Solving Polynomial Eigenproblems by Linearization

Size: px
Start display at page:

Download "Solving Polynomial Eigenproblems by Linearization"

Transcription

1 Solving Polynomial Eigenproblems by Linearization Nick Higham School of Mathematics University of Manchester Joint work with D. Steven Mackey and Françoise Tisseur 13th ACME Annual Conference, Sheffield, March 2005 PEP Linearizations p. 1/21

2 P(λ) = Polynomial Eigenproblem m λ i A i, A i C n n, A m 0. i=0 P assumed regular (det P(λ) 0). Find scalars λ and nonzero vectors x and y satisfying P(λ)x = 0 and y P(λ) = 0. Standard eigenvalue problem (SEP): Ax = λx. Generalized eigenvalue problem (GEP): Ax = λbx. Quadratic eigenvalue problem (QEP): (λ 2 M + λc + K)x = 0. PEP Linearizations p. 2/21

3 P(λ) = Polynomial Eigenproblem m λ i A i, A i C n n, A m 0. i=0 P assumed regular (det P(λ) 0). Find scalars λ and nonzero vectors x and y satisfying P(λ)x = 0 and y P(λ) = 0. Standard eigenvalue problem (SEP): Ax = λx. Generalized eigenvalue problem (GEP): Ax = λbx. Quadratic eigenvalue problem (QEP): (λ 2 M + λc + K)x = 0. Have very good ways of solving SEP, GEP but not QEP. PEP Linearizations p. 2/21

4 Applications of QEP From, e.g., vibration analysis of structural systems, M q(t) + C q(t) + Kq(t) = f(t). Leads to QEP (λ 2 M + λc + K)x = 0. Damping term C is arbitrary. More applications Acoustic structural coupled systems Fluid mechanics MIMO systems in control theory Signal processing (time series forecasting) Constrained least squares problems PEP Linearizations p. 3/21

5 Spectrum of P m P(λ) = λ i A i, A i C n n. i=0 Recall p assumed regular. Note that det(p(λ)) = λ mn det(a m ) + α mn 1 λ mn det(a 0 ) = α r λ r + + α 1 λ + α 0, α r 0. P has r finite eigenvalues: the roots of det(p(λ)) = 0. P has mn r infinite eigenvalues. PEP Linearizations p. 4/21

6 Spectrum of P m P(λ) = λ i A i, A i C n n. i=0 Recall p assumed regular. Note that det(p(λ)) = λ mn det(a m ) + α mn 1 λ mn det(a 0 ) = α r λ r + + α 1 λ + α 0, α r 0. P has r finite eigenvalues: the roots of det(p(λ)) = 0. P has mn r infinite eigenvalues. A m singular implies λ = is an eigenvalue. A 0 singular implies λ = 0 is an eigenvalue. λ = for P(λ) corr. to λ = 0 for λ mn P(1/λ). PEP Linearizations p. 4/21

7 Polynomial Zeros The roots of p(λ) = α m λ m + a m 1 λ m a 0, a m 0, are the eigenvalues of the companion matrix a m 1 /a m a m 2 /a m a 0 /a m C = MATLAB sroots computes polynomial roots by applying eig to C. Nonlinear polynomial linear eigenproblem. PEP Linearizations p. 5/21

8 Linearization Reduction of 2nd order DE to 1st order: M q(t) + C q(t) + Kq(t) = f(t), q,f C n. Define p 1 = q, p 2 = p 1. Then p 1 = p 2, Mp 2 + Cp 2 + Kp 1 = f. PEP Linearizations p. 6/21

9 Linearization Reduction of 2nd order DE to 1st order: M q(t) + C q(t) + Kq(t) = f(t), q,f C n. Define p 1 = q, p 2 = p 1. Then p 1 = p 2, Mp 2 + Cp 2 + Kp 1 = f. Reduction of QEP to GEP: (λ 2 M + λc + K)x = 0. Define y 1 = x, y 2 = λx. Then ( [ ] [ I 0 0 I λ + 0 M C K ]) y = 0. PEP Linearizations p. 6/21

10 Linearization Definition The pencil L(λ) = λx + Y, X,Y C mn mn is a linearization of P(λ) = m i=0 λi A i if [ ] P(λ) 0 E(λ)L(λ)F(λ) = 0 I (m 1)n for some unimodular E(λ) and F(λ). Example: Companion form linearization ( [ ] [ ]) [ M 0 C K λ E(λ) λ + F(λ) = 2 M + λc + K 0 0 I I 0 0 I ]. PEP Linearizations p. 7/21

11 Some Linearizations of λ 2 M + λc + K L1 : L2 : L3 : L4 : [ ] M 0 λ 0 I [ ] M 0 λ 0 I [ M 0 λ 0 K [ ] 0 M λ M C [ ] C K + I 0 [ ] C I + K 0 ] [ ] C K + K 0 [ ] M K first companion second companion DL(Q) DL(Q) PEP Linearizations p. 8/21

