaches for extending the linear model framework. In

More information

Final Exam. Name: Solution:

Final Exam. Name: Solution: Final Exam. Name: Instructions. Answer all questions on the exam. Open books, open notes, but no electronic devices. The first 13 problems are worth 5 points each. The rest are worth 1 point each. HW1.

More information

Statistical Inference with Regression Analysis

Statistical Inference with Regression Analysis Introductory Applied Econometrics EEP/IAS 118 Spring 2015 Steven Buck Lecture #13 Statistical Inference with Regression Analysis Next we turn to calculating confidence intervals and hypothesis testing

More information

Lecture 4: Multivariate Regression, Part 2

Lecture 4: Multivariate Regression, Part 2 Lecture 4: Multivariate Regression, Part 2 Gauss-Markov Assumptions 1) Linear in Parameters: Y X X X i 0 1 1 2 2 k k 2) Random Sampling: we have a random sample from the population that follows the above

More information

Applied Machine Learning Annalisa Marsico

Applied Machine Learning Annalisa Marsico Applied Machine Learning Annalisa Marsico OWL RNA Bionformatics group Max Planck Institute for Molecular Genetics Free University of Berlin 22 April, SoSe 2015 Goals Feature Selection rather than Feature

More information

coefficients n 2 are the residuals obtained when we estimate the regression on y equals the (simple regression) estimated effect of the part of x 1

coefficients n 2 are the residuals obtained when we estimate the regression on y equals the (simple regression) estimated effect of the part of x 1 Review - Interpreting the Regression If we estimate: It can be shown that: where ˆ1 r i coefficients β ˆ+ βˆ x+ βˆ ˆ= 0 1 1 2x2 y ˆβ n n 2 1 = rˆ i1yi rˆ i1 i= 1 i= 1 xˆ are the residuals obtained when

More information

Chapter 13. Multiple Regression and Model Building

Chapter 13. Multiple Regression and Model Building Chapter 13 Multiple Regression and Model Building Multiple Regression Models The General Multiple Regression Model y x x x 0 1 1 2 2... k k y is the dependent variable x, x,..., x 1 2 k the model are the

More information

Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity

Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity Lecture 5: Omitted Variables, Dummy Variables and Multicollinearity R.G. Pierse 1 Omitted Variables Suppose that the true model is Y i β 1 + β X i + β 3 X 3i + u i, i 1,, n (1.1) where β 3 0 but that the

More information

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari

MS&E 226: Small Data. Lecture 11: Maximum likelihood (v2) Ramesh Johari MS&E 226: Small Data Lecture 11: Maximum likelihood (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 18 The likelihood function 2 / 18 Estimating the parameter This lecture develops the methodology behind

More information

Don t be Fancy. Impute Your Dependent Variables!

Don t be Fancy. Impute Your Dependent Variables! Don t be Fancy. Impute Your Dependent Variables! Kyle M. Lang, Todd D. Little Institute for Measurement, Methodology, Analysis & Policy Texas Tech University Lubbock, TX May 24, 2016 Presented at the 6th

More information

Training and Technical Assistance Webinar Series Statistical Analysis for Criminal Justice Research

Training and Technical Assistance Webinar Series Statistical Analysis for Criminal Justice Research Training and Technical Assistance Webinar Series Statistical Analysis for Criminal Justice Research Justice Research and Statistics Association 720 7 th Street, NW, Third Floor Washington, DC 20001 II.

More information

10. Alternative case influence statistics

10. Alternative case influence statistics 10. Alternative case influence statistics a. Alternative to D i : dffits i (and others) b. Alternative to studres i : externally-studentized residual c. Suggestion: use whatever is convenient with the

More information

statistical sense, from the distributions of the xs. The model may now be generalized to the case of k regressors:

statistical sense, from the distributions of the xs. The model may now be generalized to the case of k regressors: Wooldridge, Introductory Econometrics, d ed. Chapter 3: Multiple regression analysis: Estimation In multiple regression analysis, we extend the simple (two-variable) regression model to consider the possibility

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Maximum-Likelihood Estimation: Basic Ideas

Maximum-Likelihood Estimation: Basic Ideas Sociology 740 John Fox Lecture Notes Maximum-Likelihood Estimation: Basic Ideas Copyright 2014 by John Fox Maximum-Likelihood Estimation: Basic Ideas 1 I The method of maximum likelihood provides estimators

