arxiv: v1 [gr-qc] 7 Mar 2016

Size: px
Start display at page:

Download "arxiv: v1 [gr-qc] 7 Mar 2016"

Transcription

1 Quantum effects in Reissner-Nordström black hole surrounded by magnetic field: the scalar wave case H. S. Vieira,2,a) and V. B. Bezerra,b) ) Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP , João Pessoa, PB, Brazil arxiv: v [gr-qc] 7 Mar 206 2) Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP , Araruna, PB, Brazil Dated: 8 March 206) We study the interaction between a massless scalar fields and the spacetime generated by charged black hole surrounded by magnetic field. The equations of motion are written into a Heun form, and its analytical solutions are obtained. These solutions have an explicit dependence on the parameter of the magnetic field. We obtain the exact Hawking radiation spectrum, the regular partial wave scattering, and the resonant frequencies quasispectrum) expression. The special case of a Schwarzschild black hole surrounded by magnetic field is analyzed and the solutions are shown. PACS numbers:... Keywords: black hole radiation, massless scalar field, confluent Heun function, Ernst spacetimes, resonant frequency, scattering a) Electronic mail: horacio.santana.vieira@hotmail.com b) Electronic mail: valdir@fisica.ufpb.br

2 I. SCALAR FIELD EQUATION IN THE ERNST SOLUTION The spacetime generated by a black hole with electric charge Q in a magnetic universe has the Ernst metric, whose line element takes the following form with ds 2 = g στ dx σ dx τ = Λ 2 ) r 2 dt2 r2 dr2 r 2 dθ 2 r2 sin 2 θ Λ 2 dφ ω dt) 2, ) = r 2 2Mr Q 2, 2) Λ = 4 B2 0 r2 sin 2 θq 2 cos 2 θ) ib 0 Qcosθ, 3) ω = 2B 0Q r 2 B 3 0 [ Qr Q 3 2 r Q r r2 2Mr Q 2 )sin 2 θ ], 4) where the external magnetic field is determined by the parameter B 0, and the units G c were chosen. The horizon surface equation is obtained from the condition = r r )r r ) = 0, whose solutions correspond to the event and Cauchy) horizons and are given by r ± = M ±M 2 Q 2 ) 2. 5) Furthermore, the surface area of the horizon in the presence of a external magnetic field, A,B0, is given by g A,B0 = dθ dφ = 4πr 2 where g detg στ ) = r 4 Λ 4 sin 2 θ. [ B 2 0 r=r Q 2 r2 3 )] OB0 4 ), The covariant Klein-Gordon equation for the massless scalar field, Ψ, in the curve spacetime is given by g σ g στ g τ )Ψ = 0. 7) 6) 2

3 Inorder to solve Eq. 7) in the background under consideration, let us first estimate a real astrophysical situation. This corresponds to match the Ernst solution with a Schwarzschild solution at some large r through the neglecting terms higher than B 2 0. These terms are growing far from black hole, which turns the asymptotically far region divergent. Thus, the Klein-Gordon equation can be written in the spacetime ) as { [ 4B0 Qr 3 2 t φ r4 2 t 2 sin 2 θ ] 4B2 0 Q2 r 2 B0 2 3Q2 cot 2 θr 2 2 ) r r ) sinθ We take the solution of Eq. 8) as follows θ sinθ θ φ )} 2 Ψ = 0. 8) Ψ = Ψr,t) = Rr)Sθ)e imφ e iωt, 9) where m = ±,±2,±3,... is the angular momentum quantum number, and the frequency is taken as ω > 0. Substituting Eq. 9) into 8), we find that the functions Sθ) and Rr) satisfy the following equations, respectively, d sinθ ds ) λ m2 sinθdθ dθ sin 2 θ ) 3B0Q 2 2 m 2 cot 2 θ S = 0 0) and d dr ) [ dr dr 2B 0Qmr ωr 2 ) 2 ] λb0m 2 2 r 2 ) R = 0, ) where λ is the separation constant. A. The angular equation In order to obtain the analytical solution of the angular Klein-Gordon equation, let us perform a change of variable such that x = cos 2 θ. 2) 3

4 With this transformation, Eq. 0) can be written as d 2 Sx) /2 dx 2 x ) dsx) x dx [ A x A 2 x A 3) 2 x ) 2 where the coefficients A, A 2, and A 3 are given by A = m2 λ 4 A 2 = λ m2 4 ] Sx) = 0, 3), 4), 5) A 3 = i 3B2 0 m2 Q 2 m 2 ) 2. 6) 2 This equation for the dependent variable S is converted into a Heun-type equation for U by a F-homotopic transformation of the type Sx) = x ) A 3 Ux). 7) Explicity, the result of applying 7) to angular equation in the form 3) is d 2 Ux) /2 dx 2 x 2A ) 3 dux) x dx A A 3 /2 A ) 2 A 3 /2 Ux) = 0. 8) x x Thus, the linearly independent general exact solution of the angular Klein-Gordon equation for a massless scalar field in the Reissner-Nordström black hole surrounded by magnetic field, over the entire range 0 x <, can be written as 2 Sx) = x ) 2 γ {C HeunCα,β,γ,δ,η;x) C 2 x β HeunCα, β,γ,δ,η;x)}, 9) where C and C 2 are constants, HeunCα,β,γ,δ,η;x) are the confluent Heun functions 3, and the parameters α, β, γ, δ, and η are given by α = 0, 20) β = 2, 2) γ = im3b 2 0 Q2 ) 2, 22) δ = 0, 23) η = 4 m2 λ). 24) 4

5 B. The radial equation Now, in order to obtain the analytical solution of the radial Klein-Gordon equation, let us use Eq. 5) to write down Eq. ) as d 2 Rr) ) drr) dr 2 r r r r dr { r4b 0 mqr ω r ω)ω r r )r r ) [ r 2 B0 2 m2 ω 2 )4 B 0 mq ω ] 2 2 r r ) ω 2 r r λ 2B 0mQr ωr) 2 2 r r )r r ) 2B 0mQr ωr 2 ) 2 r r )r r ) } Rr) = 0. 25) Since this equation has singularities at r = r,r, ), by the homographic substitution we bring Eq. 25) into Heun form as follows d 2 Rx) dx 2 x x x = r r r r, 26) ) [ drx) dx D 2 x D 3 x D 4) 2 x 2 D 5) 2 x ) 2 where the coefficients D, D 2, D 3, D 4, and D 5 are given by D ) 2 ] Rx) = 0, 27) D = ir r )ω 2 B 2 0 m2 ) 2, 28) D 2 = 2r2 ω2b 0mQr 6B 0 mqr r 2 ω) r r ) 2 B2 0 m2 r 8Q 2 r r 3 2r2 r r r 2 ) r r ) 2 4r3 r ω 2 λr r ) 2 r r ) 2, 29) D 3 = 2r2 ω6b 0mQr 2B 0 mqr r 2 ω) r r ) 2 B2 0m 2 r 8Q 2 r r 2 r 2r r 2 r 3 ) r r ) 2 4r3 r ω 2 λr r ) 2 r r ) 2, 30) 5

