MultiFreedom Constraints I

Size: px
Start display at page:

Download "MultiFreedom Constraints I"

Transcription

1 Introdction to FEM 8 MltiFreedom Constraints I IFEM Ch 8 Slide

2 Introdction to FEM x4 = 0 Mltifreedom Constraints Single freedom constraint examples linear, homogeneos y9 = 0. linear, non-homogeneos Mltifreedom constraint examples x2 = 2 y2 linear, homogeneos x2 2 x4 + x = 0.25 linear, non-homogeneos (x 5 + x5 x 3 x3 ) 2 +(y 5 + y5 y 3 y3 ) 2 = 0 nonlinear, homogeneos IFEM Ch 8 Slide 2

3 Introdction to FEM Sorces of Mltifreedom Constraints "Skew" displacement BCs Copling nonmatched FEM meshes Global-local and mltiscale analysis Incompressibility Model redction IFEM Ch 8 Slide 3

4 Introdction to FEM MFC Application Methods Master-Slave Elimination Chapter 8 Penalty Fnction Agmentation Lagrange Mltiplier Adjnction Chapter 9 IFEM Ch 8 Slide 4

5 Introdction to FEM Procedre Smmary in Static Analysis Valid for the Three Methods Unmodified master stiffness eqations K = f before applying MFCs Apply MFCs master slave penalty fnction Lagrange mltiplier ^ Modified stiffness eqations K ^ = ^ f Eqation solver gives ^ Recover if necessary IFEM Ch 8 Slide 5

6 Introdction to FEM Example D Strctre to Illstrate MFCs, f 2, f 2 3, f 3 4, f 4 5, f 5, f 7, f7 () (2) (3) (4) (5) () x Mltifreedom constraint: = or 2 2 = 0 Linear homogeneos MFC IFEM Ch 8 Slide

7 Introdction to FEM Example D Strctre (Cont'd), f 2, f 2 3, f 3 4, f 4 5, f 5, f 7, f7 () (2) (3) (4) (5) () Unconstrained master stiffness eqations K K K 2 K 22 K K 23 K 33 K K 34 K 44 K = K 45 K 55 K K 5 K K K 7 K 77 7 or K = f x f f 2 f 3 f 4 f 5 f f 7 IFEM Ch 8 Slide 7

8 Introdction to FEM Master-Slave Method for Example Strctre Recall: = or 2 2 = 0 Taking 2 as master and as slave = or = T ^ IFEM Ch 8 Slide 8

9 Forming the Modified Stiffness Eqations Introdction to FEM Unconstrained master stiffness eqations: Master-slave transformation: K = f = T ^ Replace & premltiply T both sides by T : K T = f T ^ ^ T T K T = T f ^ T On renaming K = T K T and ^ T f = f we get the modified stiffness eqations: ^ ^ ^ K = f IFEM Ch 8 Slide 9

10 Introdction to FEM Modified Stiffness Eqations for Example Strctre ˆ ˆ In fll K K K 2 K 22 + K K 23 0 K 5 K K 23 K 33 K K 34 K 44 K K 5 0 K 45 K K K 77 7 ˆ K = f = f f 2 + f f 3 f 4 f 5 f 7 ˆ Solve for, then recover = T ˆ IFEM Ch 8 Slide 0

11 Sppose Pt in matrix form: = 5 7 Mltiple MFCs 2 = 0, = 0, = 0 Pick 3, 4 and as slaves while, 2, 5 and 7 are masters Introdction to FEM = 2 4 = 4 3 = 2 ( ) = This is = T ˆ - then proceed as before IFEM Ch 8 Slide

12 Non-homogeneos MFCs Introdction to FEM 2 = 0.2 Pick again as slave, pt into matrix form: = IFEM Ch 8 Slide 2

13 Nonhomogeneos MFCs (cont'd) Introdction to FEM = T ˆ + g g: "gap" vector T Premltiply both sides by T K, replace K = f and pass data to RHS. This gives K ˆ ˆ = fˆ with ˆ T ˆ T K = T K T and f = T (f K g) a modified force vector IFEM Ch 8 Slide 3

14 Nonhomogeneos MFCs (cont'd) Introdction to FEM For the example strctre K K K 2 K 22 + K K 23 0 K 5 K K 23 K 33 K K 34 K 44 K K 5 0 K 45 K K K 77 7 = f f 2 + f 0.2K f 3 f 4 f 5 0.2K 5 f 7 0.2K 7 Solve for, ˆ then recover = T ˆ + g IFEM Ch 8 Slide 4

15 Model Redction Example Introdction to FEM, f 2, f 2 3, f 3 4, f 4 5, f 5, f 7, f7 () (2) (3) (4) (5) () x,f 2 master DOFs to be retained 7,f slave DOFs to be eliminated Master,f 7,f 7 Redced model 7 Master x x IFEM Ch 8 Slide 5

16 Model Redction Example (cont'd) Introdction to FEM Lots of slaves, few masters. Only masters are left. Example of previos slide: / / 4/ 2/ 3/ 3/ 2/ 4/ / 5/ 0 Applying the congrential transformation we get the redced stiffness eqations where 5 slaves = 2 masters ˆK ˆK 7 ˆK 7 ˆK 77 7 ˆK = 3 (3K +0K 2 +25K K 23 +K K 34 +9K 44 +2K 45 +4K 55 +4K 5 +K ) ˆK 7 = 3 (K 2+5K 22 +4K 23 +8K 33 +8K 34 +9K 44 +8K 45 +8K 55 +4K 5 +5K +K 7 ) ˆK 77 = 3 (K 22+4K 23 +4K 33 +2K 34 +9K K 45 +K K 5 +25K +0K 7 +3K 77 ) ˆ f = ( f +5 f 2 +4 f 3 +3 f 4 +2 f 5 + f ); = 7 ˆ f ˆ f 7 ˆ f 7 = ( f 2+2 f 3 +3 f 4 +4 f 5 +5 f + f 7 ): IFEM Ch 8 Slide