More information

A Non-parametric bootstrap for multilevel models

A Non-parametric bootstrap for multilevel models A Non-parametric bootstrap for multilevel models By James Carpenter London School of Hygiene and ropical Medicine Harvey Goldstein and Jon asbash Institute of Education 1. Introduction Bootstrapping is

More information

Supplementary material (Additional file 1)

Supplementary material (Additional file 1) Supplementary material (Additional file 1) Contents I. Bias-Variance Decomposition II. Supplementary Figures: Simulation model 2 and real data sets III. Supplementary Figures: Simulation model 1 IV. Molecule

More information

Dimensionality Reduction Techniques (DRT)

Dimensionality Reduction Techniques (DRT) Dimensionality Reduction Techniques (DRT) Introduction: Sometimes we have lot of variables in the data for analysis which create multidimensional matrix. To simplify calculation and to get appropriate,

More information

MS-C1620 Statistical inference

MS-C1620 Statistical inference MS-C1620 Statistical inference 10 Linear regression III Joni Virta Department of Mathematics and Systems Analysis School of Science Aalto University Academic year 2018 2019 Period III - IV 1 / 32 Contents

More information

Conditional Standard Errors of Measurement for Performance Ratings from Ordinary Least Squares Regression

Conditional Standard Errors of Measurement for Performance Ratings from Ordinary Least Squares Regression Conditional SEMs from OLS, 1 Conditional Standard Errors of Measurement for Performance Ratings from Ordinary Least Squares Regression Mark R. Raymond and Irina Grabovsky National Board of Medical Examiners

More information

Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares

Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares Many economic models involve endogeneity: that is, a theoretical relationship does not fit

More information

Analysis of Variance and Co-variance. By Manza Ramesh

Analysis of Variance and Co-variance. By Manza Ramesh Analysis of Variance and Co-variance By Manza Ramesh Contents Analysis of Variance (ANOVA) What is ANOVA? The Basic Principle of ANOVA ANOVA Technique Setting up Analysis of Variance Table Short-cut Method

More information

STATISTICS 4, S4 (4769) A2

STATISTICS 4, S4 (4769) A2 (4769) A2 Objectives To provide students with the opportunity to explore ideas in more advanced statistics to a greater depth. Assessment Examination (72 marks) 1 hour 30 minutes There are four options

More information

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS Page 1 MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level

More information

Chapter 1 Statistical Inference

Chapter 1 Statistical Inference Chapter 1 Statistical Inference causal inference To infer causality, you need a randomized experiment (or a huge observational study and lots of outside information). inference to populations Generalizations

More information

Multiple Regression Analysis: Heteroskedasticity

Multiple Regression Analysis: Heteroskedasticity Multiple Regression Analysis: Heteroskedasticity y = β 0 + β 1 x 1 + β x +... β k x k + u Read chapter 8. EE45 -Chaiyuth Punyasavatsut 1 topics 8.1 Heteroskedasticity and OLS 8. Robust estimation 8.3 Testing

More information

Basics of Experimental Design. Review of Statistics. Basic Study. Experimental Design. When an Experiment is Not Possible. Studying Relations

Basics of Experimental Design. Review of Statistics. Basic Study. Experimental Design. When an Experiment is Not Possible. Studying Relations Basics of Experimental Design Review of Statistics And Experimental Design Scientists study relation between variables In the context of experiments these variables are called independent and dependent

More information

Lecture 4: Types of errors. Bayesian regression models. Logistic regression

Lecture 4: Types of errors. Bayesian regression models. Logistic regression Lecture 4: Types of errors. Bayesian regression models. Logistic regression A Bayesian interpretation of regularization Bayesian vs maximum likelihood fitting more generally COMP-652 and ECSE-68, Lecture

More information

Interval estimation. October 3, Basic ideas CLT and CI CI for a population mean CI for a population proportion CI for a Normal mean

Interval estimation. October 3, Basic ideas CLT and CI CI for a population mean CI for a population proportion CI for a Normal mean Interval estimation October 3, 2018 STAT 151 Class 7 Slide 1 Pandemic data Treatment outcome, X, from n = 100 patients in a pandemic: 1 = recovered and 0 = not recovered 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0