6 D 4 = i 2B 0mQr ωr 2 ) r r, 3) D 5 = i 2B 0mQr ωr 2 ) r r. 32) Having thus moved the singularities to the points x = 0,, now we make the specialized form of the s-homotopic transformation of the dependent variable Rx) Ux), namely Rx) = e D x x D 4 x ) D 5 Ux). 33) Explicity, the result of applying 33) to radial equation in the form 27) is d 2 Ux) 2D dx 2 2D 4 2D ) 5 dux) x x dx [ D2 r r )2D 4 ) D 5 D ) D 4 x D 3r r )2D 5 )D 4 D ) x D 5 x ] Ux) = 0. 34) Thus, the linearly independent general exact solution of the radial Klein-Gordon equation for a massless scalar field in the Reissner-Nordström black hole surrounded by magnetic field, over the entire range 0 x <, can be written as Rx) = e 2 αx x 2 β x ) 2 γ {C HeunCα,β,γ,δ,η;x) C 2 x β HeunCα, β,γ,δ,η;x)}, 35) where C and C 2 are constants, and the parameters α, β, γ, δ, and η are given by α = 2ir r )ω 2 B 2 0m 2 ) 2, 36) β = 2i 2B 0mQr ωr 2 ) r r, 37) γ = 2i 2B 0mQr ωr ) 2, r r 38) δ = r r )r r )B0m 2 2 4B 0 mqω 2ω 2 ), 39) η = 2r2 ω 2B 0 mqr 6B 0 mqr rω ) 2 r r ) 2 ) B2 0m 2 r 8Q 2 r r 3 2rr 2 r r 2 r r ) 2 4r3 r ω 2 λr r ) 2 r r ) 2. 40) 6

7 Note the dependence of both angular and radial solutions with the parameter B 0, associated with the external magnetic field. II. HAWKING RADIATION The radial solution given by Eq.35) has the following asymptotic behavior at the exterior event horizon r 4 : Rr) C r r ) β 2 C2 r r ) β 2, 4) where all constants involved are included in C and C 2. From Eq. 37), the parameter β can be written as β 2 = i ω ω 0,B0 ) = i, 42) 2κ 2κ ω where ω 0,B0 = m Ω,B0, being the surface gravity on the background horizon surface, κ, and the dragging angular velocity of the exterior horizon, Ω,B0, given by κ d 2r dr = r r, r=r 2 r 2 43) Ω,B0 = g 03 = 2B 0Q OB0 3 r=r r ). 44) g 33 Therefore, considering the time factor, on the black hole exterior horizon surface the ingoing and outgoing wave solutions are Ψ in = e iωt r r ) i 2κ ω, 45) Ψ out r > r ) = e iωt r r ) i 2κ ω. 46) These solutions depend on the parameter B 0, in such a way that the total energy of the radiated particles is increased due to presence of the external magnetic field. Following the same procedure developed in our recent letter 5, the relative scattering probability of the scalar wave at the event horizon surface, Γ, and the Hawking radiation spectrum of scalar particles, N ω 2, respectively, are given by Γ = Ψ out r > r ) 2 Ψ out r < r ) = e 2π κ ω, 47) N ω 2 = e 2π κ ω = 7 e k B T ωω 0,B0 ), 48)

8 being T = κ /2πk B the Hawking radiation temperature. Therefore, we can see that the resulting Hawking radiation spectrum of scalar particles has a thermal character. It is worth noticing that the total energy of radiated scalar particles is increased due to the presence of the external magnetic field, more precisely, this gives rise to a kind of dragging angular velocity of the exterior horizon, Ω,B0, in comparison with the scenario without a external magnetic field 6. III. SCATTERING If we consider the neighborhood of the irregular singular point at infinity, the two solutions of the confluent Heun equation exist, and in general they can be expanded in a sector) in the following asymptotic series 7 HeunCα,β,γ,δ,η;x) C x βγ2 2 δ α) C 2 e αx x βγ2 2 δ α), where we are keeping only the first term of this power-series asymptotics. Thus, from Eqs. 26) and 49) we can see that the radial solution given by Eq. 35), far from the black hole, that is, when r which implies that x, behaves asymptotically as 49) Rx) x {C e 2 αx x δ α C2 e 2 αx x δ α }, 50) where all constants are included in C and C 2. Thus, the radial wave function can be written as where σ λ ω) is the phase shift. From Eqs. 36) and 39), we obtain [ R λ x) C λ x sin i ] 2 αxiδ α lnxσ λω), 5) i α 2 = k 0,B 0 r r ), 52) i δ α = γ 0,B 0, 53) where k 2 0,B 0 ω 2 B 2 0m 2, 54) 8

9 γ 0,B0 MB2 0 m2 4MB 0 mqω 2Mω 2 ω 2 B 2 0 m2 ) 2. 55) Therefore, the regular partial wave solution has the asymptotic form R λ r) C λ r sin[k 0,B 0 r γ 0,B0 lnr σ λ ω)]. 56) These solutions for the scalar fields far from the black hole can be useful to investigate the scattering of massive scalar particles. It is worth calling attention to the fact that we are using the analytical solution of the radial part of the Klein-Gordon equation in the spacetime under consideration. Indeed, the phase shift σ λ is not a simple function of λ, the exact expression of the scattering amplitude is not available but just an approximate one is obtained, as is shown for instance by Abramov et al. 8. IV. RESONANT FREQUENCIES We wish to solve Eq. 25) for the radial part Rr) subject to the following boundary conditions: the solution should be finite on the horizon, and well behaved far from the black hole. In order to have a polynomial solution of the confluent Heun equation, we must impose the so called δ-condition 9 where n 0. δ α β γ = n, 57) 2 Thus, we obtain the following expression for the resonant frequencies MB 2 0 m2 4B 0 mqω 2ω 2 ) B0 2m2 ω 2 ) 2 i [ ω ω ) ω,b0 ω )],B 0 2 κ κ κ κ = n), 58) where κ ± and ω ±,B0 are given by Eqs. 43) and 44), respectively. It is not possible to obtain an analytic expression for ω n from Eq. 58), however, there are several numerical methods that can be used to obtain approximate expressions for each energy level 0. 9