12 Choice of Linearization? Which best preserves structure (symmetry, Hamiltonian,... ) in Q? Which gives the most accurate computed eigenvalues? Which is the best conditioned for a particular eigenvalue? How does conditioning of L compare with that of Q? PEP Linearizations p. 9/21

13 DL(P) Linearizations Mackey, Mackey, Mehl & Mehrmann (2005) identify an m-dimensional vector space of linearizations for P(λ) s.t. right (left) e vecs of P can be recovered from right (left) e vecs of L. For Q(λ) = λ 2 A + λb + C, DL(Q) is the pencils [ ] [ v1 A v L(λ) = λ 2 A v1 B v + 2 A v 1 C v 2 A v 2 B v 1 C v 1 C v 2 C ], v C 2. Right e vecs of L are [ λx x ], where x = right e vec of Q. (Technicality: L is a linearization if no e val of Q equals v 2 /v 1.) PEP Linearizations p. 10/21

14 Condition Number for P(λ) Simple λ, P(λ)x = 0, y P(λ) = 0. { λ κ P (λ) = lim sup ǫ 0 ǫ λ : ( P(λ + λ) + P(λ + λ) ) (x + x) = 0, } A i 2 ǫω i, i = 0:m. Tisseur (2000) showed κ P (λ) = ( m ) i=0 λ i ω i y 2 x 2 λ y P. (λ)x PEP Linearizations p. 11/21

15 Minimizing the Condition Number κ L Theorem 1 Consider pencils L = λx + Y DL(P). Set relative weights ω i = A i 2. Then κ L (λ;e 1 ) ρm 3/2 inf v κ L (λ,v) if A 0 nonsing, λ 1, κ L (λ;e m ) ρm 3/2 inf v κ L (λ,v) if A m nonsing, λ 1, where ρ = max i A i 2 min( A 0 2, A m 2 ). For ρ = O(1), one of v = e 1 and v = e m gives near optimal κ L for λ. Wrong choice of v = e 1 or v = e m can be disastrous: κ L (0,e 1 ) =, κ L (,e m ) =. PEP Linearizations p. 12/21

16 QEP Case For Q(λ) = λ 2 A + λb + C, v = e 1 L 1 (λ) = λ [ A 0 0 C ] + [ B C C 0 ], v = e m L 2 (λ) = λ [ 0 A A B ] + [ A 0 0 C ]. PEP Linearizations p. 13/21

17 Optimal κ L Versus κ P Theorem 2 Let λ be a simple eigenvalue of P. Then inf v κ L (λ;v) κ P (λ) m 2 ρ. If ρ = O(1): Best conditioned L DL(P) for a given λ is about as well conditioned as P itself for λ. Despite perturbations to L not respecting the block structure of X and Y! Combined with Thm. 1: one of pencils with v = e 1 and v = e m is about as well conditioned as P itself for λ. PEP Linearizations p. 14/21

18 Quadratic Case: Scaling Q(λ) = λ 2 A + λb + C, a = A 2, b = B 2, c = C 2. For optimality of κ L (λ) for v = e 1, v = e 2 need ρ = O(1), i.e. b < max(a,c) and a c. With the scaling : λ 2 A + λb + C µ 2 (γ 2 A) + µ(γb) + C (λ = µγ), γ = c/a [Fan, Lin & Van Dooren, 2004], it suffices that b < ac. ( ) ( ) is true if problem is not too heavily damped, for elliptic QEPs. PEP Linearizations p. 15/21

19 Companion Linearizations L1 : L2 : [ A 0 λ 0 I [ A 0 λ 0 I ] ] + + [ B C I 0 [ B I C 0 ] ] first companion second companion Further analysis shows these linearizations are as well conditioned as Q if a b c 1, potentially worse conditioned than Q if left e vec of L is much larger than left e vec of Q. PEP Linearizations p. 16/21

20 Example 1: Nuclear Power Plant (1) n = 8; A 2 = , B 2 = , C 2 = λ (17, 362); Unscaled; v = e 1, ρ = Condition number Companion DL(Q) Q Angular error 10 5 Companion DL(Q) PEP Linearizations p. 17/21

21 Example 1: Nuclear Power Plant (2) Scaled; v = e 2, ρ = Condition number Companion DL(Q) Q Angular error 10 5 Companion DL(Q) PEP Linearizations p. 18/21

22 Example 2: Damped Mass-Spring (1) n = 50; 50 λ ( 320, 6.4), 50 λ Unscaled; v = e 1, ρ = 320. Condition number 10 4 Companion DL(Q) 10 2 Q Angular error Companion DL(Q) PEP Linearizations p. 19/21

23 Example 2: Damped Mass-Spring (2) n = 50; 50 λ ( 320, 6.4), 50 λ Unscaled; v = e 2, ρ = Condition number Companion DL(Q) Q Angular error Companion DL(Q) PEP Linearizations p. 20/21

