Research CharlieMatters

Size: px
Start display at page:

Download "Research CharlieMatters"

Transcription

1 Research CharlieMatters Van Loan and the Matrix Exponential February 25, 2009 Nick Nick Higham Director Schoolof ofresearch Mathematics The School University of Mathematics of Manchester nickhigham.wordpress.com Numerical Linear and Multilinear Algebra: Celebrating Charlie Van Loan SIAM Annual Meeting, Boston July 13, / 6

2

3 Charlie and MATLAB Pioneer of the use of MATLAB in teaching. Popularized the colon notation in numerical linear algebra. Nick Higham Charlie Van Loan 3 / 22

4 Laguerre (1867): Peano (1888):

5 e A in Applied Mathematics Frazer, Duncan & Collar, Aerodynamics Division of NPL: aircraft flutter, matrix structural analysis. Elementary Matrices & Some Applications to Dynamics and Differential Equations, Emphasizes importance of e A. Arthur Roderick Collar, FRS ( ): First book to treat matrices as a branch of applied mathematics. Nick Higham Charlie Van Loan 5 / 22

6 University of Manchester Period, Science Research Council Research Fellow Charles F. Van Loan. A study of the matrix exponential. Numerical Analysis Report No. 10, University of Manchester, Manchester, UK, August I became interested in the matrix exponential during the preparation of a talk I gave on the subject in 1974 here at Manchester. Since then I have been motivated by the work of B.N. Parlett [20] and by C. B. Moler with his n bad ways to compute the matrix exponential (n 9). Nick Higham Charlie Van Loan 6 / 22

7

8 Contents Defines f (A) by Cauchy integral. Gives explicit, divided difference-based formula for f (T ), T triangular. Bounds and perturbation bounds for e ta. Backward error result for Padé approximants. Extensive use of Schur decomposition. one of the most basic tenets of numerical algebra, namely, anything that the Jordan decomposition can do, the Schur decomposition can do better! Nick Higham Charlie Van Loan 8 / 22

9 A Bibliography of the Matrix Exponential Dear Exponential Freak, I collect facts, algorithms, and references about e At. If you have one that is missing from these references, please write to me. (Undated.) Nick Higham Charlie Van Loan 9 / 22

10 Sensitivity of the Exponential SINUM, Jordan and Schur-based bounds. Bounded the condition number. Showed condition number is minimal for normal A. Contemporary work by Kågström. Open Question When is the condition number of e A large? Nick Higham Charlie Van Loan 10 / 22

11 Integrals ([ ]) A11 A exp 12 = 0 A 22 ea e A11(1 s) A 12 e A22s ds. 0 e A 22 CVL, IEEE Trans. Automat. Control (1978): use in reverse direction to evaluate integrals involving e A via exponentials of bock triangular matrices. 4th most cited paper! Nick Higham Charlie Van Loan 11 / 22

12 Nineteen Dubious Ways (1) Moler and Van Loan, SIREV, A C n n : Power series Limit Scaling and squaring I + A + A2 2! + A3 3! + lim (I + A/s)s (e s A/2s ) 2s Cauchy integral Jordan form Interpolation 1 n i 1 e z (zi A) 1 dz Z diag(e J k )Z 1 f [λ 1,..., λ i ] (A λ j I) 2πi Γ i=1 j=1 Differential system Schur form Padé approximation Y (t) = AY (t), Y (0) = I Qdiag(e T )Q p km (A)q km (A) 1 Nick Higham Charlie Van Loan 12 / 22

13 Nineteen Dubious Ways (2) Scaling and squaring: e A = ( e A/s) s. Hump phenomenon: e A e A/s s, instability. Backward error analysis for Padé approximants. S&S: Padé more efficient than Taylor. How to choose Padé degree to achieve given accuracy at min cost. Nick Higham Charlie Van Loan 13 / 22

14 Nineteen Dubious Ways (2) Scaling and squaring: e A = ( e A/s) s. Hump phenomenon: e A e A/s s, instability. Backward error analysis for Padé approximants. S&S: Padé more efficient than Taylor. How to choose Padé degree to achieve given accuracy at min cost. Pros and cons of various other methods explained; emphasis on numerical stability. Republished in SIREV 2003 with Method 20: Krylov space methods and new sections. Taken together, CVL s most cited-paper: 2800 citations. Nick Higham Charlie Van Loan 13 / 22

15 History of the S&S Method (1) J. D. Lawson (1967): exponential integrators for ODE. Suggests using ( e ) 2 s A 2 s = e A with diagonal Padé approximants (uncond. stable). Ward (1977): m = 8, 2 s A 1 1. MATLAB expm up to 2005: m = 6, 2 s A 1/2. In 2004 I started the e A chapter of my book Functions of Matrices: Theory and Computation... Nick Higham Charlie Van Loan 14 / 22

16 History of the S&S Method (2) H (2005): choose (s, m) at run-time based on sharper, non-explicit error bounds. Algorithm m θ m for m = [ ] if A 1 θ m, X = r m (A), quit, end end A A/2 s with s 0 minimal s.t. A/2 s 1 θ 13 = X = r s 13 by repeated squaring. Nick Higham Charlie Van Loan 15 / 22

17 History of the S&S Method (2) H (2005): choose (s, m) at run-time based on sharper, non-explicit error bounds. Algorithm m θ m for m = [ ] if A 1 θ m, X = r m (A), quit, end end A A/2 s with s 0 minimal s.t. A/2 s 1 θ 13 = X = r s 13 by repeated squaring. Faster, and in practice more accurate, than previous alg. Nick Higham Charlie Van Loan 15 / 22

18 History of the S&S Method (3) Overscaling (Kenney & Laub, 1998; Dieci & Papini, 2000) : large A causes larger than necessary s to be chosen, with harmful effect on accuracy. Al-Mohy & H (2009) avoid via sharper bounds. Lemma If k = pm 1 + qm 2 with p, q N and m 1, m 2 N {0}, A k 1/k max ( A p 1/p, A q 1/q). Take {p, q} = {r, r + 1} for k r(r 1). Improved expm in MATLAB 2015b. Nick Higham Charlie Van Loan 16 / 22