10 V. THE ERNST SOLUTION FOR SCHWARZSCHILD BLACK HOLE We now examine the special case of Q = 0 so that the metric ) reduces to the Schwarzschild form. Accordingly we have = r 2 2Mr, 59) Then, from Eqs.0)-): sinθ d dθ Λ = 4 B2 0 r2 sin 2 θ, 60) ω = 0, 6) r = 2M, 62) r = 0. 63) sinθ ds ) λ lm m2 dθ sin 2 θ ) S = 0, 64) d dr ) [ ] ω 2 r 4 dr dr λ lm B0m 2 2 r 2 ) R = 0. 65) Therefore, the general exact solution for the angular equation, S = Sθ), is Sθ) = C P m l cosθ)c 2 Q m l cosθ), 66) where P m l cosθ), Q m l cosθ) are the associated Legendre functions with λ lm = ll). And for the radial equation, the general exact solution can be written as Rx) = e 2 αx x 2 β x ) 2 γ {C HeunCα,β,γ,δ,η;x) where the parameters α, β, γ, δ, and η are given by C 2 x β HeunCα, β,γ,δ,η;x)}, 67) α = 4iMω 2 B 2 0 m2 ) 2, 68) β = 4iMω, 69) γ = 0, 70) δ = 4M 2 B0 2 m2 2ω 2 ), 7) 0

11 In these solutions C and C 2 are constants. η = δ λ lm ). 72) Thus, the relative scattering probability and the Hawking radiation spectrum, in this case, are given by Γ = Ψ out r > r ) 2 Ψ out r < r ) = e 2π κ ω, 73) N ω 2 = e ω k B T. 74) Therefore, in the Ernst solution for Schwarzschild black hole, the resulting Hawking radiation spectrum of scalar particles also has a thermal character. However, the total energy of radiated scalar particles is not affected due to the presence of the external magnetic field. The regular partial wave and the resonant frequencies expression for massless scalar fields in this background are given by R λ r) C l r sin[k 0,B 0 r γ 0,B0 lnr δ l ω)], 75) with ω 2ω2 B 2 0 m2 2ω 2 B 2 0m 2 ) 2 = i n), 76) 2M k 2 0,B 0 ω 2 B 2 0 m2, 77) γ 0,B0 MB2 0 m2 2Mω 2 ω 2 B 2 0m 2 ) 2, 78) wherethephaseshift δ l ω)canbeobtainedbynumerical calculation, asisshownforinstance by Chen et al.. ACKNOWLEDGMENTS The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq) for partial financial support. REFERENCES F. J. Ernst, J. Math. Phys. 7, ) 2 V. B. Bezerra, H. S. Vieira and A. A. Costa, Class. Quantum Grav. 3, )

12 3 P. P. Fiziev, Class. Quantum Grav. 27, ) 4 H. S. Vieira, V. B. Bezerra and C. R. Muniz, Ann. Phys. NY) 350, 4 204) 5 H. S. Vieira, V. B. Bezerra and A. A. Costa, Europhys. Lett. 09, ) 6 H. S. Vieira, V. B. Bezerra and G. V. Silva, Ann. Phys. NY) 362, ) 7 A. Ronveaux, Heun s differential equations, Oxford University Press, New York, 995) 8 D. I. Abramov, A. Y. Kazakov, L. I. Ponomarev, S. Y. Slavyanov and L. N. Somov, J. Phys. B: Atom. Molec. Phys. 2, ) 9 P. P. Fiziev, J. Phys. A: Math. Theor. 43, ) 0 P. Fiziev and D. Staicova, Phys. Rev. D 84, ) J. Chen, H. Liao, Y. Wang and T. Chen, Eur. Phys. J. C 73, ) 2

arxiv: v4 [gr-qc] 31 Jul 2014

arxiv: v4 [gr-qc] 31 Jul 2014 Exact solutions of the Klein-Gordon equation in the Kerr-Newman background and Hawking radiation H. S. Vieira a,, V. B. Bezerra a, C. R. Muniz b arxiv:1401.5397v4 [gr-qc] 31 Jul 2014 5 a Departamento de

More information

arxiv: v2 [gr-qc] 4 Feb 2014

arxiv: v2 [gr-qc] 4 Feb 2014 Exact solutions of the Klein-Gordon equation in the Kerr-Newman background and Hawking radiation arxiv:0.5397v [gr-qc] Feb 0 H. S. Vieira, V. B. Bezerra and C. R. Muniz Departamento de Física, Universidade

More information

arxiv: v1 [gr-qc] 30 May 2014

arxiv: v1 [gr-qc] 30 May 2014 Scalar particles in the Lense-Thirring background with a cosmic string and Hawking radiation arxiv:1405.7846v1 [gr-qc] 30 May 014 H. S. Vieira 1, V. B. Bezerra 1 and André A. Costa 1 Departamento de Física,

More information

arxiv: v3 [gr-qc] 22 Nov 2017

arxiv: v3 [gr-qc] 22 Nov 2017 On the Global Casimir Effect in the Schwarzschild Spacetime C. R. Muniz Grupo de Física Teórica (GFT), Universidade Estadual do Ceará, Faculdade de Educação, Ciências e Letras de Iguatu, Iguatu, Ceará,

More information

Vacuum Polarization in the Presence of Magnetic Flux at Finite Temperature in the Cosmic String Background

Vacuum Polarization in the Presence of Magnetic Flux at Finite Temperature in the Cosmic String Background Vacuum Polarization in the Presence of Magnetic Flux at Finite Temperature in the Cosmic String Background Univ. Estadual da Paraíba (UEPB), Brazil E-mail: jeanspinelly@ig.com.br E. R. Bezerra de Mello

More information

arxiv: v1 [gr-qc] 19 Jun 2009

arxiv: v1 [gr-qc] 19 Jun 2009 SURFACE DENSITIES IN GENERAL RELATIVITY arxiv:0906.3690v1 [gr-qc] 19 Jun 2009 L. FERNÁNDEZ-JAMBRINA and F. J. CHINEA Departamento de Física Teórica II, Facultad de Ciencias Físicas Ciudad Universitaria,

More information

arxiv:gr-qc/ v1 11 May 2000

arxiv:gr-qc/ v1 11 May 2000 EPHOU 00-004 May 000 A Conserved Energy Integral for Perturbation Equations arxiv:gr-qc/0005037v1 11 May 000 in the Kerr-de Sitter Geometry Hiroshi Umetsu Department of Physics, Hokkaido University Sapporo,

More information

Absorption cross section of RN black hole

Absorption cross section of RN black hole 3 Absorption cross section of RN black hole 3.1 Introduction Even though the Kerr solution is the most relevant one from an astrophysical point of view, the solution of the coupled Einstein-Maxwell equation