24 Conclusions Solve ei problem for P via linearized L: P(λ) = m i=0 λi A i, L(λ) = λx + Y. If max i A i 2 min( A 0 2, A m 2 ) then L for v = e 1 and v = e m optimally conditioned within DL(P) for λ 1 and λ 1, resp. and as well conditioned as P. For quadratics, assumption on coeffs weakened to B 2 < A 2 C 2 by use of scaling. Companion linearizations can be poorly conditioned. PEP Linearizations p. 21/21

25 Conclusions Solve ei problem for P via linearized L: P(λ) = m i=0 λi A i, L(λ) = λx + Y. If max i A i 2 min( A 0 2, A m 2 ) then L for v = e 1 and v = e m optimally conditioned within DL(P) for λ 1 and λ 1, resp. and as well conditioned as P. For quadratics, assumption on coeffs weakened to B 2 < A 2 C 2 by use of scaling. Companion linearizations can be poorly conditioned. Justifies solving P(λ)x = 0 by linearization. Guides choice of linearization. PEP Linearizations p. 21/21

Algorithms for Solving the Polynomial Eigenvalue Problem

Algorithms for Solving the Polynomial Eigenvalue Problem Algorithms for Solving the Polynomial Eigenvalue Problem Nick Higham School of Mathematics The University of Manchester higham@ma.man.ac.uk http://www.ma.man.ac.uk/~higham/ Joint work with D. Steven Mackey

More information

Solving the Polynomial Eigenvalue Problem by Linearization

Solving the Polynomial Eigenvalue Problem by Linearization Solving the Polynomial Eigenvalue Problem by Linearization Nick Higham School of Mathematics The University of Manchester higham@ma.man.ac.uk http://www.ma.man.ac.uk/~higham/ Joint work with Ren-Cang Li,

More information

Scaling, Sensitivity and Stability in Numerical Solution of the Quadratic Eigenvalue Problem

Scaling, Sensitivity and Stability in Numerical Solution of the Quadratic Eigenvalue Problem Scaling, Sensitivity and Stability in Numerical Solution of the Quadratic Eigenvalue Problem Nick Higham School of Mathematics The University of Manchester higham@ma.man.ac.uk http://www.ma.man.ac.uk/~higham/

More information

An Algorithm for. Nick Higham. Françoise Tisseur. Director of Research School of Mathematics.

An Algorithm for. Nick Higham. Françoise Tisseur. Director of Research School of Mathematics. An Algorithm for the Research Complete Matters Solution of Quadratic February Eigenvalue 25, 2009 Problems Nick Higham Françoise Tisseur Director of Research School of Mathematics The School University

More information

Recent Advances in the Numerical Solution of Quadratic Eigenvalue Problems

Recent Advances in the Numerical Solution of Quadratic Eigenvalue Problems Recent Advances in the Numerical Solution of Quadratic Eigenvalue Problems Françoise Tisseur School of Mathematics The University of Manchester ftisseur@ma.man.ac.uk http://www.ma.man.ac.uk/~ftisseur/

More information

Nonlinear eigenvalue problems - A Review

Nonlinear eigenvalue problems - A Review Nonlinear eigenvalue problems - A Review Namita Behera Department of Electrical Engineering Indian Institute of Technology Bombay Mumbai 8 th March, 2016 Outline 1 Nonlinear Eigenvalue Problems 2 Polynomial

More information

Research Matters. February 25, The Nonlinear Eigenvalue Problem. Nick Higham. Part III. Director of Research School of Mathematics

Research Matters. February 25, The Nonlinear Eigenvalue Problem. Nick Higham. Part III. Director of Research School of Mathematics Research Matters February 25, 2009 The Nonlinear Eigenvalue Problem Nick Higham Part III Director of Research School of Mathematics Françoise Tisseur School of Mathematics The University of Manchester

More information

Backward Error of Polynomial Eigenproblems Solved by Linearization. Higham, Nicholas J. and Li, Ren-Cang and Tisseur, Françoise. MIMS EPrint: 2006.

Backward Error of Polynomial Eigenproblems Solved by Linearization. Higham, Nicholas J. and Li, Ren-Cang and Tisseur, Françoise. MIMS EPrint: 2006. Backward Error of Polynomial Eigenproblems Solved by Linearization Higham, Nicholas J and Li, Ren-Cang and Tisseur, Françoise 2007 MIMS EPrint: 2006137 Manchester Institute for Mathematical Sciences School

More information

Nonlinear palindromic eigenvalue problems and their numerical solution

Nonlinear palindromic eigenvalue problems and their numerical solution Nonlinear palindromic eigenvalue problems and their numerical solution TU Berlin DFG Research Center Institut für Mathematik MATHEON IN MEMORIAM RALPH BYERS Polynomial eigenvalue problems k P(λ) x = (

More information

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying I.2 Quadratic Eigenvalue Problems 1 Introduction The quadratic eigenvalue problem QEP is to find scalars λ and nonzero vectors u satisfying where Qλx = 0, 1.1 Qλ = λ 2 M + λd + K, M, D and K are given