17 Introdction to FEM Model Redction Example: Mathematica Script (* Model Redction by Kinematic Constraints - Example *) ClearAll[K,K2,K22,K23,K33,K34,K44,K45,K55,K5,K,K7,K77, f,f2,f3,f4,f5,f,f7]; K={{K,K2,0,0,0,0,0},{K2,K22,K23,0,0,0,0}, {0,K23,K33,K34,0,0,0},{0,0,K34,K44,K45,0,0}, {0,0,0,K45,K55,K5,0},{0,0,0,0,K5,K,K7}}; {0,0,0,0,0,K7,K77}; Print["K=",K//MatrixForm]; f={f,f2,f3,f4,f5,f,f7}; Print["f=",f]; T={{,0},{5,},{4,2},{3,3},{2,4},{,5},{0,}}/; Print[" T (transposed to save space)=",transpose[t]//matrixform]; Khat=Simplify[Transpose[T].K.T]; fhat=simplify[transpose[t].f]; Print["Modified stiffness entries:"]; Print["Khat(,)=",Khat[[,]],"\nKhat(,2)=",Khat[[,2]], "\nkhat(2,2)=",khat[[2,2]] ]; Print["Modified force entries:"]; Print["fhat()=",fhat[[]]," fhat(2)=",fhat[[2]] ]; K K K2 K22 K K23 K33 K K= 0 0 K34 K44 K K45 K55 K K5 K K K7 K77 f={f,f2,f3,f4,f5,f,f7}; T (transposed to save space)= Modified stiffness entries: Kkat(,)= (3 K + 0 K K K23 + K K K K K55 + 4K5 + K) 3 Khat(,2)= ( K2 + 5 K K K K K K K K5 + 5 K + K7) 3 Khat(2,2)= (K K K K K K45 + K K K + 0 K7 + 3 K77) 3 Modified force entries: fhat()= ( f + 5 f2 + 4 f3 + 3 f4 + 2 f5 + f) fhat(2)= (f2 + 2 f3 + 3 f4 + 4 f5 + 5 f + f7) IFEM Ch 8 Slide 7

18 Introdction to FEM Assessment of Master-Slave Method ADVANTAGES exact if precations taken easy to nderstand retains positive definiteness important applications to model redction DISADVANTAGES reqires ser decisions messy implementation for general MFCs hinders sparsity of master stiffness eqations sensitive to constraint dependence restricted to linear constraints IFEM Ch 8 Slide 8

19 Introdction to FEM Psedo Code for Compter Exercises (sample) procedre MasterStiffnessOfSixElementBar(kbar); real K=nllmatrix(7,7)); K(,)=K(7,7)=kbar; for i=2,i<=,i++, K(i,i)=2*kbar; endfor; for i=,i<=,i++, K(i,i+)=K(i+,i)= kbar; endfor; retrn(k); endprocedre; procedre FixLeftEndOfSixElementBar(Khat,fhat); Kmod=Khat; fmod=fhat; fmod()=0; Kmod(,)=; Kmod(,2)=Kmod(,2)=0; retrn((kmod,fmod)); endprocedre; // Main script follows K=MasterStiffnessOfSixElementBar(00); print K; // constrct master K f=vector(,2,3,4,5,,7); print f; // constrct force vector T=matrix((,0,0,0,0,0),(0,,0,0,0,0),(0,0,,0,0,0), (0,0,0,,0,0),(0,0,0,0,,0),(0,,0,0,0,0),(0,0,0,0,0,)); print T; // constrct transformation matrix T g=vector(0,0,0,0,0, /5,0); print g; // constrct gap vector Khat=T'.K.T; fhat=t'.(f K.g); // modified stiffness and force (Kmod,fmod)=FixLeftEndOfSixElementBar(Khat,fhat); // fix left end print Kmod; print fmod; mod=inverse(kmod).fmod; print mod; // modified soltion vector =T.mod+g; print ; // complete soltion f=k.; print f; // recovered forces inclding reactions Simplifies implementation into high-level langage of yor choice IFEM Ch 8 Slide 9

Multi-Point Constraints

Multi-Point Constraints Multi-Point Constraints Multi-Point Constraints Multi-Point Constraints Single point constraint examples Multi-Point constraint examples linear, homogeneous linear, non-homogeneous linear, homogeneous

More information

Geometry of Span (continued) The Plane Spanned by u and v

Geometry of Span (continued) The Plane Spanned by u and v Geometric Description of Span Geometr of Span (contined) 2 Geometr of Span (contined) 2 Span {} Span {, } 2 Span {} 2 Geometr of Span (contined) 2 b + 2 The Plane Spanned b and If a plane is spanned b

More information

Assignment Fall 2014

Assignment Fall 2014 Assignment 5.086 Fall 04 De: Wednesday, 0 December at 5 PM. Upload yor soltion to corse website as a zip file YOURNAME_ASSIGNMENT_5 which incldes the script for each qestion as well as all Matlab fnctions

More information

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University 9. TRUSS ANALYSIS... 1 9.1 PLANAR TRUSS... 1 9. SPACE TRUSS... 11 9.3 SUMMARY... 1 9.4 EXERCISES... 15 9. Trss analysis 9.1 Planar trss: The differential eqation for the eqilibrim of an elastic bar (above)

More information

Chapter 2 Introduction to the Stiffness (Displacement) Method. The Stiffness (Displacement) Method

Chapter 2 Introduction to the Stiffness (Displacement) Method. The Stiffness (Displacement) Method CIVL 7/87 Chater - The Stiffness Method / Chater Introdction to the Stiffness (Dislacement) Method Learning Objectives To define the stiffness matrix To derive the stiffness matrix for a sring element

More information

Residual Force Equations

Residual Force Equations 3 Residual Force Equations NFEM Ch 3 Slide 1 Total Force Residual Equation Vector form r(u,λ) = 0 r = total force residual vector u = state vector with displacement DOF Λ = array of control parameters

More information

The Linear Quadratic Regulator

The Linear Quadratic Regulator 10 The Linear Qadratic Reglator 10.1 Problem formlation This chapter concerns optimal control of dynamical systems. Most of this development concerns linear models with a particlarly simple notion of optimality.