More information

Acoustic black holes: massless scalar field analytic solutions and analogue Hawking radiation

Acoustic black holes: massless scalar field analytic solutions and analogue Hawking radiation General Relativity and Gravitation manuscript No. (will be inserted by the editor) Acoustic black holes: massless scalar field analytic solutions and analogue Hawking radiation H. S. Vieira V. B. Bezerra

More information

Hawking Radiation of Photons in a Vaidya-de Sitter Black Hole arxiv:gr-qc/ v1 15 Nov 2001

Hawking Radiation of Photons in a Vaidya-de Sitter Black Hole arxiv:gr-qc/ v1 15 Nov 2001 Hawking Radiation of Photons in a Vaidya-de Sitter Black Hole arxiv:gr-qc/0111045v1 15 Nov 2001 S. Q. Wu and X. Cai Institute of Particle Physics, Hua-Zhong Normal University, Wuhan 430079, P.R. China

More information

Vacuum polarization effects on quasinormal modes in electrically charged black hole spacetimes.

Vacuum polarization effects on quasinormal modes in electrically charged black hole spacetimes. in electrically charged black hole spacetimes. Jeferson de Oliveira Institute of Physics, University of São Paulo, Brazil E-mail: jeferson@fma.if.usp.br Owen Pavel Fernandez Piedra Departamento de Física

More information

The Aharonov-Bohm effect around a rotating black hole analogue

The Aharonov-Bohm effect around a rotating black hole analogue The Aharonov-Bohm effect around a rotating black hole analogue Cássio I. S. Marinho Supervisor: Prof. Dr. Ednilton S. de Oliveira Universidade Federal do Pará IV AWBHAMG, May 11 th, 2015. Outline 1 Introduction

More information

arxiv: v2 [gr-qc] 28 Jan 2015

arxiv: v2 [gr-qc] 28 Jan 2015 Acoustic clouds: standing sound waves around a black hole analogue Carolina L. Benone and Luís C. B. Crispino Faculdade de Física, Universidade Federal do Pará, 6675-11, Belém, Pará, Brazil arxiv:1412.7278v2

More information

Kerr black hole and rotating wormhole

Kerr black hole and rotating wormhole Kerr Fest (Christchurch, August 26-28, 2004) Kerr black hole and rotating wormhole Sung-Won Kim(Ewha Womans Univ.) August 27, 2004 INTRODUCTION STATIC WORMHOLE ROTATING WORMHOLE KERR METRIC SUMMARY AND

More information

arxiv:gr-qc/ v1 7 Aug 2001

arxiv:gr-qc/ v1 7 Aug 2001 Modern Physics Letters A, Vol., No. (00) c World Scientific Publishing Company Non-existence of New Quantum Ergosphere Effect of a Vaidya-type Black Hole arxiv:gr-qc/00809v 7 Aug 00 S. Q. Wu Institute

More information

PAPER 311 BLACK HOLES

PAPER 311 BLACK HOLES MATHEMATICAL TRIPOS Part III Friday, 8 June, 018 9:00 am to 1:00 pm PAPER 311 BLACK HOLES Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

The Heun s functions as a modern powerful tool for research in different scientific domains

The Heun s functions as a modern powerful tool for research in different scientific domains The Heun s functions as a modern powerful tool for research in different scientific domains P. P. Fiziev Abstract: In this rather popular paper we stress some basics of the theory and the huge amount of

More information

arxiv: v1 [hep-th] 18 Apr 2007

arxiv: v1 [hep-th] 18 Apr 2007 USTC-ICTS-07-02 Probing α-vacua of Black Holes in LHC arxiv:0704.2298v1 [hep-th] 18 Apr 2007 Tower Wang Institute of Theoretical Physics, Chinese Academy of Sciences, P. O. Box 2735 Beijing 100080, China

More information

arxiv: v1 [quant-ph] 20 May 2014

arxiv: v1 [quant-ph] 20 May 2014 Bound states for a Coulomb-type potential induced by the interaction between a moving electric quadrupole moment and a magnetic field K. Bakke arxiv:1405.5135v1 [quant-ph] 20 May 2014 Departamento de Física,

More information

arxiv: v2 [gr-qc] 27 Apr 2013

arxiv: v2 [gr-qc] 27 Apr 2013 Free of centrifugal acceleration spacetime - Geodesics arxiv:1303.7376v2 [gr-qc] 27 Apr 2013 Hristu Culetu Ovidius University, Dept.of Physics and Electronics, B-dul Mamaia 124, 900527 Constanta, Romania

More information

Decay of massive scalar hair in the background. of a black hole with a global mononpole. Abstract

Decay of massive scalar hair in the background. of a black hole with a global mononpole. Abstract Decay of massive scalar hair in the background of a black hole with a global mononpole Hongwei Yu Institute of Physics, Hunan Normal University, Changsha, Hunan 410081, China Abstract The late-time tail

More information

Black Holes and Wave Mechanics

Black Holes and Wave Mechanics Black Holes and Wave Mechanics Dr. Sam R. Dolan University College Dublin Ireland Matematicos de la Relatividad General Course Content 1. Introduction General Relativity basics Schwarzschild s solution

More information

arxiv: v3 [physics.gen-ph] 18 Jul 2014

arxiv: v3 [physics.gen-ph] 18 Jul 2014 Lagrangian formulation of Newtonian cosmology (Formulação lagrangiana da cosmologia newtoniana) H. S. Vieira 1 and V. B. Bezerra 1 1 Departamento de Física, Universidade Federal da Paraíba, Caixa Postal

More information

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY)

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) Imperial College London MSc EXAMINATION May 2015 BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) For MSc students, including QFFF students Wednesday, 13th May 2015: 14:00 17:00 Answer Question 1 (40%) and

More information

arxiv: v2 [gr-qc] 31 Aug 2009

arxiv: v2 [gr-qc] 31 Aug 2009 Dressing a Naked Singularity: an Example C. F. C. Brandt Departamento de Física Teórica, Universidade do Estado do io de Janeiro UEJ), ua São Francisco Xavier 524, Maracanã, CEP 20550-013, io de Janeiro,

More information

arxiv: v1 [gr-qc] 23 Aug 2007

arxiv: v1 [gr-qc] 23 Aug 2007 Absorption cross section of RN black hole Sini R and V C Kuriakose Department of Physics, Cochin University of Science and Technology, Kochi 682022, India. The behavior of a charged scalar field in the

More information

Waveforms produced by a particle plunging into a black hole in massive gravity : Excitation of quasibound states and quasinormal modes