More information

Quadratic Matrix Polynomials

Quadratic Matrix Polynomials Research Triangularization Matters of Quadratic Matrix Polynomials February 25, 2009 Nick Françoise Higham Tisseur Director School of of Research Mathematics The University of Manchester School of Mathematics

More information

Hermitian Matrix Polynomials with Real Eigenvalues of Definite Type. Part I: Classification. Al-Ammari, Maha and Tisseur, Francoise

Hermitian Matrix Polynomials with Real Eigenvalues of Definite Type. Part I: Classification. Al-Ammari, Maha and Tisseur, Francoise Hermitian Matrix Polynomials with Real Eigenvalues of Definite Type. Part I: Classification Al-Ammari, Maha and Tisseur, Francoise 2010 MIMS EPrint: 2010.9 Manchester Institute for Mathematical Sciences

More information

Eigenvector error bound and perturbation for nonlinear eigenvalue problems

Eigenvector error bound and perturbation for nonlinear eigenvalue problems Eigenvector error bound and perturbation for nonlinear eigenvalue problems Yuji Nakatsukasa School of Mathematics University of Tokyo Joint work with Françoise Tisseur Workshop on Nonlinear Eigenvalue

More information

Polynomial Eigenvalue Problems: Theory, Computation, and Structure. Mackey, D. S. and Mackey, N. and Tisseur, F. MIMS EPrint: 2015.

Polynomial Eigenvalue Problems: Theory, Computation, and Structure. Mackey, D. S. and Mackey, N. and Tisseur, F. MIMS EPrint: 2015. Polynomial Eigenvalue Problems: Theory, Computation, and Structure Mackey, D. S. and Mackey, N. and Tisseur, F. 2015 MIMS EPrint: 2015.29 Manchester Institute for Mathematical Sciences School of Mathematics

More information

1. Introduction. Throughout this work we consider n n matrix polynomials with degree k of the form

1. Introduction. Throughout this work we consider n n matrix polynomials with degree k of the form LINEARIZATIONS OF SINGULAR MATRIX POLYNOMIALS AND THE RECOVERY OF MINIMAL INDICES FERNANDO DE TERÁN, FROILÁN M. DOPICO, AND D. STEVEN MACKEY Abstract. A standard way of dealing with a regular matrix polynomial

More information

KU Leuven Department of Computer Science

KU Leuven Department of Computer Science Backward error of polynomial eigenvalue problems solved by linearization of Lagrange interpolants Piers W. Lawrence Robert M. Corless Report TW 655, September 214 KU Leuven Department of Computer Science

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 436 (2012) 3954 3973 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa Hermitian matrix polynomials

More information

An Algorithm for the Complete Solution of Quadratic Eigenvalue Problems. Hammarling, Sven and Munro, Christopher J. and Tisseur, Francoise

An Algorithm for the Complete Solution of Quadratic Eigenvalue Problems. Hammarling, Sven and Munro, Christopher J. and Tisseur, Francoise An Algorithm for the Complete Solution of Quadratic Eigenvalue Problems Hammarling, Sven and Munro, Christopher J. and Tisseur, Francoise 2011 MIMS EPrint: 2011.86 Manchester Institute for Mathematical

More information

SOLVING RATIONAL EIGENVALUE PROBLEMS VIA LINEARIZATION

SOLVING RATIONAL EIGENVALUE PROBLEMS VIA LINEARIZATION SOLVNG RATONAL EGENVALUE PROBLEMS VA LNEARZATON YANGFENG SU AND ZHAOJUN BA Abstract Rational eigenvalue problem is an emerging class of nonlinear eigenvalue problems arising from a variety of physical

More information

Perturbation theory for eigenvalues of Hermitian pencils. Christian Mehl Institut für Mathematik TU Berlin, Germany. 9th Elgersburg Workshop

Perturbation theory for eigenvalues of Hermitian pencils. Christian Mehl Institut für Mathematik TU Berlin, Germany. 9th Elgersburg Workshop Perturbation theory for eigenvalues of Hermitian pencils Christian Mehl Institut für Mathematik TU Berlin, Germany 9th Elgersburg Workshop Elgersburg, March 3, 2014 joint work with Shreemayee Bora, Michael

More information

Linearizing Symmetric Matrix Polynomials via Fiedler pencils with Repetition

Linearizing Symmetric Matrix Polynomials via Fiedler pencils with Repetition Linearizing Symmetric Matrix Polynomials via Fiedler pencils with Repetition Kyle Curlett Maribel Bueno Cachadina, Advisor March, 2012 Department of Mathematics Abstract Strong linearizations of a matrix

More information

Multiparameter eigenvalue problem as a structured eigenproblem

Multiparameter eigenvalue problem as a structured eigenproblem Multiparameter eigenvalue problem as a structured eigenproblem Bor Plestenjak Department of Mathematics University of Ljubljana This is joint work with M Hochstenbach Będlewo, 2932007 1/28 Overview Introduction