19 Software Scene Al-Mohy & H (2009) scaling & squaring algorithm for e A is in Julia, MATLAB, NAG Library, R, SciPy. H & Deadman, A Catalogue of Software for Matrix Functions (2016). Nick Higham Charlie Van Loan 17 / 22

20 Action of the Exponential Compute e A b without first computing e A. What was originally wanted by Lawson (1967), but problems small there! Krylov methods commonly used. Nick Higham Charlie Van Loan 18 / 22

21 The Sixth Dubious Way Moler & Van Loan (1978, 2003) Nick Higham Charlie Van Loan 19 / 22

22 Al-Mohy & Higham (2011) expmv Exploit, for integer s, e A B = (e s 1A ) s B = e s 1A e s 1A e s 1 A }{{} B. s times Choose s so T m (s 1 A) = m (s 1 A) j j=0 j! e s 1A. Then B i+1 = T m (s 1 A)B i, i = 0: s 1, B 0 = B yields B s e A B. Nick Higham Charlie Van Loan 20 / 22

23 Al-Mohy & Higham (2011) expmv Exploit, for integer s, e A B = (e s 1A ) s B = e s 1A e s 1A e s 1 A }{{} B. s times Choose s so T m (s 1 A) = m (s 1 A) j j=0 j! e s 1A. Then B i+1 = T m (s 1 A)B i, i = 0: s 1, B 0 = B yields B s e A B. Choose s and m using b err & A k 1/k approach. Nick Higham Charlie Van Loan 20 / 22

24 Advantages of expmv Versus one-step ODE integrators: Fully exploits the linearity of the ODE. Variable order, up to m = 55. Backward error based; ODE integrator controls local (forward) errors. Overscaling avoided. Versus Krylov methods: Very competitive in cost and storage. Cost dominated by matrix vector multiplications. Black box: no need to choose/tune parameters. Nick Higham Charlie Van Loan 21 / 22

25 Charlie in Three Bullets Aficionado of the Matrix Exponential. Nick Higham Charlie Van Loan 22 / 22

26 Charlie in Three Bullets Aficionado of the Matrix Exponential. Master of Matrix Computations. Nick Higham Charlie Van Loan 22 / 22

27 Charlie in Three Bullets Aficionado of the Matrix Exponential. Master of Matrix Computations. Baseball nut and family man. "Reproduced with the permission of the Commissioner of Major League Baseball". c 1988 Nick Higham Charlie Van Loan 22 / 22

28 References I A. H. Al-Mohy and N. J. Higham. Improved inverse scaling and squaring algorithms for the matrix logarithm. SIAM J. Sci. Comput., 34(4):C153 C169, M. Aprahamian and N. J. Higham. The matrix unwinding function, with an application to computing the matrix exponential. SIAM J. Matrix Anal. Appl., 35(1):88 109, L. Dieci and A. Papini. Padé approximation for the exponential of a block triangular matrix. Linear Algebra Appl., 308: , Nick Higham Charlie Van Loan 1 / 5

29 References II R. A. Frazer, W. J. Duncan, and A. R. Collar. Elementary Matrices and Some Applications to Dynamics and Differential Equations. Cambridge University Press, Cambridge, UK, xviii+416 pp printing. N. J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, ISBN xx+425 pp. Nick Higham Charlie Van Loan 2 / 5

30 References III N. J. Higham and A. H. Al-Mohy. Computing matrix functions. Acta Numerica, 19: , N. J. Higham and E. Deadman. A catalogue of software for matrix functions. Version 2.0. MIMS EPrint , Manchester Institute for Mathematical Sciences, The University of Manchester, UK, Jan pp. Updated March Nick Higham Charlie Van Loan 3 / 5

31 References IV N. J. Higham and F. Tisseur. A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl., 21(4): , R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge, UK, ISBN X. viii+607 pp. C. S. Kenney and A. J. Laub. A Schur Fréchet algorithm for computing the logarithm and exponential of a matrix. SIAM J. Matrix Anal. Appl., 19(3): , Nick Higham Charlie Van Loan 4 / 5

32 References V C. B. Moler and C. F. Van Loan. Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev., 20(4): , C. B. Moler and C. F. Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev., 45(1):3 49, Multiprecision Computing Toolbox. Advanpix, Tokyo. Nick Higham Charlie Van Loan 5 / 5

Computing the Action of the Matrix Exponential

Computing the Action of the Matrix Exponential Computing the Action of the Matrix Exponential Nick Higham School of Mathematics The University of Manchester higham@ma.man.ac.uk http://www.ma.man.ac.uk/~higham/ Joint work with Awad H. Al-Mohy 16th ILAS

More information

Testing matrix function algorithms using identities. Deadman, Edvin and Higham, Nicholas J. MIMS EPrint:

Testing matrix function algorithms using identities. Deadman, Edvin and Higham, Nicholas J. MIMS EPrint: Testing matrix function algorithms using identities Deadman, Edvin and Higham, Nicholas J. 2014 MIMS EPrint: 2014.13 Manchester Institute for Mathematical Sciences School of Mathematics The University

More information

Improved Inverse Scaling and Squaring Algorithms for the Matrix Logarithm. Al-Mohy, Awad H. and Higham, Nicholas J. MIMS EPrint: 2011.

Improved Inverse Scaling and Squaring Algorithms for the Matrix Logarithm. Al-Mohy, Awad H. and Higham, Nicholas J. MIMS EPrint: 2011. Improved Inverse Scaling and Squaring Algorithms for the Matrix Logarithm Al-Mohy, Awad H. and Higham, Nicholas J. 2011 MIMS EPrint: 2011.83 Manchester Institute for Mathematical Sciences School of Mathematics

More information

Lecture 2: Computing functions of dense matrices

Lecture 2: Computing functions of dense matrices Lecture 2: Computing functions of dense matrices Paola Boito and Federico Poloni Università di Pisa Pisa - Hokkaido - Roma2 Summer School Pisa, August 27 - September 8, 2018 Introduction In this lecture

More information

A more accurate Briggs method for the logarithm

A more accurate Briggs method for the logarithm Numer Algor (2012) 59:393 402 DOI 10.1007/s11075-011-9496-z ORIGINAL PAPER A more accurate Briggs method for the logarithm Awad H. Al-Mohy Received: 25 May 2011 / Accepted: 15 August 2011 / Published online:

More information

Functions of Matrices and

Functions of Matrices and Functions of Matrices and Nearest Research Correlation MattersMatrices February 25, 2009 Nick Higham School Nick Higham of Mathematics The Director University of Research of Manchester Nicholas.J.Higham@manchester.ac.uk

More information

The Scaling and Squaring Method for the Matrix Exponential Revisited. Nicholas J. Higham

The Scaling and Squaring Method for the Matrix Exponential Revisited. Nicholas J. Higham The Scaling and Squaring Method for the Matrix Exponential Revisited Nicholas J. Higham 2005 MIMS EPrint: 2006.394 Manchester Institute for Mathematical Sciences School of Mathematics The University of

More information

COMPUTING THE MATRIX EXPONENTIAL WITH AN OPTIMIZED TAYLOR POLYNOMIAL APPROXIMATION

COMPUTING THE MATRIX EXPONENTIAL WITH AN OPTIMIZED TAYLOR POLYNOMIAL APPROXIMATION COMPUTING THE MATRIX EXPONENTIAL WITH AN OPTIMIZED TAYLOR POLYNOMIAL APPROXIMATION PHILIPP BADER, SERGIO BLANES, FERNANDO CASAS Abstract. We present a new way to compute the Taylor polynomial of the matrix

More information

Functions of a Matrix: Theory and Computation

Functions of a Matrix: Theory and Computation Functions of a Matrix: Theory and Computation Nick Higham School of Mathematics The University of Manchester higham@ma.man.ac.uk http://www.ma.man.ac.uk/~higham/ Landscapes in Mathematical Science, University

More information

Rehabilitating Research Correlations, Matters Avoiding Inversion, and Extracting Roots

Rehabilitating Research Correlations, Matters Avoiding Inversion, and Extracting Roots Rehabilitating Research Correlations, Matters Avoiding Inversion, and Extracting Roots February 25, 2009 Nick Nick Higham Higham Director School of of Research Mathematics The University of Manchester

More information

Director of Research School of Mathematics

Director of Research   School of Mathematics Multiprecision Research Matters Algorithms February Nick25, Higham 2009 School of Mathematics The University Nick Higham of Manchester Director of Research http://www.ma.man.ac.uk/~higham School of Mathematics

More information

2 DIECI AND PAPINI how to choose k; on one hand, we need k large enough because Pade approximations are accurate only if A=2 k is suciently small (see

2 DIECI AND PAPINI how to choose k; on one hand, we need k large enough because Pade approximations are accurate only if A=2 k is suciently small (see PADE APPROXIMATION FOR THE EXPONENTIAL OF A BLOCK TRIANGULAR MATRIX. LUCA DIECI AND ALESSANDRA PAPINI Abstract. In this work we obtain improved error bounds for Pade approximations to e A when A is block

More information

A New Scaling and Squaring Algorithm for the Matrix Exponential. Al-Mohy, Awad H. and Higham, Nicholas J. MIMS EPrint:

A New Scaling and Squaring Algorithm for the Matrix Exponential. Al-Mohy, Awad H. and Higham, Nicholas J. MIMS EPrint: A New Scaling and Squaring Algorithm for the Matrix Exponential Al-Mohy, Awad H. and Higham, Nicholas J. 2009 MIMS EPrint: 2009.9 Manchester Institute for Mathematical Sciences School of Mathematics The

More information

Estimating the Condition Number of f(a)b. Deadman, Edvin. MIMS EPrint: Manchester Institute for Mathematical Sciences School of Mathematics

Estimating the Condition Number of f(a)b. Deadman, Edvin. MIMS EPrint: Manchester Institute for Mathematical Sciences School of Mathematics Estimating the Condition Number of f(a)b Deadman, Edvin 2014 MIMS EPrint: 2014.34 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from:

More information

The Complex Step Approximation to the Fréchet Derivative of a Matrix Function. Al-Mohy, Awad H. and Higham, Nicholas J. MIMS EPrint: 2009.

The Complex Step Approximation to the Fréchet Derivative of a Matrix Function. Al-Mohy, Awad H. and Higham, Nicholas J. MIMS EPrint: 2009. The Complex Step Approximation to the Fréchet Derivative of a Matrix Function Al-Mohy, Awad H. and Higham, Nicholas J. 2009 MIMS EPrint: 2009.31 Manchester Institute for Mathematical Sciences School of

More information

Quadratic Matrix Polynomials

Quadratic Matrix Polynomials Research Triangularization Matters of Quadratic Matrix Polynomials February 25, 2009 Nick Françoise Higham Tisseur Director School of of Research Mathematics The University of Manchester School of Mathematics

More information

Taylor s Theorem for Matrix Functions with Applications to Condition Number Estimation. Deadman, Edvin and Relton, Samuel. MIMS EPrint: 2015.

Taylor s Theorem for Matrix Functions with Applications to Condition Number Estimation. Deadman, Edvin and Relton, Samuel. MIMS EPrint: 2015. Taylor s Theorem for Matrix Functions with Applications to Condition Number Estimation Deadman, Edvin and Relton, Samuel 215 MIMS EPrint: 215.27 Manchester Institute for Mathematical Sciences School of

More information

On-the-fly backward error estimate for matrix exponential approximation by Taylor algorithm

On-the-fly backward error estimate for matrix exponential approximation by Taylor algorithm On-the-fly backward error estimate for matrix exponential approximation by Taylor algorithm M. Caliari a,, F. Zivcovich b a Department of Computer Science, University of Verona, Italy b Department of Mathematics,

More information

Matrix Functions: A Short Course. Higham, Nicholas J. and Lijing, Lin. MIMS EPrint:

Matrix Functions: A Short Course. Higham, Nicholas J. and Lijing, Lin. MIMS EPrint: Matrix Functions: A Short Course Higham, Nicholas J. and Lijing, Lin 2013 MIMS EPrint: 2013.73 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports

More information

Stable iterations for the matrix square root

Stable iterations for the matrix square root Numerical Algorithms 5 (997) 7 4 7 Stable iterations for the matrix square root Nicholas J. Higham Department of Mathematics, University of Manchester, Manchester M3 9PL, England E-mail: higham@ma.man.ac.u

More information

Exponentials of Symmetric Matrices through Tridiagonal Reductions

Exponentials of Symmetric Matrices through Tridiagonal Reductions Exponentials of Symmetric Matrices through Tridiagonal Reductions Ya Yan Lu Department of Mathematics City University of Hong Kong Kowloon, Hong Kong Abstract A simple and efficient numerical algorithm

More information

Functions of Matrices. Nicholas J. Higham. November MIMS EPrint: Manchester Institute for Mathematical Sciences School of Mathematics

Functions of Matrices. Nicholas J. Higham. November MIMS EPrint: Manchester Institute for Mathematical Sciences School of Mathematics Functions of Matrices Nicholas J. Higham November 2005 MIMS EPrint: 2005.21 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: And

More information

Positive Denite Matrix. Ya Yan Lu 1. Department of Mathematics. City University of Hong Kong. Kowloon, Hong Kong. Abstract

Positive Denite Matrix. Ya Yan Lu 1. Department of Mathematics. City University of Hong Kong. Kowloon, Hong Kong. Abstract Computing the Logarithm of a Symmetric Positive Denite Matrix Ya Yan Lu Department of Mathematics City University of Hong Kong Kowloon, Hong Kong Abstract A numerical method for computing the logarithm

More information

Computing Matrix Functions. Higham, Nicholas J. and Al-Mohy, Awad H. MIMS EPrint:

Computing Matrix Functions. Higham, Nicholas J. and Al-Mohy, Awad H. MIMS EPrint: Computing Matrix Functions Higham, Nicholas J. and Al-Mohy, Awad H. 2010 MIMS EPrint: 2010.18 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available

More information

Sensitivity analysis of the differential matrix Riccati equation based on the associated linear differential system

Sensitivity analysis of the differential matrix Riccati equation based on the associated linear differential system Advances in Computational Mathematics 7 (1997) 295 31 295 Sensitivity analysis of the differential matrix Riccati equation based on the associated linear differential system Mihail Konstantinov a and Vera

More information

ON MATRIX BALANCING AND EIGENVECTOR COMPUTATION

ON MATRIX BALANCING AND EIGENVECTOR COMPUTATION ON MATRIX BALANCING AND EIGENVECTOR COMPUTATION RODNEY JAMES, JULIEN LANGOU, AND BRADLEY R. LOWERY arxiv:40.5766v [math.na] Jan 04 Abstract. Balancing a matrix is a preprocessing step while solving the

More information

Computing the matrix cosine

Computing the matrix cosine Numerical Algorithms 34: 13 26, 2003. 2003 Kluwer Academic Publishers. Printed in the Netherlands. Computing the matrix cosine Nicholas J. Higham and Matthew I. Smith Department of Mathematics, University

More information

Solving Burnup Equations in Serpent:

Solving Burnup Equations in Serpent: Solving Burnup Equations in Serpent: Matrix Exponential Method CRAM Maria Pusa September 15th, 2011 Outline Burnup equations and matrix exponential solution Characteristics of burnup matrices Established

More information

Computing Real Logarithm of a Real Matrix

Computing Real Logarithm of a Real Matrix International Journal of Algebra, Vol 2, 2008, no 3, 131-142 Computing Real Logarithm of a Real Matrix Nagwa Sherif and Ehab Morsy 1 Department of Mathematics, Faculty of Science Suez Canal University,

More information

Two Results About The Matrix Exponential

Two Results About The Matrix Exponential Two Results About The Matrix Exponential Hongguo Xu Abstract Two results about the matrix exponential are given. One is to characterize the matrices A which satisfy e A e AH = e AH e A, another is about

More information

Computing the pth Roots of a Matrix. with Repeated Eigenvalues

Computing the pth Roots of a Matrix. with Repeated Eigenvalues Applied Mathematical Sciences, Vol. 5, 2011, no. 53, 2645-2661 Computing the pth Roots of a Matrix with Repeated Eigenvalues Amir Sadeghi 1, Ahmad Izani Md. Ismail and Azhana Ahmad School of Mathematical

More information

The Leja method revisited: backward error analysis for the matrix exponential

The Leja method revisited: backward error analysis for the matrix exponential The Leja method revisited: backward error analysis for the matrix exponential M. Caliari 1, P. Kandolf 2, A. Ostermann 2, and S. Rainer 2 1 Dipartimento di Informatica, Università di Verona, Italy 2 Institut

More information

Improved Newton s method with exact line searches to solve quadratic matrix equation

Improved Newton s method with exact line searches to solve quadratic matrix equation Journal of Computational and Applied Mathematics 222 (2008) 645 654 wwwelseviercom/locate/cam Improved Newton s method with exact line searches to solve quadratic matrix equation Jian-hui Long, Xi-yan

More information

LAPACK-Style Codes for Pivoted Cholesky and QR Updating. Hammarling, Sven and Higham, Nicholas J. and Lucas, Craig. MIMS EPrint: 2006.

LAPACK-Style Codes for Pivoted Cholesky and QR Updating. Hammarling, Sven and Higham, Nicholas J. and Lucas, Craig. MIMS EPrint: 2006. LAPACK-Style Codes for Pivoted Cholesky and QR Updating Hammarling, Sven and Higham, Nicholas J. and Lucas, Craig 2007 MIMS EPrint: 2006.385 Manchester Institute for Mathematical Sciences School of Mathematics

More information

Some Formulas for the Principal Matrix pth Root

Some Formulas for the Principal Matrix pth Root Int. J. Contemp. Math. Sciences Vol. 9 014 no. 3 141-15 HIKARI Ltd www.m-hiari.com http://dx.doi.org/10.1988/ijcms.014.4110 Some Formulas for the Principal Matrix pth Root R. Ben Taher Y. El Khatabi and

More information

Solving the Polynomial Eigenvalue Problem by Linearization

Solving the Polynomial Eigenvalue Problem by Linearization Solving the Polynomial Eigenvalue Problem by Linearization Nick Higham School of Mathematics The University of Manchester higham@ma.man.ac.uk http://www.ma.man.ac.uk/~higham/ Joint work with Ren-Cang Li,

More information

Research Matters. February 25, The Nonlinear Eigenvalue. Director of Research School of Mathematics

Research Matters. February 25, The Nonlinear Eigenvalue. Director of Research School of Mathematics Research Matters February 25, 2009 The Nonlinear Eigenvalue Nick Problem: HighamPart I Director of Research School of Mathematics Françoise Tisseur School of Mathematics The University of Manchester Woudschoten

More information

Scaled and squared subdiagonal Padé approximation for the matrix exponential. Güttel, Stefan and Yuji, Nakatsukasa. MIMS EPrint: 2015.