Waveforms produced by a particle plunging into a black hole in massive gravity : Excitation of quasibound states and quasinormal modes Waveforms produced by a particle plunging into a black hole in massive gravity : Excitation of quasibound states and quasinormal modes Mohamed OULD EL HADJ Université de Corse, Corte, France Projet : COMPA

More information

Study of Center of Mass Energy by Particles Collision in Some Black Holes

Study of Center of Mass Energy by Particles Collision in Some Black Holes arxiv:1308.1116v1 [physics.gen-ph] 9 Jul 013 Study of Center of Mass Energy by Particles Collision in Some Black Holes M. Sharif and Nida Haider Department of Mathematics, University of the Punjab, Quaid-e-Azam

More information

arxiv: v2 [gr-qc] 22 Jan 2014

arxiv: v2 [gr-qc] 22 Jan 2014 Regular black hole metrics and the weak energy condition Leonardo Balart 1,2 and Elias C. Vagenas 3 1 I.C.B. - Institut Carnot de Bourgogne UMR 5209 CNRS, Faculté des Sciences Mirande, Université de Bourgogne,

More information

and R (GM) 1/ (r GM) 1/. (6) Dividing (5) by (6), he obtains after considering that β = 1/T, the expression for the Hawking temperature, namely T = 1/

and R (GM) 1/ (r GM) 1/. (6) Dividing (5) by (6), he obtains after considering that β = 1/T, the expression for the Hawking temperature, namely T = 1/ A NOTE ON BLACK HOLE TEMPERATURE AND ENTROPY P. R. SILVA Departamento de Física Instituto de Ciências Exatas Universidade Federal de Minas Gerais C. P. 70 3013-970 Belo Horizonte Minas Gerais BRAZIL e-mail:

More information

arxiv: v2 [astro-ph.he] 22 Mar 2009

arxiv: v2 [astro-ph.he] 22 Mar 2009 A new model of the Central Engine of GRB and the Cosmic Jets Plamen P. Fiziev, Denitsa R. Staicova Department of Theoretical Physics, Sofia University St. Kliment Ohridski, 5 James Bourchier Blvd., 1164

More information

Mode stability on the real axis

Mode stability on the real axis Mode stability on the real axis Siyuan Ma joint work with: Lars Andersson, Claudio Paganini, Bernard F. Whiting ArXiv 1607.02759 Albert Einstein Institute, Potsdam, Germany Department of Physics, University

More information

Qualitative and Quantitative Features of Orbits of Massive Particles and Photons Moving in Wyman Geometry

Qualitative and Quantitative Features of Orbits of Massive Particles and Photons Moving in Wyman Geometry Brazilian Journal of Physics, vol. 38, no. 4, December, 28 573 Qualitative and Quantitative Features of Orbits of Massive Particles and Photons Moving in Wyman Geometry G. Oliveira-Neto Departamento de

More information

Superradiance in Analogue Black Holes

Superradiance in Analogue Black Holes Superradiance in Analogue Black Holes Maurício Richartz (mauricio.richartz@ufabc.edu.br) Universidade Federal do ABC (UFABC), Santo André, SP, Brasil (Collaborators: Stefano Liberati, Angus Prain, Silke

More information

Hawking radiation via tunneling from the spacetime of a spinning cosmic string black holes arxiv: v1 [gr-qc] 26 Oct 2015

Hawking radiation via tunneling from the spacetime of a spinning cosmic string black holes arxiv: v1 [gr-qc] 26 Oct 2015 Hawking radiation via tunneling from the spacetime of a spinning cosmic string black holes arxiv:1510.07701v1 [gr-qc] 6 Oct 015 Kimet Jusufi Department of Physics, State University of Tetovo, Ilinden Street

More information

Hawking radiation via tunnelling from general stationary axisymmetric black holes

Hawking radiation via tunnelling from general stationary axisymmetric black holes Vol 6 No 2, December 2007 c 2007 Chin. Phys. Soc. 009-963/2007/6(2)/3879-06 Chinese Physics and IOP Publishing Ltd Hawking radiation via tunnelling from general stationary axisymmetric black holes Zhang

More information

arxiv: v2 [hep-th] 13 Aug 2016

arxiv: v2 [hep-th] 13 Aug 2016 Hawking Radiation Spectra for Scalar Fields by a Higher-Dimensional Schwarzschild-de-Sitter Black Hole arxiv:1604.08617v2 [hep-th] 13 Aug 2016 T. Pappas 1, P. Kanti 1 and N. Pappas 2 1 Division of Theoretical

More information

EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY

EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY arxiv:gr-qc/9806038v1 8 Jun 1998 EXTREMELY CHARGED STATIC DUST DISTRIBUTIONS IN GENERAL RELATIVITY METÍN GÜRSES Mathematics department, Bilkent University, 06533 Ankara-TURKEY E-mail: gurses@fen.bilkent.edu.tr

More information

arxiv: v2 [hep-th] 14 Nov 2018

arxiv: v2 [hep-th] 14 Nov 2018 Absorption and scattering of a black hole with a global monopole in f(r) gravity M. A. Anacleto, 1, F. A. Brito, 1, 2, S. J. S. Ferreira, 1, and E. Passos 1, 1 Departamento de Física, Universidade Federal

More information

Classical and Quantum Dynamics in a Black Hole Background. Chris Doran

Classical and Quantum Dynamics in a Black Hole Background. Chris Doran Classical and Quantum Dynamics in a Black Hole Background Chris Doran Thanks etc. Work in collaboration with Anthony Lasenby Steve Gull Jonathan Pritchard Alejandro Caceres Anthony Challinor Ian Hinder

More information

Some Quantum Aspects of D=3 Space-Time Massive Gravity.