More information

Research Matters. February 25, The Nonlinear Eigenvalue. Director of Research School of Mathematics

Research Matters. February 25, The Nonlinear Eigenvalue. Director of Research School of Mathematics Research Matters February 25, 2009 The Nonlinear Eigenvalue Nick Problem: HighamPart I Director of Research School of Mathematics Françoise Tisseur School of Mathematics The University of Manchester Woudschoten

More information

Definite Matrix Polynomials and their Linearization by Definite Pencils. Higham, Nicholas J. and Mackey, D. Steven and Tisseur, Françoise

Definite Matrix Polynomials and their Linearization by Definite Pencils. Higham, Nicholas J. and Mackey, D. Steven and Tisseur, Françoise Definite Matrix Polynomials and their Linearization by Definite Pencils Higham Nicholas J and Mackey D Steven and Tisseur Françoise 2007 MIMS EPrint: 200797 Manchester Institute for Mathematical Sciences

More information

arxiv: v2 [math.na] 8 Aug 2018

arxiv: v2 [math.na] 8 Aug 2018 THE CONDITIONING OF BLOCK KRONECKER l-ifications OF MATRIX POLYNOMIALS JAVIER PÉREZ arxiv:1808.01078v2 math.na] 8 Aug 2018 Abstract. A strong l-ification of a matrix polynomial P(λ) = A i λ i of degree

More information

How to Detect Definite Hermitian Pairs

How to Detect Definite Hermitian Pairs How to Detect Definite Hermitian Pairs Françoise Tisseur School of Mathematics The University of Manchester ftisseur@ma.man.ac.uk http://www.ma.man.ac.uk/~ftisseur/ Joint work with Chun-Hua Guo and Nick

More information

Nick Higham. Director of Research School of Mathematics

Nick Higham. Director of Research School of Mathematics Exploiting Research Tropical Matters Algebra in Numerical February 25, Linear 2009 Algebra Nick Higham Françoise Tisseur Director of Research School of Mathematics The School University of Mathematics

More information

ANALYSIS OF STRUCTURED POLYNOMIAL EIGENVALUE PROBLEMS

ANALYSIS OF STRUCTURED POLYNOMIAL EIGENVALUE PROBLEMS ANALYSIS OF STRUCTURED POLYNOMIAL EIGENVALUE PROBLEMS A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2011

More information

c 2006 Society for Industrial and Applied Mathematics

c 2006 Society for Industrial and Applied Mathematics SIAM J MATRIX ANAL APPL Vol 28, No 4, pp 971 1004 c 2006 Society for Industrial and Applied Mathematics VECTOR SPACES OF LINEARIZATIONS FOR MATRIX POLYNOMIALS D STEVEN MACKEY, NILOUFER MACKEY, CHRISTIAN

More information

Bounds for eigenvalues of matrix polynomials

Bounds for eigenvalues of matrix polynomials Linear Algebra and its Applications 358 003 5 wwwelseviercom/locate/laa Bounds for eigenvalues of matrix polynomials Nicholas J Higham,1, Françoise Tisseur Department of Mathematics, University of Manchester,

More information

An Algorithm for the Complete Solution of Quadratic Eigenvalue Problems

An Algorithm for the Complete Solution of Quadratic Eigenvalue Problems An Algorithm for the Complete Solution of Quadratic Eigenvalue Problems SVEN HAMMARLING, Numerical Algorithms Group Ltd. and The University of Manchester CHRISTOPHER J. MUNRO, Rutherford Appleton Laboratory

More information

A Framework for Structured Linearizations of Matrix Polynomials in Various Bases

A Framework for Structured Linearizations of Matrix Polynomials in Various Bases A Framework for Structured Linearizations of Matrix Polynomials in Various Bases Leonardo Robol Joint work with Raf Vandebril and Paul Van Dooren, KU Leuven and Université

More information

Definite versus Indefinite Linear Algebra. Christian Mehl Institut für Mathematik TU Berlin Germany. 10th SIAM Conference on Applied Linear Algebra

Definite versus Indefinite Linear Algebra. Christian Mehl Institut für Mathematik TU Berlin Germany. 10th SIAM Conference on Applied Linear Algebra Definite versus Indefinite Linear Algebra Christian Mehl Institut für Mathematik TU Berlin Germany 10th SIAM Conference on Applied Linear Algebra Monterey Bay Seaside, October 26-29, 2009 Indefinite Linear

More information

ACCURATE SOLUTIONS OF POLYNOMIAL EIGENVALUE PROBLEMS

ACCURATE SOLUTIONS OF POLYNOMIAL EIGENVALUE PROBLEMS ACCURATE SOLUTIONS OF POLYNOMIAL EIGENVALUE PROBLEMS YILING YOU, JOSE ISRAEL RODRIGUEZ, AND LEK-HENG LIM Abstract. Quadratic eigenvalue problems (QEP) and more generally polynomial eigenvalue problems