More information

Empirical approaches in public economics

Empirical approaches in public economics Empirical approaches in public economics ECON4624 Empirical Public Economics Fall 2016 Gaute Torsvik Outline for today The canonical problem Basic concepts of causal inference Randomized experiments Non-experimental

More information

REGRESSION DIAGNOSTICS AND REMEDIAL MEASURES

REGRESSION DIAGNOSTICS AND REMEDIAL MEASURES REGRESSION DIAGNOSTICS AND REMEDIAL MEASURES Lalmohan Bhar I.A.S.R.I., Library Avenue, Pusa, New Delhi 110 01 lmbhar@iasri.res.in 1. Introduction Regression analysis is a statistical methodology that utilizes

More information

University, Tempe, Arizona, USA b Department of Mathematics and Statistics, University of New. Mexico, Albuquerque, New Mexico, USA

University, Tempe, Arizona, USA b Department of Mathematics and Statistics, University of New. Mexico, Albuquerque, New Mexico, USA This article was downloaded by: [University of New Mexico] On: 27 September 2012, At: 22:13 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

More information

Multiple Linear Regression CIVL 7012/8012

Multiple Linear Regression CIVL 7012/8012 Multiple Linear Regression CIVL 7012/8012 2 Multiple Regression Analysis (MLR) Allows us to explicitly control for many factors those simultaneously affect the dependent variable This is important for

More information

A Practitioner s Guide to Cluster-Robust Inference

A Practitioner s Guide to Cluster-Robust Inference A Practitioner s Guide to Cluster-Robust Inference A. C. Cameron and D. L. Miller presented by Federico Curci March 4, 2015 Cameron Miller Cluster Clinic II March 4, 2015 1 / 20 In the previous episode

More information

ESS 265 Spring Quarter 2005 Time Series Analysis: Linear Regression

ESS 265 Spring Quarter 2005 Time Series Analysis: Linear Regression ESS 265 Spring Quarter 2005 Time Series Analysis: Linear Regression Lecture 11 May 10, 2005 Multivariant Regression A multi-variant relation between a dependent variable y and several independent variables

More information

Multiple Linear Regression for the Supervisor Data

Multiple Linear Regression for the Supervisor Data for the Supervisor Data Rating 40 50 60 70 80 90 40 50 60 70 50 60 70 80 90 40 60 80 40 60 80 Complaints Privileges 30 50 70 40 60 Learn Raises 50 70 50 70 90 Critical 40 50 60 70 80 30 40 50 60 70 80

More information

2.1 Linear regression with matrices

2.1 Linear regression with matrices 21 Linear regression with matrices The values of the independent variables are united into the matrix X (design matrix), the values of the outcome and the coefficient are represented by the vectors Y and

More information

Objectives Simple linear regression. Statistical model for linear regression. Estimating the regression parameters

Objectives Simple linear regression. Statistical model for linear regression. Estimating the regression parameters Objectives 10.1 Simple linear regression Statistical model for linear regression Estimating the regression parameters Confidence interval for regression parameters Significance test for the slope Confidence

More information

Estimation and Centering

Estimation and Centering Estimation and Centering PSYED 3486 Feifei Ye University of Pittsburgh Main Topics Estimating the level-1 coefficients for a particular unit Reading: R&B, Chapter 3 (p85-94) Centering-Location of X Reading

More information

Lecture 9: Linear Regression

Lecture 9: Linear Regression Lecture 9: Linear Regression Goals Develop basic concepts of linear regression from a probabilistic framework Estimating parameters and hypothesis testing with linear models Linear regression in R Regression

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

Data analysis strategies for high dimensional social science data M3 Conference May 2013

Data analysis strategies for high dimensional social science data M3 Conference May 2013 Data analysis strategies for high dimensional social science data M3 Conference May 2013 W. Holmes Finch, Maria Hernández Finch, David E. McIntosh, & Lauren E. Moss Ball State University High dimensional

More information

2.3 Estimating PDFs and PDF Parameters

2.3 Estimating PDFs and PDF Parameters .3 Estimating PDFs and PDF Parameters estimating means - discrete and continuous estimating variance using a known mean estimating variance with an estimated mean estimating a discrete pdf estimating a

More information

Measurement Theory. Reliability. Error Sources. = XY r XX. r XY. r YY

Measurement Theory. Reliability. Error Sources. = XY r XX. r XY. r YY Y -3 - -1 0 1 3 X Y -10-5 0 5 10 X Measurement Theory t & X 1 X X 3 X k Reliability e 1 e e 3 e k 1 The Big Picture Measurement error makes it difficult to identify the true patterns of relationships between