Some Quantum Aspects of D=3 Space-Time Massive Gravity. Some Quantum Aspects of D=3 Space-Time Massive Gravity. arxiv:gr-qc/96049v 0 Nov 996 Carlos Pinheiro, Universidade Federal do Espírito Santo, Departamento de Física, Vitória-ES, Brazil, Gentil O. Pires,

More information

Modelling the evolution of small black holes

Modelling the evolution of small black holes Modelling the evolution of small black holes Elizabeth Winstanley Astro-Particle Theory and Cosmology Group School of Mathematics and Statistics University of Sheffield United Kingdom Thanks to STFC UK

More information

Complex frequencies of a massless scalar field in loop quantum black hole spacetime

Complex frequencies of a massless scalar field in loop quantum black hole spacetime Complex frequencies of a massless scalar field in loop quantum black hole spacetime Chen Ju-Hua( ) and Wang Yong-Jiu( ) College of Physics and Information Science, Key Laboratory of Low Dimensional Quantum

More information

arxiv: v1 [gr-qc] 1 Aug 2007

arxiv: v1 [gr-qc] 1 Aug 2007 arxiv:78.29v [gr-qc] Aug 27 Sharp bounds on the critical stability radius for relativistic charged spheres: I Håkan Andréasson Mathematical Sciences Chalmers and Göteborg University S-4296 Göteborg, Sweden

More information

Drude-Schwarzschild Metric and the Electrical Conductivity of Metals

Drude-Schwarzschild Metric and the Electrical Conductivity of Metals Drude-Schwarzschild Metric and the Electrical Conductivity of Metals P. R. Silva - Retired associate professor Departamento de Física ICEx Universidade Federal de Minas Gerais email: prsilvafis@gmail.com

More information

A rotating charged black hole solution in f (R) gravity

A rotating charged black hole solution in f (R) gravity PRAMANA c Indian Academy of Sciences Vol. 78, No. 5 journal of May 01 physics pp. 697 703 A rotating charged black hole solution in f R) gravity ALEXIS LARRAÑAGA National Astronomical Observatory, National

More information

arxiv:gr-qc/ v1 7 Sep 1998

arxiv:gr-qc/ v1 7 Sep 1998 Thermodynamics of toroidal black holes Claudia S. Peça Departamento de Física, Instituto Superior Técnico, Av. Rovisco Pais, 096 Lisboa Codex, Portugal José P. S. Lemos Departamento de Astrofísica. Observatório

More information

arxiv:gr-qc/ v1 27 Jan 1998

arxiv:gr-qc/ v1 27 Jan 1998 Instability of three dimensional conformally dressed black hole Cristián Martínez Centro de Estudios Científicos de Santiago, Casilla 6443, Santiago 9, Chile. (April, 08) The three dimensional black hole

More information

Self trapped gravitational waves (geons) with anti-de Sitter asymptotics

Self trapped gravitational waves (geons) with anti-de Sitter asymptotics Self trapped gravitational waves (geons) with anti-de Sitter asymptotics Gyula Fodor Wigner Research Centre for Physics, Budapest ELTE, 20 March 2017 in collaboration with Péter Forgács (Wigner Research

More information

Finite entropy of Schwarzschild anti-de Sitter black hole in different coordinates

Finite entropy of Schwarzschild anti-de Sitter black hole in different coordinates Vol 16 No 12, December 2007 c 2007 Chin. Phys. Soc. 1009-196/2007/16(12/610-06 Chinese Physics and IOP Publishing Ltd Finite entropy of Schwarzschild anti-de Sitter black hole in different coordinates

More information

arxiv: v1 [math-ph] 2 Mar 2016

arxiv: v1 [math-ph] 2 Mar 2016 arxiv:1603.00792v1 [math-ph] 2 Mar 2016 Exact solution of inverse-square-root potential V r) = α r Wen-Du Li a and Wu-Sheng Dai a,b,2 a Department of Physics, Tianjin University, Tianjin 300072, P.R. China

More information

Decay of a Black Hole

Decay of a Black Hole Decay of a Black Hole P. R. Silva Retired associate professor Departamento de Física ICEx Universidade Federal de Minas Gerais (UFMG) email: prsilvafis@gmail.com Abstract- Non-linear Klein-Gordon-Yukawa

More information

arxiv:gr-qc/ v1 2 Mar 1999

arxiv:gr-qc/ v1 2 Mar 1999 Universal Upper Bound to the Entropy of a Charged System Shahar Hod The Racah Institute for Physics, The Hebrew University, Jerusalem 91904, Israel (June 6, 2018) arxiv:gr-qc/9903010v1 2 Mar 1999 Abstract

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

Holography Duality (8.821/8.871) Fall 2014 Assignment 2

Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Sept. 27, 2014 Due Thursday, Oct. 9, 2014 Please remember to put your name at the top of your paper. Note: The four laws of black hole mechanics

More information

What happens at the horizon of an extreme black hole?

What happens at the horizon of an extreme black hole? What happens at the horizon of an extreme black hole? Harvey Reall DAMTP, Cambridge University Lucietti and HSR arxiv:1208.1437 Lucietti, Murata, HSR and Tanahashi arxiv:1212.2557 Murata, HSR and Tanahashi,

More information

Radiation from the non-extremal fuzzball

Radiation from the non-extremal fuzzball adiation from the non-extremal fuzzball Borun D. Chowdhury The Ohio State University The Great Lakes Strings Conference 2008 work in collaboration with Samir D. Mathur (arxiv:0711.4817) Plan Describe non-extremal

More information

Charge, geometry, and effective mass in the Kerr- Newman solution to the Einstein field equations

Charge, geometry, and effective mass in the Kerr- Newman solution to the Einstein field equations Charge, geometry, and effective mass in the Kerr- Newman solution to the Einstein field equations Gerald E. Marsh Argonne National Laboratory (Ret) 5433 East View Park Chicago, IL 60615 E-mail: gemarsh@uchicago.edu

More information

Bulk versus boundary quantum states

Bulk versus boundary quantum states Bulk versus boundary quantum states Henrique Boschi-Filho and Nelson R. F. Braga Instituto de Física, Universidade Federal do Rio de Janeiro Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ, Brazil Abstract

More information

Near horizon geometry, Brick wall model and the Entropy of a scalar field in the Reissner-Nordstrom black hole backgrounds

Near horizon geometry, Brick wall model and the Entropy of a scalar field in the Reissner-Nordstrom black hole backgrounds Near horizon geometry, Brick wall model and the Entropy of a scalar field in the Reissner-Nordstrom black hole backgrounds Kaushik Ghosh 1 Department of Physics, St. Xavier s College, 30, Mother Teresa

More information

arxiv: v1 [gr-qc] 28 Jun 2016

arxiv: v1 [gr-qc] 28 Jun 2016 Mass density of the Earth from a Gravito-Electro-Magnetic 5D vacuum Juan Ignacio Musmarra, 1, Mariano Anabitarte, 1, Mauricio Bellini 1 Departamento de Física, Facultad de Ciencias Exactas y Naturales,

More information

arxiv: v3 [hep-th] 1 Mar 2017

arxiv: v3 [hep-th] 1 Mar 2017 From Scalar Field Theories to Supersymmetric Quantum Mechanics D. Bazeia 1 and F.S. Bemfica 1 Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB, Brazil and Escola de Ciências

More information

arxiv: v2 [gr-qc] 21 Oct 2009

arxiv: v2 [gr-qc] 21 Oct 2009 On the equilibrium of two oppositely charged masses in general relativity V. S. Manko and E. Ruiz Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México