More information

EXPLICIT BLOCK-STRUCTURES FOR BLOCK-SYMMETRIC FIEDLER-LIKE PENCILS

EXPLICIT BLOCK-STRUCTURES FOR BLOCK-SYMMETRIC FIEDLER-LIKE PENCILS EXPLICIT BLOCK-STRUCTURES FOR BLOCK-SYMMETRIC FIEDLER-LIKE PENCILS M I BUENO, M MARTIN, J PÉREZ, A SONG, AND I VIVIANO Abstract In the last decade, there has been a continued effort to produce families

More information

Structured Condition Numbers and Backward Errors in Scalar Product Spaces

Structured Condition Numbers and Backward Errors in Scalar Product Spaces Structured Condition Numbers and Backward Errors in Scalar Product Spaces Françoise Tisseur Department of Mathematics University of Manchester ftisseur@ma.man.ac.uk http://www.ma.man.ac.uk/~ftisseur/ Joint

More information

in Numerical Linear Algebra

in Numerical Linear Algebra Exploiting ResearchTropical MattersAlgebra in Numerical Linear Algebra February 25, 2009 Nick Françoise Higham Tisseur Director Schoolof ofresearch Mathematics The School University of Mathematics of Manchester

More information

Nonlinear eigenvalue problems: Analysis and numerical solution

Nonlinear eigenvalue problems: Analysis and numerical solution Nonlinear eigenvalue problems: Analysis and numerical solution Volker Mehrmann TU Berlin, Institut für Mathematik DFG Research Center MATHEON Mathematics for key technologies MATTRIAD 2011 July 2011 Outline

More information

Trimmed linearizations for structured matrix polynomials

Trimmed linearizations for structured matrix polynomials Trimmed linearizations for structured matrix polynomials Ralph Byers Volker Mehrmann Hongguo Xu January 5 28 Dedicated to Richard S Varga on the occasion of his 8th birthday Abstract We discuss the eigenvalue

More information

Inverse Eigenvalue Problem with Non-simple Eigenvalues for Damped Vibration Systems

Inverse Eigenvalue Problem with Non-simple Eigenvalues for Damped Vibration Systems Journal of Informatics Mathematical Sciences Volume 1 (2009), Numbers 2 & 3, pp. 91 97 RGN Publications (Invited paper) Inverse Eigenvalue Problem with Non-simple Eigenvalues for Damped Vibration Systems

More information

Polynomial eigenvalue solver based on tropically scaled Lagrange linearization. Van Barel, Marc and Tisseur, Francoise. MIMS EPrint: 2016.

Polynomial eigenvalue solver based on tropically scaled Lagrange linearization. Van Barel, Marc and Tisseur, Francoise. MIMS EPrint: 2016. Polynomial eigenvalue solver based on tropically scaled Lagrange linearization Van Barel, Marc and Tisseur, Francoise 2016 MIMS EPrint: 201661 Manchester Institute for Mathematical Sciences School of Mathematics

More information

Linearizations of singular matrix polynomials and the recovery of minimal indices

Linearizations of singular matrix polynomials and the recovery of minimal indices Electronic Journal of Linear Algebra Volume 18 Volume 18 (2009) Article 32 2009 Linearizations of singular matrix polynomials and the recovery of minimal indices Fernando de Teran fteran@math.uc3m.es Froilan

More information

that determines x up to a complex scalar of modulus 1, in the real case ±1. Another condition to normalize x is by requesting that

that determines x up to a complex scalar of modulus 1, in the real case ±1. Another condition to normalize x is by requesting that Chapter 3 Newton methods 3. Linear and nonlinear eigenvalue problems When solving linear eigenvalue problems we want to find values λ C such that λi A is singular. Here A F n n is a given real or complex

More information

Section 9.8 Higher Order Linear Equations

Section 9.8 Higher Order Linear Equations Section 9.8 Higher Order Linear Equations Key Terms: Higher order linear equations Equivalent linear systems for higher order equations Companion matrix Characteristic polynomial and equation A linear

More information

1. Select the unique answer (choice) for each problem. Write only the answer.

1. Select the unique answer (choice) for each problem. Write only the answer. MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial.

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. Geometric properties of determinants 2 2 determinants and plane geometry

More information

Nonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods

Nonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods Nonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods Volker Mehrmann Heinrich Voss November 29, 2004 Abstract We discuss the state of the art in numerical solution methods for large

More information

1 Sylvester equations

1 Sylvester equations 1 Sylvester equations Notes for 2016-11-02 The Sylvester equation (or the special case of the Lyapunov equation) is a matrix equation of the form AX + XB = C where A R m m, B R n n, B R m n, are known,

More information

Computing Unstructured and Structured Polynomial Pseudospectrum Approximations

Computing Unstructured and Structured Polynomial Pseudospectrum Approximations Computing Unstructured and Structured Polynomial Pseudospectrum Approximations Silvia Noschese 1 and Lothar Reichel 2 1 Dipartimento di Matematica, SAPIENZA Università di Roma, P.le Aldo Moro 5, 185 Roma,