Scaled and squared subdiagonal Padé approximation for the matrix exponential. Güttel, Stefan and Yuji, Nakatsukasa. MIMS EPrint: 2015. Scaled and squared subdiagonal Padé approximation for the matrix exponential Güttel, Stefan and Yuji, Nakatsukasa 215 MIMS EPrint: 215.46 Manchester Institute for Mathematical Sciences School of Mathematics

More information

Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators. Al-Mohy, Awad H. and Higham, Nicholas J.

Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators. Al-Mohy, Awad H. and Higham, Nicholas J. Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators Al-Mohy, Awad H. and Higham, Nicholas J. 2010 MIMS EPrint: 2010.30 Manchester Institute for Mathematical Sciences

More information

Krylov methods for the computation of matrix functions

Krylov methods for the computation of matrix functions Krylov methods for the computation of matrix functions Jitse Niesen (University of Leeds) in collaboration with Will Wright (Melbourne University) Heriot-Watt University, March 2010 Outline Definition

More information

Krylov Subspace Methods for the Evaluation of Matrix Functions. Applications and Algorithms

Krylov Subspace Methods for the Evaluation of Matrix Functions. Applications and Algorithms Krylov Subspace Methods for the Evaluation of Matrix Functions. Applications and Algorithms 2. First Results and Algorithms Michael Eiermann Institut für Numerische Mathematik und Optimierung Technische

More information

A Backward Stable Hyperbolic QR Factorization Method for Solving Indefinite Least Squares Problem

A Backward Stable Hyperbolic QR Factorization Method for Solving Indefinite Least Squares Problem A Backward Stable Hyperbolic QR Factorization Method for Solving Indefinite Least Suares Problem Hongguo Xu Dedicated to Professor Erxiong Jiang on the occasion of his 7th birthday. Abstract We present

More information

Approximating the matrix exponential of an advection-diffusion operator using the incomplete orthogonalization method

Approximating the matrix exponential of an advection-diffusion operator using the incomplete orthogonalization method Approximating the matrix exponential of an advection-diffusion operator using the incomplete orthogonalization method Antti Koskela KTH Royal Institute of Technology, Lindstedtvägen 25, 10044 Stockholm,

More information

Research Matters. February 25, The Nonlinear Eigenvalue Problem. Nick Higham. Part III. Director of Research School of Mathematics

Research Matters. February 25, The Nonlinear Eigenvalue Problem. Nick Higham. Part III. Director of Research School of Mathematics Research Matters February 25, 2009 The Nonlinear Eigenvalue Problem Nick Higham Part III Director of Research School of Mathematics Françoise Tisseur School of Mathematics The University of Manchester

More information

Higher-order Chebyshev Rational Approximation Method (CRAM) and application to Burnup Calculations

Higher-order Chebyshev Rational Approximation Method (CRAM) and application to Burnup Calculations Higher-order Chebyshev Rational Approximation Method (CRAM) and application to Burnup Calculations Maria Pusa September 18th 2014 1 Outline Burnup equations and matrix exponential solution Characteristics

More information

Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators. Al-Mohy, Awad H. and Higham, Nicholas J.

Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators. Al-Mohy, Awad H. and Higham, Nicholas J. Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators Al-Mohy, Awad H. and Higham, Nicholas J. 2010 MIMS EPrint: 2010.30 Manchester Institute for Mathematical Sciences

More information

Computing Matrix Functions by Iteration: Convergence, Stability and the Role of Padé Approximants

Computing Matrix Functions by Iteration: Convergence, Stability and the Role of Padé Approximants Computing Matrix Functions by Iteration: Convergence, Stability and the Role of Padé Approximants Nick Higham School of Mathematics The University of Manchester higham@ma.man.ac.uk http://www.ma.man.ac.uk/~higham/

More information

LAPACK-Style Codes for Pivoted Cholesky and QR Updating

LAPACK-Style Codes for Pivoted Cholesky and QR Updating LAPACK-Style Codes for Pivoted Cholesky and QR Updating Sven Hammarling 1, Nicholas J. Higham 2, and Craig Lucas 3 1 NAG Ltd.,Wilkinson House, Jordan Hill Road, Oxford, OX2 8DR, England, sven@nag.co.uk,

More information

N. J. Higham. Numerical Analysis Report No January Manchester Centre for Computational Mathematics Numerical Analysis Reports

N. J. Higham. Numerical Analysis Report No January Manchester Centre for Computational Mathematics Numerical Analysis Reports UMIST ISSN 1360-1725 A New sqrtm for Matlab N. J. Higham Numerical Analysis Report No. 336 January 1999 Manchester Centre for Computational Mathematics Numerical Analysis Reports DEPARTMENTS OF MATHEMATICS

More information

Algorithms for Solving the Polynomial Eigenvalue Problem

Algorithms for Solving the Polynomial Eigenvalue Problem Algorithms for Solving the Polynomial Eigenvalue Problem Nick Higham School of Mathematics The University of Manchester higham@ma.man.ac.uk http://www.ma.man.ac.uk/~higham/ Joint work with D. Steven Mackey

More information

On the Skeel condition number, growth factor and pivoting strategies for Gaussian elimination

On the Skeel condition number, growth factor and pivoting strategies for Gaussian elimination On the Skeel condition number, growth factor and pivoting strategies for Gaussian elimination J.M. Peña 1 Introduction Gaussian elimination (GE) with a given pivoting strategy, for nonsingular matrices