More information

High-dimensional regression

High-dimensional regression High-dimensional regression Advanced Methods for Data Analysis 36-402/36-608) Spring 2014 1 Back to linear regression 1.1 Shortcomings Suppose that we are given outcome measurements y 1,... y n R, and

More information

Linear Regression Models. Based on Chapter 3 of Hastie, Tibshirani and Friedman

Linear Regression Models. Based on Chapter 3 of Hastie, Tibshirani and Friedman Linear Regression Models Based on Chapter 3 of Hastie, ibshirani and Friedman Linear Regression Models Here the X s might be: p f ( X = " + " 0 j= 1 X j Raw predictor variables (continuous or coded-categorical

More information

Business Statistics. Lecture 10: Course Review

Business Statistics. Lecture 10: Course Review Business Statistics Lecture 10: Course Review 1 Descriptive Statistics for Continuous Data Numerical Summaries Location: mean, median Spread or variability: variance, standard deviation, range, percentiles,

More information

Structural Equation Modeling and Confirmatory Factor Analysis. Types of Variables

Structural Equation Modeling and Confirmatory Factor Analysis. Types of Variables /4/04 Structural Equation Modeling and Confirmatory Factor Analysis Advanced Statistics for Researchers Session 3 Dr. Chris Rakes Website: http://csrakes.yolasite.com Email: Rakes@umbc.edu Twitter: @RakesChris

More information

Principal Component Analysis & Factor Analysis. Psych 818 DeShon

Principal Component Analysis & Factor Analysis. Psych 818 DeShon Principal Component Analysis & Factor Analysis Psych 818 DeShon Purpose Both are used to reduce the dimensionality of correlated measurements Can be used in a purely exploratory fashion to investigate

More information

Daniel Boduszek University of Huddersfield

Daniel Boduszek University of Huddersfield Daniel Boduszek University of Huddersfield d.boduszek@hud.ac.uk Introduction to moderator effects Hierarchical Regression analysis with continuous moderator Hierarchical Regression analysis with categorical

More information

Regression Analysis: Basic Concepts

Regression Analysis: Basic Concepts The simple linear model Regression Analysis: Basic Concepts Allin Cottrell Represents the dependent variable, y i, as a linear function of one independent variable, x i, subject to a random disturbance

More information

MSc / PhD Course Advanced Biostatistics. dr. P. Nazarov

MSc / PhD Course Advanced Biostatistics. dr. P. Nazarov MSc / PhD Course Advanced Biostatistics dr. P. Nazarov petr.nazarov@crp-sante.lu 04-1-013 L4. Linear models edu.sablab.net/abs013 1 Outline ANOVA (L3.4) 1-factor ANOVA Multifactor ANOVA Experimental design

More information

Lecture 4: Multivariate Regression, Part 2

Lecture 4: Multivariate Regression, Part 2 Lecture 4: Multivariate Regression, Part 2 Gauss-Markov Assumptions 1) Linear in Parameters: Y X X X i 0 1 1 2 2 k k 2) Random Sampling: we have a random sample from the population that follows the above

More information

Lecture 12 Inference in MLR

Lecture 12 Inference in MLR Lecture 12 Inference in MLR STAT 512 Spring 2011 Background Reading KNNL: 6.6-6.7 12-1 Topic Overview Review MLR Model Inference about Regression Parameters Estimation of Mean Response Prediction 12-2

More information

FCE 3900 EDUCATIONAL RESEARCH LECTURE 8 P O P U L A T I O N A N D S A M P L I N G T E C H N I Q U E

FCE 3900 EDUCATIONAL RESEARCH LECTURE 8 P O P U L A T I O N A N D S A M P L I N G T E C H N I Q U E FCE 3900 EDUCATIONAL RESEARCH LECTURE 8 P O P U L A T I O N A N D S A M P L I N G T E C H N I Q U E OBJECTIVE COURSE Understand the concept of population and sampling in the research. Identify the type

More information

psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests

psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests psyc3010 lecture 2 factorial between-ps ANOVA I: omnibus tests last lecture: introduction to factorial designs next lecture: factorial between-ps ANOVA II: (effect sizes and follow-up tests) 1 general