More information

Structured eigenvalue condition numbers and linearizations for matrix polynomials

Structured eigenvalue condition numbers and linearizations for matrix polynomials Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Swiss Federal Institute of Technology Zurich Structured eigenvalue condition numbers and

More information

Variational Principles for Nonlinear Eigenvalue Problems

Variational Principles for Nonlinear Eigenvalue Problems Variational Principles for Nonlinear Eigenvalue Problems Heinrich Voss voss@tuhh.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Variational Principles for Nonlinear EVPs

More information

Jordan Structures of Alternating Matrix Polynomials

Jordan Structures of Alternating Matrix Polynomials Jordan Structures of Alternating Matrix Polynomials D. Steven Mackey Niloufer Mackey Christian Mehl Volker Mehrmann August 17, 2009 Abstract Alternating matrix polynomials, that is, polynomials whose coefficients

More information

CHAPTER 3. Matrix Eigenvalue Problems

CHAPTER 3. Matrix Eigenvalue Problems A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

Fiedler Companion Linearizations and the Recovery of Minimal Indices. De Teran, Fernando and Dopico, Froilan M. and Mackey, D.

Fiedler Companion Linearizations and the Recovery of Minimal Indices. De Teran, Fernando and Dopico, Froilan M. and Mackey, D. Fiedler Companion Linearizations and the Recovery of Minimal Indices De Teran, Fernando and Dopico, Froilan M and Mackey, D Steven 2009 MIMS EPrint: 200977 Manchester Institute for Mathematical Sciences

More information

1. Introduction. In this paper we discuss a new class of structured matrix polynomial eigenproblems Q(λ)v = 0, where

1. Introduction. In this paper we discuss a new class of structured matrix polynomial eigenproblems Q(λ)v = 0, where STRUCTURED POLYNOMIAL EIGENPROBLEMS RELATED TO TIME-DELAY SYSTEMS H. FASSBENDER, D. S. MACKEY, N. MACKEY, AND C. SCHRÖDER Abstract. A new class of structured polynomial eigenproblems arising in the stability

More information

ELA

ELA SHARP LOWER BOUNDS FOR THE DIMENSION OF LINEARIZATIONS OF MATRIX POLYNOMIALS FERNANDO DE TERÁN AND FROILÁN M. DOPICO Abstract. A standard way of dealing with matrixpolynomial eigenvalue problems is to

More information

Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations

Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations Elias Jarlebring a, Michiel E. Hochstenbach b,1, a Technische Universität Braunschweig,

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors week -2 Fall 26 Eigenvalues and eigenvectors The most simple linear transformation from R n to R n may be the transformation of the form: T (x,,, x n ) (λ x, λ 2,, λ n x n

More information

Skew-Symmetric Matrix Polynomials and their Smith Forms

Skew-Symmetric Matrix Polynomials and their Smith Forms Skew-Symmetric Matrix Polynomials and their Smith Forms D. Steven Mackey Niloufer Mackey Christian Mehl Volker Mehrmann March 23, 2013 Abstract Two canonical forms for skew-symmetric matrix polynomials

More information

Some Useful Results in the Theory of Matrix Functions

Some Useful Results in the Theory of Matrix Functions Some Useful Results in the Theory of Matrix Functions Nick Higham School of Mathematics The University of Manchester higham@ma.man.ac.uk http://www.ma.man.ac.uk/~higham/ Matrix Analysis and Applications,

More information

Eigenvalues and Eigenvectors. Review: Invertibility. Eigenvalues and Eigenvectors. The Finite Dimensional Case. January 18, 2018

Eigenvalues and Eigenvectors. Review: Invertibility. Eigenvalues and Eigenvectors. The Finite Dimensional Case. January 18, 2018 January 18, 2018 Contents 1 2 3 4 Review 1 We looked at general determinant functions proved that they are all multiples of a special one, called det f (A) = f (I n ) det A. Review 1 We looked at general

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Contents Eigenvalues and Eigenvectors. Basic Concepts. Applications of Eigenvalues and Eigenvectors 8.3 Repeated Eigenvalues and Symmetric Matrices 3.4 Numerical Determination of Eigenvalues and Eigenvectors

More information

ACM 104. Homework Set 4 Solutions February 14, 2001

ACM 104. Homework Set 4 Solutions February 14, 2001 ACM 04 Homework Set 4 Solutions February 4, 00 Franklin Chapter, Problem 4, page 55 Suppose that we feel that some observations are more important or reliable than others Redefine the function to be minimized

More information

CHAPTER 5 : NONLINEAR EIGENVALUE PROBLEMS

CHAPTER 5 : NONLINEAR EIGENVALUE PROBLEMS CHAPTER 5 : NONLINEAR EIGENVALUE PROBLEMS Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Nonlinear eigenvalue problems Eigenvalue problems

More information

A numerical method for polynomial eigenvalue problems using contour integral

A numerical method for polynomial eigenvalue problems using contour integral A numerical method for polynomial eigenvalue problems using contour integral Junko Asakura a Tetsuya Sakurai b Hiroto Tadano b Tsutomu Ikegami c Kinji Kimura d a Graduate School of Systems and Information