More information

InequalitiesInvolvingHadamardProductsof HermitianMatrices y

InequalitiesInvolvingHadamardProductsof HermitianMatrices y AppliedMathematics E-Notes, 1(2001), 91-96 c Availablefreeatmirrorsites ofhttp://math2.math.nthu.edu.tw/»amen/ InequalitiesInvolvingHadamardProductsof HermitianMatrices y Zhong-pengYang z,xianzhangchong-guangcao

More information

I-v k e k. (I-e k h kt ) = Stability of Gauss-Huard Elimination for Solving Linear Systems. 1 x 1 x x x x

I-v k e k. (I-e k h kt ) = Stability of Gauss-Huard Elimination for Solving Linear Systems. 1 x 1 x x x x Technical Report CS-93-08 Department of Computer Systems Faculty of Mathematics and Computer Science University of Amsterdam Stability of Gauss-Huard Elimination for Solving Linear Systems T. J. Dekker

More information

Approximating functions in Clifford algebras: What to do with negative eigenvalues? (Short version)

Approximating functions in Clifford algebras: What to do with negative eigenvalues? (Short version) Approximating functions in Clifford algebras: What to do with negative eigenvalues? (Short version) Paul Leopardi Mathematical Sciences Institute, Australian National University. For presentation at AGACSE

More information

The Role of Matrix Functions

The Role of Matrix Functions The Role of Matrix Functions Edvin Hopkins, Numerical Algorithms Group November 2018 1 Introduction In this report we ll be discussing functions of matrices. What are they, and why might they be of interest

More information

THE PERTURBATION BOUND FOR THE SPECTRAL RADIUS OF A NON-NEGATIVE TENSOR

THE PERTURBATION BOUND FOR THE SPECTRAL RADIUS OF A NON-NEGATIVE TENSOR THE PERTURBATION BOUND FOR THE SPECTRAL RADIUS OF A NON-NEGATIVE TENSOR WEN LI AND MICHAEL K. NG Abstract. In this paper, we study the perturbation bound for the spectral radius of an m th - order n-dimensional

More information

The matrix sign function

The matrix sign function The matrix sign function 1 Re x > 0, sign(x) = 1 Re x < 0, undefined Re x = 0. Suppose the Jordan form of A is reblocked as A = [ V 1 V 2 ] [ J 1 J 2 ] [ V 1 V 2 ] 1, where J 1 contains all eigenvalues

More information

ON THE EXPONENTIATION OF INTERVAL MATRICES

ON THE EXPONENTIATION OF INTERVAL MATRICES ON THE EXPONENTIATION OF INTERVAL MATRICES ALEXANDRE GOLDSZTEJN AND ARNOLD NEUMAIER Abstract. The numerical computation of the exponentiation of a real matrix has been studied intensively. The main objective

More information

Matrix functions that preserve the strong Perron- Frobenius property

Matrix functions that preserve the strong Perron- Frobenius property Electronic Journal of Linear Algebra Volume 30 Volume 30 (2015) Article 18 2015 Matrix functions that preserve the strong Perron- Frobenius property Pietro Paparella University of Washington, pietrop@uw.edu

More information

Some Useful Results in the Theory of Matrix Functions

Some Useful Results in the Theory of Matrix Functions Some Useful Results in the Theory of Matrix Functions Nick Higham School of Mathematics The University of Manchester higham@ma.man.ac.uk http://www.ma.man.ac.uk/~higham/ Matrix Analysis and Applications,

More information

MATH 5524 MATRIX THEORY Problem Set 4

MATH 5524 MATRIX THEORY Problem Set 4 MATH 5524 MATRIX THEORY Problem Set 4 Posted Tuesday 28 March 217. Due Tuesday 4 April 217. [Corrected 3 April 217.] [Late work is due on Wednesday 5 April.] Complete any four problems, 25 points each.

More information

Elsevier Editorial System(tm) for Applied. Title: On the polynomial approximation of matrix functions

Elsevier Editorial System(tm) for Applied. Title: On the polynomial approximation of matrix functions Mathematics and Computation Elsevier Editorial System(tm) for Applied Manuscript Draft Manuscript Number: Title: On the polynomial approximation of matrix functions Article Type: Full Length Article Keywords:

More information

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying I.2 Quadratic Eigenvalue Problems 1 Introduction The quadratic eigenvalue problem QEP is to find scalars λ and nonzero vectors u satisfying where Qλx = 0, 1.1 Qλ = λ 2 M + λd + K, M, D and K are given

More information

Numerical methods for matrix functions

Numerical methods for matrix functions Numerical methods for matrix functions SF2524 - Matrix Computations for Large-scale Systems Lecture 13 Numerical methods for matrix functions 1 / 26 Reading material Lecture notes online Numerical methods

More information

FACTORIZING COMPLEX SYMMETRIC MATRICES WITH POSITIVE DEFINITE REAL AND IMAGINARY PARTS

FACTORIZING COMPLEX SYMMETRIC MATRICES WITH POSITIVE DEFINITE REAL AND IMAGINARY PARTS MATHEMATICS OF COMPUTATION Volume 67, Number 4, October 1998, Pages 1591 1599 S 005-5718(98)00978-8 FACTORIZING COMPLEX SYMMETRIC MATRICES WITH POSITIVE DEFINITE REAL AND IMAGINARY PARTS NICHOLAS J. HIGHAM

More information

2 Computing complex square roots of a real matrix

2 Computing complex square roots of a real matrix On computing complex square roots of real matrices Zhongyun Liu a,, Yulin Zhang b, Jorge Santos c and Rui Ralha b a School of Math., Changsha University of Science & Technology, Hunan, 410076, China b

More information

OPTIMAL SCALING FOR P -NORMS AND COMPONENTWISE DISTANCE TO SINGULARITY

OPTIMAL SCALING FOR P -NORMS AND COMPONENTWISE DISTANCE TO SINGULARITY published in IMA Journal of Numerical Analysis (IMAJNA), Vol. 23, 1-9, 23. OPTIMAL SCALING FOR P -NORMS AND COMPONENTWISE DISTANCE TO SINGULARITY SIEGFRIED M. RUMP Abstract. In this note we give lower