More information

Angular momentum and Killing potentials

Angular momentum and Killing potentials Angular momentum and Killing potentials E. N. Glass a) Physics Department, University of Michigan, Ann Arbor, Michigan 4809 Received 6 April 995; accepted for publication September 995 When the Penrose

More information

Electromagnetic Energy for a Charged Kerr Black Hole. in a Uniform Magnetic Field. Abstract

Electromagnetic Energy for a Charged Kerr Black Hole. in a Uniform Magnetic Field. Abstract Electromagnetic Energy for a Charged Kerr Black Hole in a Uniform Magnetic Field Li-Xin Li Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (December 12, 1999) arxiv:astro-ph/0001494v1

More information

Thermodynamics of Schwarzschild-like black holes in bumblebee gravity models. Abstract

Thermodynamics of Schwarzschild-like black holes in bumblebee gravity models. Abstract Thermodynamics of Schwarzschild-like black holes in bumblebee gravity models D. A. Gomes, R. V. Maluf, and C. A. S. Almeida Universidade Federal do Ceará (UFC), Departamento de Física, Campus do Pici,

More information

Might EPR particles communicate through a wormhole?

Might EPR particles communicate through a wormhole? epl draft Might EP particles communicate through a wormhole? 1,2 (a) E. Sergio Santini arxiv:quant-ph/0701106v2 24 Mar 2007 1 Instituto de Cosmologia, elatividade e Astrofísica ICA-B Centro Brasileiro

More information

On the Hawking Wormhole Horizon Entropy

On the Hawking Wormhole Horizon Entropy ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria On the Hawking Wormhole Horizon Entropy Hristu Culetu Vienna, Preprint ESI 1760 (2005) December

More information

arxiv:quant-ph/ v1 16 Jan 2007

arxiv:quant-ph/ v1 16 Jan 2007 Might EPR particles communicate through a wormhole? 1, 2, E. Sergio Santini 1 Comissão Nacional de Energia Nuclear Rua General Severiano 90, Botafogo 22290-901 Rio de Janeiro, RJ Brasil 2 Centro Brasileiro

More information

A Summary of the Black Hole Perturbation Theory. Steven Hochman

A Summary of the Black Hole Perturbation Theory. Steven Hochman A Summary of the Black Hole Perturbation Theory Steven Hochman Introduction Many frameworks for doing perturbation theory The two most popular ones Direct examination of the Einstein equations -> Zerilli-Regge-Wheeler

More information

Physics 139: Problem Set 9 solutions

Physics 139: Problem Set 9 solutions Physics 139: Problem Set 9 solutions ay 1, 14 Hartle 1.4 Consider the spacetime specified by the line element ds dt + ) dr + r dθ + sin θdφ ) Except for r, the coordinate t is always timelike and the coordinate

More information

Thermodynamics of hot quantum scalar field in a (D + 1) dimensional curved spacetime

Thermodynamics of hot quantum scalar field in a (D + 1) dimensional curved spacetime EJTP 4, No. 37 (08) 5 4 Electronic Journal of Theoretical Physics Thermodynamics of hot quantum scalar field in a (D + ) dimensional curved spacetime W. A. Rojas C. and J. R. Arenas S. Received 6 August

More information

arxiv: v1 [hep-th] 3 Feb 2016

arxiv: v1 [hep-th] 3 Feb 2016 Noname manuscript No. (will be inserted by the editor) Thermodynamics of Asymptotically Flat Black Holes in Lovelock Background N. Abbasvandi M. J. Soleimani Shahidan Radiman W.A.T. Wan Abdullah G. Gopir

More information

arxiv: v1 [gr-qc] 23 Nov 2017

arxiv: v1 [gr-qc] 23 Nov 2017 Regular string-like braneworlds J. E. G. Silva, 1, W. H. P. Brandão,, R. V. Maluf,, and C. A. S. Almeida, 1 Universidade Federal do Cariri (UFCA, Av. Tenente Raimundo Rocha, Cidade Universitária, Juazeiro

More information

arxiv:gr-qc/ v4 29 Dec 1999

arxiv:gr-qc/ v4 29 Dec 1999 Mode-Coupling in Rotating Gravitational Collapse of a Scalar Field Shahar Hod The Racah Institute for Physics, The Hebrew University, Jerusalem 91904, Israel (February 7, 2008) arxiv:gr-qc/9902072v4 29

More information

Late-time tails of self-gravitating waves

Late-time tails of self-gravitating waves Late-time tails of self-gravitating waves (non-rigorous quantitative analysis) Piotr Bizoń Jagiellonian University, Kraków Based on joint work with Tadek Chmaj and Andrzej Rostworowski Outline: Motivation

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 3 August, 2012 Einstein equations (vacuum) The spacetime is a four dimensional manifold M with

More information

arxiv: v2 [hep-th] 21 Jul 2017

arxiv: v2 [hep-th] 21 Jul 2017 Effective Temperatures and Radiation Spectra for a Higher-Dimensional Schwarzschild-de-Sitter Black-Hole arxiv:1705.09108v2 [hep-th] 21 Jul 2017 P. Kanti and T. Pappas Division of Theoretical Physics,

More information

arxiv:hep-th/ v1 5 Nov 2003

arxiv:hep-th/ v1 5 Nov 2003 Absorption Cross Section for S-wave massive Scalar Eylee Jung, Sung-Hoon Kim, and D. K. Park, Department of Physics, Kyungnam University, Masan, 631-701, Korea arxiv:hep-th/0311036v1 5 Nov 003 Abstract

More information

More on the analogy between disclinations and cosmic strings

More on the analogy between disclinations and cosmic strings More on the analogy between disclinations and cosmic strings Fernando Moraes moraes@fisica.ufpb.br Grupo de Matéria Condensada Mole e Física Biológica Departamento de Física Universidade Federal da Paraíba

More information

Might EPR particles communicate through a wormhole?

Might EPR particles communicate through a wormhole? Might EP particles communicate through a wormhole? E. Sergio Santini 1, 1 Instituto de Cosmologia, elatividade e Astrofísica ICA-B Centro Brasileiro de Pesquisas Físicas ua Dr. Xavier Sigaud 150, Urca

More information

SUSY QM VIA 2x2 MATRIX SUPERPOTENTIAL

SUSY QM VIA 2x2 MATRIX SUPERPOTENTIAL CBPF-NF-031/03 hep-th/0308189 SUSY QM VIA 2x2 MATRIX SUPERPOTENTIAL R. de Lima Rodrigues Centro Brasileiro de Pesquisas Físicas (CBPF) Rua Dr. Xavier Sigaud, 150, CEP 22290-180 Rio de Janeiro, RJ, Brazil

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 26 July, 2013 Geometric inequalities Geometric inequalities have an ancient history in Mathematics.