More information

FinQuiz Notes

FinQuiz Notes Reading 10 Multiple Regression and Issues in Regression Analysis 2. MULTIPLE LINEAR REGRESSION Multiple linear regression is a method used to model the linear relationship between a dependent variable

More information

COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 10

COS513: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 10 COS53: FOUNDATIONS OF PROBABILISTIC MODELS LECTURE 0 MELISSA CARROLL, LINJIE LUO. BIAS-VARIANCE TRADE-OFF (CONTINUED FROM LAST LECTURE) If V = (X n, Y n )} are observed data, the linear regression problem

More information

2/26/2017. This is similar to canonical correlation in some ways. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

2/26/2017. This is similar to canonical correlation in some ways. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 What is factor analysis? What are factors? Representing factors Graphs and equations Extracting factors Methods and criteria Interpreting

More information

Introduction to Statistical Data Analysis Lecture 4: Sampling

Introduction to Statistical Data Analysis Lecture 4: Sampling Introduction to Statistical Data Analysis Lecture 4: Sampling James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis 1 / 30 Introduction

More information

The Reliability of a Homogeneous Test. Measurement Methods Lecture 12

The Reliability of a Homogeneous Test. Measurement Methods Lecture 12 The Reliability of a Homogeneous Test Measurement Methods Lecture 12 Today s Class Estimating the reliability of a homogeneous test. McDonald s Omega. Guttman-Chronbach Alpha. Spearman-Brown. What to do

More information

FAQ: Linear and Multiple Regression Analysis: Coefficients

FAQ: Linear and Multiple Regression Analysis: Coefficients Question 1: How do I calculate a least squares regression line? Answer 1: Regression analysis is a statistical tool that utilizes the relation between two or more quantitative variables so that one variable

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2

MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2 MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2 1 Bootstrapped Bias and CIs Given a multiple regression model with mean and

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /1/2016 1/46

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /1/2016 1/46 BIO5312 Biostatistics Lecture 10:Regression and Correlation Methods Dr. Junchao Xia Center of Biophysics and Computational Biology Fall 2016 11/1/2016 1/46 Outline In this lecture, we will discuss topics

More information

What Is a Sampling Distribution? DISTINGUISH between a parameter and a statistic

What Is a Sampling Distribution? DISTINGUISH between a parameter and a statistic Section 8.1A What Is a Sampling Distribution? Learning Objectives After this section, you should be able to DISTINGUISH between a parameter and a statistic DEFINE sampling distribution DISTINGUISH between

More information

Steps in Regression Analysis

Steps in Regression Analysis MGMG 522 : Session #2 Learning to Use Regression Analysis & The Classical Model (Ch. 3 & 4) 2-1 Steps in Regression Analysis 1. Review the literature and develop the theoretical model 2. Specify the model:

More information

SYA 3300 Research Methods and Lab Summer A, 2000

SYA 3300 Research Methods and Lab Summer A, 2000 May 17, 2000 Sampling Why sample? Types of sampling methods Probability Non-probability Sampling distributions Purposes of Today s Class Define generalizability and its relation to different sampling strategies

More information

Harvard University. Rigorous Research in Engineering Education

Harvard University. Rigorous Research in Engineering Education Statistical Inference Kari Lock Harvard University Department of Statistics Rigorous Research in Engineering Education 12/3/09 Statistical Inference You have a sample and want to use the data collected

More information

Sampling distributions:

Sampling distributions: Sampling distributions: In Psychology we generally make inferences about populations on the basis of limited samples. We therefore need to know what relationship exists between samples and populations.

More information

Chapter 14 Student Lecture Notes 14-1

Chapter 14 Student Lecture Notes 14-1 Chapter 14 Student Lecture Notes 14-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 14 Multiple Regression Analysis and Model Building Chap 14-1 Chapter Goals After completing this

More information

THE APPLICATION OF SIMPLE STATISTICS IN GRAINS RESEARCH

THE APPLICATION OF SIMPLE STATISTICS IN GRAINS RESEARCH THE APPLICATION OF SIMPLE STATISTICS IN GRAINS RESEARCH Phil Williams PDK Projects, Inc., Nanaimo, Canada philwilliams@pdkgrain.com INTRODUCTION It is helpful to remember two descriptions. The first is