More information

Matrix decompositions

Matrix decompositions Matrix decompositions How can we solve Ax = b? 1 Linear algebra Typical linear system of equations : x 1 x +x = x 1 +x +9x = 0 x 1 +x x = The variables x 1, x, and x only appear as linear terms (no powers

More information

Linear Algebra Linear Algebra : Matrix decompositions Monday, February 11th Math 365 Week #4

Linear Algebra Linear Algebra : Matrix decompositions Monday, February 11th Math 365 Week #4 Linear Algebra Linear Algebra : Matrix decompositions Monday, February 11th Math Week # 1 Saturday, February 1, 1 Linear algebra Typical linear system of equations : x 1 x +x = x 1 +x +9x = 0 x 1 +x x

More information

Square root of a symmetric matrix

Square root of a symmetric matrix Square root of a symmetric matrix Mario Berljafa Stefan Güttel June 2015 Contents 1 Introduction 1 2 Running rkfit 1 3 Evaluating the rational approximant 2 4 Some different choices for the initial poles

More information

The numerical stability of barycentric Lagrange interpolation

The numerical stability of barycentric Lagrange interpolation IMA Journal of Numerical Analysis (2004) 24, 547 556 The numerical stability of barycentric Lagrange interpolation NICHOLAS J. HIGHAM Department of Mathematics, University of Manchester, Manchester M13

More information

Bounds for eigenvalues of matrix polynomials

Bounds for eigenvalues of matrix polynomials Linear Algebra and its Applications 358 003 5 wwwelseviercom/locate/laa Bounds for eigenvalues of matrix polynomials Nicholas J Higham,1, Françoise Tisseur Department of Mathematics, University of Manchester,

More information

On the Perturbation of the Q-factor of the QR Factorization

On the Perturbation of the Q-factor of the QR Factorization NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. ; :1 6 [Version: /9/18 v1.] On the Perturbation of the Q-factor of the QR Factorization X.-W. Chang McGill University, School of Comptuer

More information

MATLAB TOOLS FOR SOLVING PERIODIC EIGENVALUE PROBLEMS 1

MATLAB TOOLS FOR SOLVING PERIODIC EIGENVALUE PROBLEMS 1 MATLAB TOOLS FOR SOLVING PERIODIC EIGENVALUE PROBLEMS 1 Robert Granat Bo Kågström Daniel Kressner,2 Department of Computing Science and HPC2N, Umeå University, SE-90187 Umeå, Sweden. {granat,bokg,kressner}@cs.umu.se

More information

Preface. Figures Figures appearing in the text were prepared using MATLAB R. For product information, please contact:

Preface. Figures Figures appearing in the text were prepared using MATLAB R. For product information, please contact: Linear algebra forms the basis for much of modern mathematics theoretical, applied, and computational. The purpose of this book is to provide a broad and solid foundation for the study of advanced mathematics.

More information

Charles F. Van Loan Director, Computer Science Undergraduate Program (about 350 students)

Charles F. Van Loan Director, Computer Science Undergraduate Program (about 350 students) Charles F. Van Loan Professor Department of Computer Science Cornell University Ithaca, New York 14850 cv@cs.cornell.edu http://www.cs.cornell.edu/cv Education 1969 B.S., University of Michigan - Applied

More information

Polynomial eigenvalue solver based on tropically scaled Lagrange linearization. Van Barel, Marc and Tisseur, Francoise. MIMS EPrint: 2016.

Polynomial eigenvalue solver based on tropically scaled Lagrange linearization. Van Barel, Marc and Tisseur, Francoise. MIMS EPrint: 2016. Polynomial eigenvalue solver based on tropically scaled Lagrange linearization Van Barel, Marc and Tisseur, Francoise 2016 MIMS EPrint: 201661 Manchester Institute for Mathematical Sciences School of Mathematics

More information

Spectral inequalities and equalities involving products of matrices

Spectral inequalities and equalities involving products of matrices Spectral inequalities and equalities involving products of matrices Chi-Kwong Li 1 Department of Mathematics, College of William & Mary, Williamsburg, Virginia 23187 (ckli@math.wm.edu) Yiu-Tung Poon Department

More information

An Algorithm for. Nick Higham. Françoise Tisseur. Director of Research School of Mathematics.

An Algorithm for. Nick Higham. Françoise Tisseur. Director of Research School of Mathematics. An Algorithm for the Research Complete Matters Solution of Quadratic February Eigenvalue 25, 2009 Problems Nick Higham Françoise Tisseur Director of Research School of Mathematics The School University

More information

A Schur Parlett Algorithm for Computing Matrix Functions. Davies, Philip I. and Higham, Nicholas J. MIMS EPrint:

A Schur Parlett Algorithm for Computing Matrix Functions. Davies, Philip I. and Higham, Nicholas J. MIMS EPrint: A Schur Parlett Algorithm for Computing Matrix Functions Davies, Philip I. and Higham, Nicholas J. 2003 MIMS EPrint: 2006.13 Manchester Institute for Mathematical Sciences School of Mathematics The University

More information

Scaling, Sensitivity and Stability in Numerical Solution of the Quadratic Eigenvalue Problem

Scaling, Sensitivity and Stability in Numerical Solution of the Quadratic Eigenvalue Problem Scaling, Sensitivity and Stability in Numerical Solution of the Quadratic Eigenvalue Problem Nick Higham School of Mathematics The University of Manchester higham@ma.man.ac.uk http://www.ma.man.ac.uk/~higham/

More information

Linear algebra for exponential integrators

Linear algebra for exponential integrators Linear algebra for exponential integrators Antti Koskela KTH Royal Institute of Technology Beräkningsmatematikcirkus, 28 May 2014 The problem Considered: time integration of stiff semilinear initial value

More information

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9 TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1 Chapter 01.01 Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9 Chapter 01.02 Measuring errors 11 True error 11 Relative

More information

The Leja method revisited: backward error analysis for the matrix exponential

The Leja method revisited: backward error analysis for the matrix exponential The Leja method revisited: backward error analysis for the matrix exponential M. Caliari 1, P. Kandolf 2, A. Ostermann 2, and S. Rainer 2 1 Dipartimento di Informatica, Università di Verona, Italy 2 Institut