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion Procedre (demonstrated with a -D bar element problem) EA Procedre for Static Analysis. Prepare the E model a. discretize (mesh) the strctre b. prescribe loads c. prescribe spports. Perform calclations

More information

Modelling by Differential Equations from Properties of Phenomenon to its Investigation

Modelling by Differential Equations from Properties of Phenomenon to its Investigation Modelling by Differential Eqations from Properties of Phenomenon to its Investigation V. Kleiza and O. Prvinis Kanas University of Technology, Lithania Abstract The Panevezys camps of Kanas University

More information

Variational Formulation of Plane Beam Element

Variational Formulation of Plane Beam Element 13 Variational Formulation of Plane Beam Element IFEM Ch 13 Slide 1 Beams Resist Primarily Transverse Loads IFEM Ch 13 Slide 2 Transverse Loads are Transported to Supports by Flexural Action Neutral surface

More information

Interrogative Simulation and Uncertainty Quantification of Multi-Disciplinary Systems

Interrogative Simulation and Uncertainty Quantification of Multi-Disciplinary Systems Interrogative Simlation and Uncertainty Qantification of Mlti-Disciplinary Systems Ali H. Nayfeh and Mhammad R. Hajj Department of Engineering Science and Mechanics Virginia Polytechnic Institte and State

More information

Simplified Identification Scheme for Structures on a Flexible Base

Simplified Identification Scheme for Structures on a Flexible Base Simplified Identification Scheme for Strctres on a Flexible Base L.M. Star California State University, Long Beach G. Mylonais University of Patras, Greece J.P. Stewart University of California, Los Angeles

More information

Hybrid modelling and model reduction for control & optimisation

Hybrid modelling and model reduction for control & optimisation Hybrid modelling and model redction for control & optimisation based on research done by RWTH-Aachen and TU Delft presented by Johan Grievink Models for control and optimiation market and environmental

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion Procedre (demonstrated with a -D bar element problem) MAE 5 - inite Element Analysis Several slides from this set are adapted from B.S. Altan, Michigan Technological University EA Procedre for

More information

Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introduction The transmission line equations are given by

Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introduction The transmission line equations are given by Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introdction The transmission line eqations are given by, I z, t V z t l z t I z, t V z, t c z t (1) (2) Where, c is the per-nit-length

More information

Advanced topics in Finite Element Method 3D truss structures. Jerzy Podgórski

Advanced topics in Finite Element Method 3D truss structures. Jerzy Podgórski Advanced topics in Finite Element Method 3D trss strctres Jerzy Podgórski Introdction Althogh 3D trss strctres have been arond for a long time, they have been sed very rarely ntil now. They are difficlt

More information

Time-adaptive non-linear finite-element analysis of contact problems

Time-adaptive non-linear finite-element analysis of contact problems Proceedings of the 7th GACM Colloqim on Comptational Mechanics for Yong Scientists from Academia and Indstr October -, 7 in Stttgart, German Time-adaptive non-linear finite-element analsis of contact problems

More information

RESGen: Renewable Energy Scenario Generation Platform

RESGen: Renewable Energy Scenario Generation Platform 1 RESGen: Renewable Energy Scenario Generation Platform Emil B. Iversen, Pierre Pinson, Senior Member, IEEE, and Igor Ardin Abstract Space-time scenarios of renewable power generation are increasingly

More information

A State Space Based Implicit Integration Algorithm. for Differential Algebraic Equations of Multibody. Dynamics

A State Space Based Implicit Integration Algorithm. for Differential Algebraic Equations of Multibody. Dynamics A State Space Based Implicit Integration Algorithm for Differential Algebraic Eqations of Mltibody Dynamics E. J. Hag, D. Negrt, M. Ianc Janary 28, 1997 To Appear Mechanics of Strctres and Machines Abstract.

More information

Stability of structures FE-based stability analysis

Stability of structures FE-based stability analysis Stability of strctres FE-based stability analysis Non-linear geometry, example P A B P C P= D -P Non-Linear geometry, example - kinematics The strains may be written as: The lengths of the bar in ndeformed

More information

Sareban: Evaluation of Three Common Algorithms for Structure Active Control

Sareban: Evaluation of Three Common Algorithms for Structure Active Control Engineering, Technology & Applied Science Research Vol. 7, No. 3, 2017, 1638-1646 1638 Evalation of Three Common Algorithms for Strctre Active Control Mohammad Sareban Department of Civil Engineering Shahrood

More information

Substructure Finite Element Model Updating of a Space Frame Structure by Minimization of Modal Dynamic Residual

Substructure Finite Element Model Updating of a Space Frame Structure by Minimization of Modal Dynamic Residual 1 Sbstrctre Finite Element Model Updating of a Space Frame Strctre by Minimization of Modal Dynamic esidal Dapeng Zh, Xinn Dong, Yang Wang, Member, IEEE Abstract This research investigates a sbstrctre

More information

Introduction to FEM. Overview. IFEM Ch 1 Slide 1

Introduction to FEM. Overview. IFEM Ch 1 Slide 1 Overview IFEM Ch 1 Slide 1 Course Coverage This course consists of three Parts: I. Finite Element Basic Concepts II. Formulation of Finite Elements III. Computer Implementation of FEM IFEM Ch 1 Slide 2