More information

Analytic solutions of the geodesic equation in static spherically symmetric spacetimes in higher dimensions

Analytic solutions of the geodesic equation in static spherically symmetric spacetimes in higher dimensions Analytic solutions of the geodesic equation in static spherically symmetric spacetimes in higher dimensions Eva Hackmann 2, Valeria Kagramanova, Jutta Kunz, Claus Lämmerzahl 2 Oldenburg University, Germany

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

arxiv:hep-th/ v6 7 Jun 2007

arxiv:hep-th/ v6 7 Jun 2007 Hawking radiation from (2 + 1)-dimensional BTZ black holes Qing-Quan Jiang a, Shuang-Qing Wu b and Xu Cai a arxiv:hep-th/0701048v6 7 Jun 2007 a Institute of Particle Physics, Central China Normal University,

More information

Kaluza Klein magnetic monopole in five-dimensional global monopole spacetime

Kaluza Klein magnetic monopole in five-dimensional global monopole spacetime INSTITUTE OF PHYSICS PUBLISHING Class. Quantum Grav. 21 2004) 1685 1694 CLASSICAL AND QUANTUM GRAVITY PII: S0264-938104)69236-7 Kaluza Klein magnetic monopole in five-dimensional global monopole spacetime

More information

Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity

Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity Hisaaki Shinkai 1, and Takashi Torii 2, 1 Department of Information Systems, Osaka Institute of Technology, Hirakata City, Osaka 573-0196, Japan

More information

Effective temperature for black holes

Effective temperature for black holes Effective temperature for black holes Christian Corda May 31, 2011 Institute for Theoretical Physics and Mathematics Einstein-Galilei, Via Santa Gonda 14, 59100 Prato, Italy E-mail addresses: cordac.galilei@gmail.com

More information

arxiv: v2 [gr-qc] 1 Oct 2009

arxiv: v2 [gr-qc] 1 Oct 2009 On the cosmological effects of the Weyssenhoff spinning fluid in the Einstein-Cartan framework Guilherme de Berredo-Peixoto arxiv:0907.1701v2 [gr-qc] 1 Oct 2009 Departamento de Física, ICE, Universidade

More information

arxiv:gr-qc/ v1 29 Nov 1994

arxiv:gr-qc/ v1 29 Nov 1994 QUANTUM COSMOLOGY FOR A QUADRATIC THEORY OF GRAVITY Luis O. Pimentel 1 and Octavio Obregón 1,2 arxiv:gr-qc/9411072v1 29 Nov 1994 1 Departamento de Física, Universidad Autónoma Metropolitana, Apartado Postal

More information

arxiv:hep-th/ v3 25 Sep 2006

arxiv:hep-th/ v3 25 Sep 2006 OCU-PHYS 46 AP-GR 33 Kaluza-Klein Multi-Black Holes in Five-Dimensional arxiv:hep-th/0605030v3 5 Sep 006 Einstein-Maxwell Theory Hideki Ishihara, Masashi Kimura, Ken Matsuno, and Shinya Tomizawa Department

More information

Analytic Kerr Solution for Puncture Evolution

Analytic Kerr Solution for Puncture Evolution Analytic Kerr Solution for Puncture Evolution Jon Allen Maximal slicing of a spacetime with a single Kerr black hole is analyzed. It is shown that for all spin parameters, a limiting hypersurface forms

More information

Asymptotic Quasinormal Frequencies for d Dimensional Black Holes

Asymptotic Quasinormal Frequencies for d Dimensional Black Holes Asymptotic Quasinormal Frequencies for d Dimensional Black Holes José Natário (Instituto Superior Técnico, Lisbon) Based on hep-th/0411267 with Ricardo Schiappa Oxford, February 2009 Outline What exactly

More information

Research Article Remarks on Null Geodesics of Born-Infeld Black Holes

Research Article Remarks on Null Geodesics of Born-Infeld Black Holes International Scholarly Research Network ISRN Mathematical Physics Volume 1, Article ID 86969, 13 pages doi:1.54/1/86969 Research Article Remarks on Null Geodesics of Born-Infeld Black Holes Sharmanthie

More information

Ask class: what is the Minkowski spacetime in spherical coordinates? ds 2 = dt 2 +dr 2 +r 2 (dθ 2 +sin 2 θdφ 2 ). (1)

Ask class: what is the Minkowski spacetime in spherical coordinates? ds 2 = dt 2 +dr 2 +r 2 (dθ 2 +sin 2 θdφ 2 ). (1) 1 Tensor manipulations One final thing to learn about tensor manipulation is that the metric tensor is what allows you to raise and lower indices. That is, for example, v α = g αβ v β, where again we use

More information

WHY BLACK HOLES PHYSICS?

WHY BLACK HOLES PHYSICS? WHY BLACK HOLES PHYSICS? Nicolò Petri 13/10/2015 Nicolò Petri 13/10/2015 1 / 13 General motivations I Find a microscopic description of gravity, compatibile with the Standard Model (SM) and whose low-energy

More information

Analogue non-riemannian black holes in vortical moving plasmas

Analogue non-riemannian black holes in vortical moving plasmas Analogue non-riemannian black holes in vortical moving plasmas arxiv:gr-qc/0509034v1 11 Sep 2005 L.C. Garcia de Andrade 1 Abstract Analogue black holes in non-riemannian effective spacetime of moving vortical

More information

arxiv: v1 [gr-qc] 14 Dec 2007

arxiv: v1 [gr-qc] 14 Dec 2007 High accuracy simulations of Kerr tails: coordinate dependence and higher multipoles Manuel Tiglio, 1,2 Lawrence E. Kidder, 3 and Saul A. Teukolsky 3 1 Department of Physics and Astronomy, and Center for

More information

EXPLICIT SOLUTIONS OF THE WAVE EQUATION ON THREE DIMENSIONAL SPACE-TIMES: TWO EXAMPLES WITH DIRICHLET BOUNDARY CONDITIONS ON A DISK ABSTRACT

EXPLICIT SOLUTIONS OF THE WAVE EQUATION ON THREE DIMENSIONAL SPACE-TIMES: TWO EXAMPLES WITH DIRICHLET BOUNDARY CONDITIONS ON A DISK ABSTRACT EXPLICIT SOLUTIONS OF THE WAVE EQUATION ON THREE DIMENSIONAL SPACE-TIMES: TWO EXAMPLES WITH DIRICHLET BOUNDARY CONDITIONS ON A DISK DANIIL BOYKIS, PATRICK MOYLAN Physics Department, The Pennsylvania State

More information