More information

On condition numbers for the canonical generalized polar decompostion of real matrices

On condition numbers for the canonical generalized polar decompostion of real matrices Electronic Journal of Linear Algebra Volume 26 Volume 26 (2013) Article 57 2013 On condition numbers for the canonical generalized polar decompostion of real matrices Ze-Jia Xie xiezejia2012@gmail.com

More information

OUTLINE 1. Introduction 1.1 Notation 1.2 Special matrices 2. Gaussian Elimination 2.1 Vector and matrix norms 2.2 Finite precision arithmetic 2.3 Fact

OUTLINE 1. Introduction 1.1 Notation 1.2 Special matrices 2. Gaussian Elimination 2.1 Vector and matrix norms 2.2 Finite precision arithmetic 2.3 Fact Computational Linear Algebra Course: (MATH: 6800, CSCI: 6800) Semester: Fall 1998 Instructors: { Joseph E. Flaherty, aherje@cs.rpi.edu { Franklin T. Luk, luk@cs.rpi.edu { Wesley Turner, turnerw@cs.rpi.edu

More information

Matrix decompositions

Matrix decompositions Matrix decompositions How can we solve Ax = b? 1 Linear algebra Typical linear system of equations : x 1 x +x = x 1 +x +9x = 0 x 1 +x x = The variables x 1, x, and x only appear as linear terms (no powers

More information

ANONSINGULAR tridiagonal linear system of the form

ANONSINGULAR tridiagonal linear system of the form Generalized Diagonal Pivoting Methods for Tridiagonal Systems without Interchanges Jennifer B. Erway, Roummel F. Marcia, and Joseph A. Tyson Abstract It has been shown that a nonsingular symmetric tridiagonal

More information

Undergraduate Texts in Mathematics. Editors J. H. Ewing F. W. Gehring P. R. Halmos

Undergraduate Texts in Mathematics. Editors J. H. Ewing F. W. Gehring P. R. Halmos Undergraduate Texts in Mathematics Editors J. H. Ewing F. W. Gehring P. R. Halmos Springer Books on Elemeritary Mathematics by Serge Lang MATH! Encounters with High School Students 1985, ISBN 96129-1 The

More information

Structured Condition Numbers of Symmetric Algebraic Riccati Equations

Structured Condition Numbers of Symmetric Algebraic Riccati Equations Proceedings of the 2 nd International Conference of Control Dynamic Systems and Robotics Ottawa Ontario Canada May 7-8 2015 Paper No. 183 Structured Condition Numbers of Symmetric Algebraic Riccati Equations

More information

Applications of CAS to analyze the step response of a system with parameters

Applications of CAS to analyze the step response of a system with parameters Applications of CAS to analyze the step response of a system with parameters Takuya Kitamoto kitamoto@yamaguchi-u.ac.jp Faculty of Education Yamaguchi University 753-8513 Japan Abstract Recently, Computer

More information

Structured Condition Numbers and Backward Errors in Scalar Product Spaces. February MIMS EPrint:

Structured Condition Numbers and Backward Errors in Scalar Product Spaces. February MIMS EPrint: Structured Condition Numbers and Backward Errors in Scalar Product Spaces Françoise Tisseur and Stef Graillat February 2006 MIMS EPrint: 2006.16 Manchester Institute for Mathematical Sciences School of

More information

AN ASYMPTOTIC BEHAVIOR OF QR DECOMPOSITION

AN ASYMPTOTIC BEHAVIOR OF QR DECOMPOSITION Unspecified Journal Volume 00, Number 0, Pages 000 000 S????-????(XX)0000-0 AN ASYMPTOTIC BEHAVIOR OF QR DECOMPOSITION HUAJUN HUANG AND TIN-YAU TAM Abstract. The m-th root of the diagonal of the upper

More information

On the inversion of the Vandermonde matrix

On the inversion of the Vandermonde matrix On the inversion of the Vandermonde matrix A. Eisinberg, G. Fedele Dip. Elettronica Informatica e Sistemistica, Università degli Studi della Calabria, 87036, Rende (Cs), Italy Abstract The inversion of

More information

Finite dimensional indefinite inner product spaces and applications in Numerical Analysis

Finite dimensional indefinite inner product spaces and applications in Numerical Analysis Finite dimensional indefinite inner product spaces and applications in Numerical Analysis Christian Mehl Technische Universität Berlin, Institut für Mathematik, MA 4-5, 10623 Berlin, Germany, Email: mehl@math.tu-berlin.de

More information

Interlacing Inequalities for Totally Nonnegative Matrices

Interlacing Inequalities for Totally Nonnegative Matrices Interlacing Inequalities for Totally Nonnegative Matrices Chi-Kwong Li and Roy Mathias October 26, 2004 Dedicated to Professor T. Ando on the occasion of his 70th birthday. Abstract Suppose λ 1 λ n 0 are

More information

Key words. modified Cholesky factorization, optimization, Newton s method, symmetric indefinite

Key words. modified Cholesky factorization, optimization, Newton s method, symmetric indefinite SIAM J. MATRIX ANAL. APPL. c 1998 Society for Industrial and Applied Mathematics Vol. 19, No. 4, pp. 197 111, October 1998 16 A MODIFIED CHOLESKY ALGORITHM BASED ON A SYMMETRIC INDEFINITE FACTORIZATION

More information

ETNA Kent State University

ETNA Kent State University C 8 Electronic Transactions on Numerical Analysis. Volume 17, pp. 76-2, 2004. Copyright 2004,. ISSN 1068-613. etnamcs.kent.edu STRONG RANK REVEALING CHOLESKY FACTORIZATION M. GU AND L. MIRANIAN Abstract.

More information

A Note on Simple Nonzero Finite Generalized Singular Values

A Note on Simple Nonzero Finite Generalized Singular Values A Note on Simple Nonzero Finite Generalized Singular Values Wei Ma Zheng-Jian Bai December 21 212 Abstract In this paper we study the sensitivity and second order perturbation expansions of simple nonzero

More information

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn Today s class Linear Algebraic Equations LU Decomposition 1 Linear Algebraic Equations Gaussian Elimination works well for solving linear systems of the form: AX = B What if you have to solve the linear

More information