More information

Section 7.4: Integration of Rational Functions by Partial Fractions

Section 7.4: Integration of Rational Functions by Partial Fractions Section 7.4: Integration of Rational Fnctions by Partial Fractions This is abot as complicated as it gets. The Method of Partial Fractions Ecept for a few very special cases, crrently we have no way to

More information

Homogeneous Liner Systems with Constant Coefficients

Homogeneous Liner Systems with Constant Coefficients Homogeneos Liner Systems with Constant Coefficients Jly, 06 The object of stdy in this section is where A is a d d constant matrix whose entries are real nmbers. As before, we will look to the exponential

More information

Adjoint-Based Sensitivity Analysis for Computational Fluid Dynamics

Adjoint-Based Sensitivity Analysis for Computational Fluid Dynamics Adjoint-Based Sensitivity Analysis for Comptational Flid Dynamics Dimitri J. Mavriplis Department of Mecanical Engineering niversity of Wyoming Laramie, WY Motivation Comptational flid dynamics analysis

More information

The Dual of the Maximum Likelihood Method

The Dual of the Maximum Likelihood Method Department of Agricltral and Resorce Economics University of California, Davis The Dal of the Maximm Likelihood Method by Qirino Paris Working Paper No. 12-002 2012 Copyright @ 2012 by Qirino Paris All

More information

The Plane Stress Problem

The Plane Stress Problem 14 The Plane Stress Problem IFEM Ch 14 Slide 1 Plate in Plane Stress Thickness dimension or transverse dimension z Top surface Inplane dimensions: in, plane IFEM Ch 14 Slide 2 Mathematical Idealization

More information

STEP Support Programme. STEP III Hyperbolic Functions: Solutions

STEP Support Programme. STEP III Hyperbolic Functions: Solutions STEP Spport Programme STEP III Hyperbolic Fnctions: Soltions Start by sing the sbstittion t cosh x. This gives: sinh x cosh a cosh x cosh a sinh x t sinh x dt t dt t + ln t ln t + ln cosh a ln ln cosh

More information

A Model-Free Adaptive Control of Pulsed GTAW

A Model-Free Adaptive Control of Pulsed GTAW A Model-Free Adaptive Control of Plsed GTAW F.L. Lv 1, S.B. Chen 1, and S.W. Dai 1 Institte of Welding Technology, Shanghai Jiao Tong University, Shanghai 00030, P.R. China Department of Atomatic Control,

More information

FRTN10 Exercise 12. Synthesis by Convex Optimization

FRTN10 Exercise 12. Synthesis by Convex Optimization FRTN Exercise 2. 2. We want to design a controller C for the stable SISO process P as shown in Figre 2. sing the Yola parametrization and convex optimization. To do this, the control loop mst first be

More information

Approximate Solution of Convection- Diffusion Equation by the Homotopy Perturbation Method

Approximate Solution of Convection- Diffusion Equation by the Homotopy Perturbation Method Gen. Math. Notes, Vol. 1, No., December 1, pp. 18-114 ISSN 19-7184; Copyright ICSRS Pblication, 1 www.i-csrs.org Available free online at http://www.geman.in Approximate Soltion of Convection- Diffsion

More information

Continuum mechanics of beam-like structures using one-dimensional finite element based on Serendipity Lagrange cross-sectional discretisation, Mayank Patni, Prof. Paul Weaver, Dr Alberto Pirrera Bristol

More information

Reduction in number of dofs

Reduction in number of dofs Reduction in number of dofs Reduction in the number of dof to represent a structure reduces the size of matrices and, hence, computational cost. Because a subset of the original dof represent the whole

More information

Method of Finite Elements I

Method of Finite Elements I Method of Finite Elements I PhD Candidate - Charilaos Mylonas HIL H33.1 and Boundary Conditions, 26 March, 2018 Institute of Structural Engineering Method of Finite Elements I 1 Outline 1 2 Penalty method

More information

Garret Sobczyk s 2x2 Matrix Derivation

Garret Sobczyk s 2x2 Matrix Derivation Garret Sobczyk s x Matrix Derivation Krt Nalty May, 05 Abstract Using matrices to represent geometric algebras is known, bt not necessarily the best practice. While I have sed small compter programs to

More information

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students BLOOM S TAXONOMY Topic Following Bloom s Taonomy to Assess Stdents Smmary A handot for stdents to eplain Bloom s taonomy that is sed for item writing and test constrction to test stdents to see if they

More information

Direct linearization method for nonlinear PDE s and the related kernel RBFs

Direct linearization method for nonlinear PDE s and the related kernel RBFs Direct linearization method for nonlinear PDE s and the related kernel BFs W. Chen Department of Informatics, Uniersity of Oslo, P.O.Box 1080, Blindern, 0316 Oslo, Norway Email: wenc@ifi.io.no Abstract

More information

FINITE ELEMENT MODELING OF EDDY CURRENT PROBES FOR EDGE EFFECT

FINITE ELEMENT MODELING OF EDDY CURRENT PROBES FOR EDGE EFFECT FIITE ELEMET MODELIG OF EDDY CURRET PROBES FOR EDGE EFFECT REDUCTIO Sarit Sharma, Ibrahim Elshafiey, Lalita Udpa, and Satish Udpa Department of Electrical and Compter Engineering Iowa State University

More information

Subcritical bifurcation to innitely many rotating waves. Arnd Scheel. Freie Universitat Berlin. Arnimallee Berlin, Germany