More information

RCB - Example. STA305 week 10 1

RCB - Example. STA305 week 10 1 RCB - Example An accounting firm wants to select training program for its auditors who conduct statistical sampling as part of their job. Three training methods are under consideration: home study, presentations

More information

KDF2C QUANTITATIVE TECHNIQUES FOR BUSINESSDECISION. Unit : I - V

KDF2C QUANTITATIVE TECHNIQUES FOR BUSINESSDECISION. Unit : I - V KDF2C QUANTITATIVE TECHNIQUES FOR BUSINESSDECISION Unit : I - V Unit I: Syllabus Probability and its types Theorems on Probability Law Decision Theory Decision Environment Decision Process Decision tree

More information

Interpret Standard Deviation. Outlier Rule. Describe the Distribution OR Compare the Distributions. Linear Transformations SOCS. Interpret a z score

Interpret Standard Deviation. Outlier Rule. Describe the Distribution OR Compare the Distributions. Linear Transformations SOCS. Interpret a z score Interpret Standard Deviation Outlier Rule Linear Transformations Describe the Distribution OR Compare the Distributions SOCS Using Normalcdf and Invnorm (Calculator Tips) Interpret a z score What is an

More information

DIMENSION REDUCTION OF THE EXPLANATORY VARIABLES IN MULTIPLE LINEAR REGRESSION. P. Filzmoser and C. Croux

DIMENSION REDUCTION OF THE EXPLANATORY VARIABLES IN MULTIPLE LINEAR REGRESSION. P. Filzmoser and C. Croux Pliska Stud. Math. Bulgar. 003), 59 70 STUDIA MATHEMATICA BULGARICA DIMENSION REDUCTION OF THE EXPLANATORY VARIABLES IN MULTIPLE LINEAR REGRESSION P. Filzmoser and C. Croux Abstract. In classical multiple

More information

Multiple Linear Regression II. Lecture 8. Overview. Readings

Multiple Linear Regression II. Lecture 8. Overview. Readings Multiple Linear Regression II Lecture 8 Image source:http://commons.wikimedia.org/wiki/file:vidrarias_de_laboratorio.jpg Survey Research & Design in Psychology James Neill, 2015 Creative Commons Attribution

More information

Multiple Linear Regression II. Lecture 8. Overview. Readings. Summary of MLR I. Summary of MLR I. Summary of MLR I

Multiple Linear Regression II. Lecture 8. Overview. Readings. Summary of MLR I. Summary of MLR I. Summary of MLR I Multiple Linear Regression II Lecture 8 Image source:http://commons.wikimedia.org/wiki/file:vidrarias_de_laboratorio.jpg Survey Research & Design in Psychology James Neill, 2015 Creative Commons Attribution

More information

Summary and discussion of The central role of the propensity score in observational studies for causal effects

Summary and discussion of The central role of the propensity score in observational studies for causal effects Summary and discussion of The central role of the propensity score in observational studies for causal effects Statistics Journal Club, 36-825 Jessica Chemali and Michael Vespe 1 Summary 1.1 Background

More information

AP Statistics Cumulative AP Exam Study Guide

AP Statistics Cumulative AP Exam Study Guide AP Statistics Cumulative AP Eam Study Guide Chapters & 3 - Graphs Statistics the science of collecting, analyzing, and drawing conclusions from data. Descriptive methods of organizing and summarizing statistics

More information

Multiple Linear Regression

Multiple Linear Regression Andrew Lonardelli December 20, 2013 Multiple Linear Regression 1 Table Of Contents Introduction: p.3 Multiple Linear Regression Model: p.3 Least Squares Estimation of the Parameters: p.4-5 The matrix approach

More information

Linear Regression with 1 Regressor. Introduction to Econometrics Spring 2012 Ken Simons

Linear Regression with 1 Regressor. Introduction to Econometrics Spring 2012 Ken Simons Linear Regression with 1 Regressor Introduction to Econometrics Spring 2012 Ken Simons Linear Regression with 1 Regressor 1. The regression equation 2. Estimating the equation 3. Assumptions required for

More information

Simple Linear Regression Estimation and Properties

Simple Linear Regression Estimation and Properties Simple Linear Regression Estimation and Properties Outline Review of the Reading Estimate parameters using OLS Other features of OLS Numerical Properties of OLS Assumptions of OLS Goodness of Fit Checking

More information