Subcritical bifurcation to innitely many rotating waves. Arnd Scheel. Freie Universitat Berlin. Arnimallee Berlin, Germany Sbcritical bifrcation to innitely many rotating waves Arnd Scheel Institt fr Mathematik I Freie Universitat Berlin Arnimallee 2-6 14195 Berlin, Germany 1 Abstract We consider the eqation 00 + 1 r 0 k2

More information

Equation-Based Research Code in CFD (PICMSS) Kwai Wong NICS at UTK / ORNL May 18, 2010

Equation-Based Research Code in CFD (PICMSS) Kwai Wong NICS at UTK / ORNL May 18, 2010 Eqation-Based Research Code in CFD (PICMSS) Kwai Wong NICS at UTK / ORNL kwong@tk.ed May 18, 010 ORNL is the U.S. Department of Energy s largest science and energy laboratory National Institte for Comptational

More information

Visualisations of Gussian and Mean Curvatures by Using Mathematica and webmathematica

Visualisations of Gussian and Mean Curvatures by Using Mathematica and webmathematica Visalisations of Gssian and Mean Cratres by Using Mathematica and webmathematica Vladimir Benić, B. sc., (benic@grad.hr), Sonja Gorjanc, Ph. D., (sgorjanc@grad.hr) Faclty of Ciil Engineering, Kačićea 6,

More information

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/12 Fall, 2011

OPTI-502 Optical Design and Instrumentation I John E. Greivenkamp Final Exam In Class Page 1/12 Fall, 2011 OPTI-502 Optical Design and Instrmentation I John E. Greivenkamp Final Exam In Class Page 1/12 Fall, 2011 Name Closed book; closed notes. Time limit: 2 hors. An eqation sheet is attached and can be removed.

More information

We automate the bivariate change-of-variables technique for bivariate continuous random variables with

We automate the bivariate change-of-variables technique for bivariate continuous random variables with INFORMS Jornal on Compting Vol. 4, No., Winter 0, pp. 9 ISSN 09-9856 (print) ISSN 56-558 (online) http://dx.doi.org/0.87/ijoc.046 0 INFORMS Atomating Biariate Transformations Jeff X. Yang, John H. Drew,

More information

Geometry of the Legendre transformation

Geometry of the Legendre transformation 1. Introdction. Geometry of the Legendre transformation Paeł Urbański Katedra etod atematycznych Fizyki, Uniersytet Warszaski Hoża 74, 00-682 Warszaa email: rbanski@f.ed.pl Lagrangian systems Hamiltonian

More information

CFD-Simulation thermoakustischer Resonanzeffekte zur Bestimmung der Flammentransferfunktion

CFD-Simulation thermoakustischer Resonanzeffekte zur Bestimmung der Flammentransferfunktion CFD-Simlation thermoakstischer Resonanzeffekte zr Bestimmng der Flammentransferfnktion Ator: Dennis Paschke Technische Universität Berlin Institt für Strömngsmechanik nd Technische Akstik FG Experimentelle

More information

Technical Note. ODiSI-B Sensor Strain Gage Factor Uncertainty

Technical Note. ODiSI-B Sensor Strain Gage Factor Uncertainty Technical Note EN-FY160 Revision November 30, 016 ODiSI-B Sensor Strain Gage Factor Uncertainty Abstract Lna has pdated or strain sensor calibration tool to spport NIST-traceable measrements, to compte

More information

Using Lagrangian relaxation in optimisation of unit commitment and planning- Part2

Using Lagrangian relaxation in optimisation of unit commitment and planning- Part2 Faklteta za Elektrotehniko Eva horin, Heike Brand, Christoph Weber Using Lagrangian relaxation in optimisation of nit commitment and planning- art2 OSCOGEN Discssion aper No. Contract No. ENK5-C-2-94 roject

More information

Chapter 2 Difficulties associated with corners

Chapter 2 Difficulties associated with corners Chapter Difficlties associated with corners This chapter is aimed at resolving the problems revealed in Chapter, which are cased b corners and/or discontinos bondar conditions. The first section introdces

More information

Pulses on a Struck String

Pulses on a Struck String 8.03 at ESG Spplemental Notes Plses on a Strck String These notes investigate specific eamples of transverse motion on a stretched string in cases where the string is at some time ndisplaced, bt with a

More information

Basic Introduction to Nonlinear Analysis

Basic Introduction to Nonlinear Analysis Basic Introdction to Nonlinear nalysis Ronald. Ziemian Bcknell University The fnction of a strctral engineer is to design not to analyze Norris and Wilbr 960 nalysis is a means to an end rather than the

More information

APPENDIX B MATRIX NOTATION. The Definition of Matrix Notation is the Definition of Matrix Multiplication B.1 INTRODUCTION

APPENDIX B MATRIX NOTATION. The Definition of Matrix Notation is the Definition of Matrix Multiplication B.1 INTRODUCTION APPENDIX B MAIX NOAION he Deinition o Matrix Notation is the Deinition o Matrix Mltiplication B. INODUCION { XE "Matrix Mltiplication" }{ XE "Matrix Notation" }he se o matrix notations is not necessary

More information

Formal Methods for Deriving Element Equations

Formal Methods for Deriving Element Equations Formal Methods for Deriving Element Eqations And the importance of Shape Fnctions Formal Methods In previos lectres we obtained a bar element s stiffness eqations sing the Direct Method to obtain eact

More information

Solving a System of Equations

Solving a System of Equations Solving a System of Eqations Objectives Understand how to solve a system of eqations with: - Gass Elimination Method - LU Decomposition Method - Gass-Seidel Method - Jacobi Method A system of linear algebraic

More information

Lecture 1: Course Introduction.

Lecture 1: Course Introduction. Lecture : Course Introduction. What is the Finite Element Method (FEM)? a numerical method for solving problems of engineering and mathematical physics. (Logan Pg. #). In MECH 40 we are concerned with

More information

CHAPTER 8 ROTORS MOUNTED ON FLEXIBLE BEARINGS

CHAPTER 8 ROTORS MOUNTED ON FLEXIBLE BEARINGS CHAPTER 8 ROTORS MOUNTED ON FLEXIBLE BEARINGS Bearings commonly sed in heavy rotating machine play a significant role in the dynamic ehavior of rotors. Of particlar interest are the hydrodynamic earings,

More information

Predictive Control- Exercise Session 4 Adaptive Control: Self Tuning Regulators and Model Reference Adaptive Systems

Predictive Control- Exercise Session 4 Adaptive Control: Self Tuning Regulators and Model Reference Adaptive Systems Predictive Control- Exercise Session 4 Adaptive Control: Self Tning Reglators and Model Reference Adaptive Systems 1. Indirect Self Tning Reglator: Consider the system where G(s)=G 1 (s)g 2 (s) G 1 (s)=

More information

Fast Algorithms for Restoration of Color Wireless Capsule Endoscopy Images

Fast Algorithms for Restoration of Color Wireless Capsule Endoscopy Images Fast Algorithms for Restoration of Color Wireless Capsle Endoscopy Images Haiying Li, W.-S. L, and Max Q.-H. Meng School of Control Science and Engineering, Shangdon University, Jinan, China Dept. of Electrical

More information

Lecture 9: 3.4 The Geometry of Linear Systems

Lecture 9: 3.4 The Geometry of Linear Systems Lectre 9: 3.4 The Geometry of Linear Systems Wei-Ta Ch 200/0/5 Dot Prodct Form of a Linear System Recall that a linear eqation has the form a x +a 2 x 2 + +a n x n = b (a,a 2,, a n not all zero) The corresponding

More information

Structural Analysis II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 38

Structural Analysis II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 38 Structural Analysis II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 38 Good morning. We have been looking at influence lines for the last couple of lectures

More information

A Decomposition Method for Volume Flux. and Average Velocity of Thin Film Flow. of a Third Grade Fluid Down an Inclined Plane

A Decomposition Method for Volume Flux. and Average Velocity of Thin Film Flow. of a Third Grade Fluid Down an Inclined Plane Adv. Theor. Appl. Mech., Vol. 1, 8, no. 1, 9 A Decomposition Method for Volme Flx and Average Velocit of Thin Film Flow of a Third Grade Flid Down an Inclined Plane A. Sadighi, D.D. Ganji,. Sabzehmeidani

More information

Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation

Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation Nonlinear Dyn 7 89:33 4 DOI.7/s7-7-38-3 ORIGINAL PAPER Bäcklnd transformation, mltiple wave soltions and lmp soltions to a 3 + -dimensional nonlinear evoltion eqation Li-Na Gao Yao-Yao Zi Y-Hang Yin Wen-Xi

More information

Problem 1: Find the Equation of Motion from the static equilibrium position for the following systems: 1) Assumptions

Problem 1: Find the Equation of Motion from the static equilibrium position for the following systems: 1) Assumptions Problem 1: Find the Equation of Motion from the static equilibrium position for the following systems: 1) Assumptions k 2 Wheels roll without friction k 1 Motion will not cause block to hit the supports

More information

Decision making is the process of selecting

Decision making is the process of selecting Jornal of Advances in Compter Engineering and Technology, (4) 06 A New Mlti-Criteria Decision Making Based on Fzzy- Topsis Theory Leila Yahyaie Dizaji, Sohrab khanmohammadi Received (05-09-) Accepted (06--)

More information

IT is well known that searching for travelling wave solutions

IT is well known that searching for travelling wave solutions IAENG International Jornal of Applied Mathematics 44: IJAM_44 2 A Modification of Fan Sb-Eqation Method for Nonlinear Partial Differential Eqations Sheng Zhang Ao-Xe Peng Abstract In this paper a modification

More information

Active Flux Schemes for Advection Diffusion

Active Flux Schemes for Advection Diffusion AIAA Aviation - Jne, Dallas, TX nd AIAA Comptational Flid Dynamics Conference AIAA - Active Fl Schemes for Advection Diffsion Hiroaki Nishikawa National Institte of Aerospace, Hampton, VA 3, USA Downloaded

More information

Nonconservative Loading: Overview

Nonconservative Loading: Overview 35 Nonconservative Loading: Overview 35 Chapter 35: NONCONSERVATIVE LOADING: OVERVIEW TABLE OF CONTENTS Page 35. Introduction..................... 35 3 35.2 Sources...................... 35 3 35.3 Three

More information

Hybridized DG methods

Hybridized DG methods Hybridized DG methods University of Florida (Banff International Research Station, November 2007.) Collaborators: Bernardo Cockburn University of Minnesota Raytcho Lazarov Texas A&M University Thanks:

More information

Lab Manual for Engrd 202, Virtual Torsion Experiment. Aluminum module

Lab Manual for Engrd 202, Virtual Torsion Experiment. Aluminum module Lab Manal for Engrd 202, Virtal Torsion Experiment Alminm modle Introdction In this modle, o will perform data redction and analsis for circlar cross section alminm samples. B plotting the torqe vs. twist

More information

Sources of Non Stationarity in the Semivariogram

Sources of Non Stationarity in the Semivariogram Sorces of Non Stationarity in the Semivariogram Migel A. Cba and Oy Leangthong Traditional ncertainty characterization techniqes sch as Simple Kriging or Seqential Gassian Simlation rely on stationary

More information

Lecture Notes On THEORY OF COMPUTATION MODULE - 2 UNIT - 2

Lecture Notes On THEORY OF COMPUTATION MODULE - 2 UNIT - 2 BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, ODISHA Lectre Notes On THEORY OF COMPUTATION MODULE - 2 UNIT - 2 Prepared by, Dr. Sbhend Kmar Rath, BPUT, Odisha. Tring Machine- Miscellany UNIT 2 TURING MACHINE

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion rocedre (demonstrated with a -D bar element problem) MAE - inite Element Analysis Many slides from this set are originally from B.S. Altan, Michigan Technological U. EA rocedre for Static Analysis.

More information

Introdction Finite elds play an increasingly important role in modern digital commnication systems. Typical areas of applications are cryptographic sc

Introdction Finite elds play an increasingly important role in modern digital commnication systems. Typical areas of applications are cryptographic sc A New Architectre for a Parallel Finite Field Mltiplier with Low Complexity Based on Composite Fields Christof Paar y IEEE Transactions on Compters, Jly 996, vol 45, no 7, pp 856-86 Abstract In this paper

More information

AN ALTERNATIVE DECOUPLED SINGLE-INPUT FUZZY SLIDING MODE CONTROL WITH APPLICATIONS

AN ALTERNATIVE DECOUPLED SINGLE-INPUT FUZZY SLIDING MODE CONTROL WITH APPLICATIONS AN ALTERNATIVE DECOUPLED SINGLE-INPUT FUZZY SLIDING MODE CONTROL WITH APPLICATIONS Fang-Ming Y, Hng-Yan Chng* and Chen-Ning Hang Department of Electrical Engineering National Central University, Chngli,

More information

Elements of Coordinate System Transformations

Elements of Coordinate System Transformations B Elements of Coordinate System Transformations Coordinate system transformation is a powerfl tool for solving many geometrical and kinematic problems that pertain to the design of gear ctting tools and

More information

LINEAR COMBINATIONS AND SUBSPACES

LINEAR COMBINATIONS AND SUBSPACES CS131 Part II, Linear Algebra and Matrices CS131 Mathematics for Compter Scientists II Note 5 LINEAR COMBINATIONS AND SUBSPACES Linear combinations. In R 2 the vector (5, 3) can be written in the form

More information

AN ALTERNATIVE DECOUPLED SINGLE-INPUT FUZZY SLIDING MODE CONTROL WITH APPLICATIONS

AN ALTERNATIVE DECOUPLED SINGLE-INPUT FUZZY SLIDING MODE CONTROL WITH APPLICATIONS AN ALTERNATIVE DECOUPLED SINGLE-INPUT FUZZY SLIDING MODE CONTROL WITH APPLICATIONS Fang-Ming Y, Hng-Yan Chng* and Chen-Ning Hang Department of Electrical Engineering National Central University, Chngli,

More information

Image and Multidimensional Signal Processing

Image and Multidimensional Signal Processing Image and Mltidimensional Signal Processing Professor William Hoff Dept of Electrical Engineering &Compter Science http://inside.mines.ed/~whoff/ Forier Transform Part : D discrete transforms 2 Overview

More information

VNVe 2017/ Final project

VNVe 2017/ Final project VNVe 2017/2018 - Final project Athor s name Febrary 21, 2018 Solve all examples and send yor final soltion (pdf file) and all sorce codes (LaTex, MATLAB,, ++, etc.) to e-mail address satek@fit.vtbr.cz

More information

All India Mock GATE Test Series Test series 4 Civil Engineering

All India Mock GATE Test Series Test series 4 Civil Engineering All India Mock GATE Test Series Test series 4 Civil Engineering Answer Keys and Explanations General Aptitde: 1 [Ans A] Meaning: slow to move or act Part of Speech: Adjective 2 [Ans *] Range: 9 to 9 So,

More information

Bridging the Gap Between Multigrid, Hierarchical, and Receding-Horizon Control

Bridging the Gap Between Multigrid, Hierarchical, and Receding-Horizon Control Bridging the Gap Between Mltigrid, Hierarchical, and Receding-Horizon Control Victor M. Zavala Mathematics and Compter Science Division Argonne National Laboratory Argonne, IL 60439 USA (e-mail: vzavala@mcs.anl.gov).

More information

arxiv:math-ph/ v1 9 Feb 2007

arxiv:math-ph/ v1 9 Feb 2007 Symmetry, Integrability and Geometry: Methods and Applications SIGMA 3 (007), 09, 4 pages Nonlocal Symmetries and Generation of Soltions for Partial Differential Eqations Valentyn TYCHYNIN, Olga PETROVA

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Differentiation of Eponential Fnctions The net derivative rles that o will learn involve eponential fnctions. An eponential fnction is a fnction in the form of a constant raised to a variable power. The

More information

Dynamic Optimization of First-Order Systems via Static Parametric Programming: Application to Electrical Discharge Machining

Dynamic Optimization of First-Order Systems via Static Parametric Programming: Application to Electrical Discharge Machining Dynamic Optimization of First-Order Systems via Static Parametric Programming: Application to Electrical Discharge Machining P. Hgenin*, B. Srinivasan*, F. Altpeter**, R. Longchamp* * Laboratoire d Atomatiqe,

More information

FRÉCHET KERNELS AND THE ADJOINT METHOD

FRÉCHET KERNELS AND THE ADJOINT METHOD PART II FRÉCHET KERNES AND THE ADJOINT METHOD 1. Setp of the tomographic problem: Why gradients? 2. The adjoint method 3. Practical 4. Special topics (sorce imaging and time reversal) Setp of the tomographic

More information

The New (2+1)-Dimensional Integrable Coupling of the KdV Equation: Auto-Bäcklund Transformation and Non-Travelling Wave Profiles

The New (2+1)-Dimensional Integrable Coupling of the KdV Equation: Auto-Bäcklund Transformation and Non-Travelling Wave Profiles MM Research Preprints, 36 3 MMRC, AMSS, Academia Sinica No. 3, December The New (+)-Dimensional Integrable Copling of the KdV Eqation: Ato-Bäcklnd Transformation and Non-Traelling Wae Profiles Zhena Yan

More information

Essentials of optimal control theory in ECON 4140

Essentials of optimal control theory in ECON 4140 Essentials of optimal control theory in ECON 4140 Things yo need to know (and a detail yo need not care abot). A few words abot dynamic optimization in general. Dynamic optimization can be thoght of as

More information

International Journal of Physical and Mathematical Sciences journal homepage:

International Journal of Physical and Mathematical Sciences journal homepage: 64 International Jornal of Physical and Mathematical Sciences Vol 2, No 1 (2011) ISSN: 2010-1791 International Jornal of Physical and Mathematical Sciences jornal homepage: http://icoci.org/ijpms PRELIMINARY

More information

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer 6. Similarit Soltions Chapter 6 Momentm Transfer in an Eternal Laminar Bondar Laer Consider a laminar incompressible bondar laer with constant properties. Assme the flow is stead and two-dimensional aligned

More information

1. LQR formulation 2. Selection of weighting matrices 3. Matlab implementation. Regulator Problem mm3,4. u=-kx

1. LQR formulation 2. Selection of weighting matrices 3. Matlab implementation. Regulator Problem mm3,4. u=-kx MM8.. LQR Reglator 1. LQR formlation 2. Selection of weighting matrices 3. Matlab implementation Reading Material: DC: p.364-382, 400-403, Matlab fnctions: lqr, lqry, dlqr, lqrd, care, dare 3/26/2008 Introdction

More information

Mean Value Formulae for Laplace and Heat Equation

Mean Value Formulae for Laplace and Heat Equation Mean Vale Formlae for Laplace and Heat Eqation Abhinav Parihar December 7, 03 Abstract Here I discss a method to constrct the mean vale theorem for the heat eqation. To constrct sch a formla ab initio,

More information

Restricted Three-Body Problem in Different Coordinate Systems

Restricted Three-Body Problem in Different Coordinate Systems Applied Mathematics 3 949-953 http://dx.doi.org/.436/am..394 Pblished Online September (http://www.scirp.org/jornal/am) Restricted Three-Body Problem in Different Coordinate Systems II-In Sidereal Spherical

More information

1. Solve Problem 1.3-3(c) 2. Solve Problem 2.2-2(b)

1. Solve Problem 1.3-3(c) 2. Solve Problem 2.2-2(b) . Sole Problem.-(c). Sole Problem.-(b). A two dimensional trss shown in the figre is made of alminm with Yong s modls E = 8 GPa and failre stress Y = 5 MPa. Determine the minimm cross-sectional area of

More information

Computational Biomechanics Lecture 3: Intro to FEA. Ulli Simon, Frank Niemeyer, Martin Pietsch

Computational Biomechanics Lecture 3: Intro to FEA. Ulli Simon, Frank Niemeyer, Martin Pietsch Comptational iomechanics 06 ectre : Intro to Ulli Simon, rank Niemeyer, Martin Pietsch Scientific Compting Centre Ulm, UZWR Ulm University Contents E Eplanation in one sentence inite Element Methode =

More information

Implicit-Explicit Time Integration Methods for Non-hydrostatic Atmospheric Models

Implicit-Explicit Time Integration Methods for Non-hydrostatic Atmospheric Models Implicit-Explicit Time Integration Methods for Non-hydrostatic Atmospheric Models David J. Gardner, LLNL Jorge E. Gerra1, Francois P. Hamon2, Daniel R. Reynolds3, Pal A. Ullrich1, Carol S. Woodward4 1UC

More information

Homotopy Perturbation Method for Solving Linear Boundary Value Problems

Homotopy Perturbation Method for Solving Linear Boundary Value Problems International Jornal of Crrent Engineering and Technolog E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/categor/ijcet Research Article Homotop

More information

NEW PERIODIC SOLITARY-WAVE SOLUTIONS TO THE (3+1)- DIMENSIONAL KADOMTSEV-PETVIASHVILI EQUATION

NEW PERIODIC SOLITARY-WAVE SOLUTIONS TO THE (3+1)- DIMENSIONAL KADOMTSEV-PETVIASHVILI EQUATION Mathematical and Comptational Applications Vol 5 No 5 pp 877-88 00 Association for Scientific Research NEW ERIODIC SOLITARY-WAVE SOLUTIONS TO THE (+- DIMENSIONAL KADOMTSEV-ETVIASHVILI EQUATION Zitian Li

More information

Discontinuous Fluctuation Distribution for Time-Dependent Problems

Discontinuous Fluctuation Distribution for Time-Dependent Problems Discontinos Flctation Distribtion for Time-Dependent Problems Matthew Hbbard School of Compting, University of Leeds, Leeds, LS2 9JT, UK meh@comp.leeds.ac.k Introdction For some years now, the flctation

More information

FREQUENCY DOMAIN FLUTTER SOLUTION TECHNIQUE USING COMPLEX MU-ANALYSIS

FREQUENCY DOMAIN FLUTTER SOLUTION TECHNIQUE USING COMPLEX MU-ANALYSIS 7 TH INTERNATIONAL CONGRESS O THE AERONAUTICAL SCIENCES REQUENCY DOMAIN LUTTER SOLUTION TECHNIQUE USING COMPLEX MU-ANALYSIS Yingsong G, Zhichn Yang Northwestern Polytechnical University, Xi an, P. R. China,

More information

Second-Order Wave Equation

Second-Order Wave Equation Second-Order Wave Eqation A. Salih Department of Aerospace Engineering Indian Institte of Space Science and Technology, Thirvananthapram 3 December 016 1 Introdction The classical wave eqation is a second-order

More information