More information

Reduction of nonlinear eigenproblems with JD

Reduction of nonlinear eigenproblems with JD Reduction of nonlinear eigenproblems with JD Henk van der Vorst H.A.vanderVorst@math.uu.nl Mathematical Institute Utrecht University July 13, 2005, SIAM Annual New Orleans p.1/16 Outline Polynomial Eigenproblems

More information

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that

More information

Matrices and Linear Algebra

Matrices and Linear Algebra Contents Quantitative methods for Economics and Business University of Ferrara Academic year 2017-2018 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2

More information

Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems

Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan April 28, 2011 T.M. Huang (Taiwan Normal Univ.)

More information

Structured eigenvalue/eigenvector backward errors of matrix pencils arising in optimal control

Structured eigenvalue/eigenvector backward errors of matrix pencils arising in optimal control Electronic Journal of Linear Algebra Volume 34 Volume 34 08) Article 39 08 Structured eigenvalue/eigenvector backward errors of matrix pencils arising in optimal control Christian Mehl Technische Universitaet

More information

Tropical roots as approximations to eigenvalues of matrix polynomials. Noferini, Vanni and Sharify, Meisam and Tisseur, Francoise

Tropical roots as approximations to eigenvalues of matrix polynomials. Noferini, Vanni and Sharify, Meisam and Tisseur, Francoise Tropical roots as approximations to eigenvalues of matrix polynomials Noferini, Vanni and Sharify, Meisam and Tisseur, Francoise 2014 MIMS EPrint: 2014.16 Manchester Institute for Mathematical Sciences

More information

Available online at ScienceDirect. Procedia Engineering 100 (2015 ) 56 63

Available online at   ScienceDirect. Procedia Engineering 100 (2015 ) 56 63 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 100 (2015 ) 56 63 25th DAAAM International Symposium on Intelligent Manufacturing and Automation, DAAAM 2014 Definite Quadratic

More information

Repeated Eigenvalues and Symmetric Matrices

Repeated Eigenvalues and Symmetric Matrices Repeated Eigenvalues and Symmetric Matrices. Introduction In this Section we further develop the theory of eigenvalues and eigenvectors in two distinct directions. Firstly we look at matrices where one

More information

Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations

Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations Elias Jarlebring a, Michiel E. Hochstenbach b,1, a Technische Universität Braunschweig,

More information

A Structure-Preserving Doubling Algorithm for Quadratic Eigenvalue Problems Arising from Time-Delay Systems

A Structure-Preserving Doubling Algorithm for Quadratic Eigenvalue Problems Arising from Time-Delay Systems A Structure-Preserving Doubling Algorithm for Quadratic Eigenvalue Problems Arising from Time-Delay Systems Tie-xiang Li Eric King-wah Chu Wen-Wei Lin Abstract We propose a structure-preserving doubling

More information

Nonlinear Eigenvalue Problems: An Introduction

Nonlinear Eigenvalue Problems: An Introduction Nonlinear Eigenvalue Problems: An Introduction Cedric Effenberger Seminar for Applied Mathematics ETH Zurich Pro*Doc Workshop Disentis, August 18 21, 2010 Cedric Effenberger (SAM, ETHZ) NLEVPs: An Introduction

More information

PALINDROMIC LINEARIZATIONS OF A MATRIX POLYNOMIAL OF ODD DEGREE OBTAINED FROM FIEDLER PENCILS WITH REPETITION.

PALINDROMIC LINEARIZATIONS OF A MATRIX POLYNOMIAL OF ODD DEGREE OBTAINED FROM FIEDLER PENCILS WITH REPETITION. PALINDROMIC LINEARIZATIONS OF A MATRIX POLYNOMIAL OF ODD DEGREE OBTAINED FROM FIEDLER PENCILS WITH REPETITION. M.I. BUENO AND S. FURTADO Abstract. Many applications give rise to structured, in particular

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Math Matrix Algebra

Math Matrix Algebra Math 44 - Matrix Algebra Review notes - (Alberto Bressan, Spring 7) sec: Orthogonal diagonalization of symmetric matrices When we seek to diagonalize a general n n matrix A, two difficulties may arise:

More information

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015 Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis Volume 31, pp 306-330, 2008 Copyright 2008, ISSN 1068-9613 ETNA STRUCTURED POLYNOMIAL EIGENPROBLEMS RELATED TO TIME-DELAY SYSTEMS HEIKE FASSBENDER, D STEVEN

More information

A Structure-Preserving Method for Large Scale Eigenproblems. of Skew-Hamiltonian/Hamiltonian (SHH) Pencils

A Structure-Preserving Method for Large Scale Eigenproblems. of Skew-Hamiltonian/Hamiltonian (SHH) Pencils A Structure-Preserving Method for Large Scale Eigenproblems of Skew-Hamiltonian/Hamiltonian (SHH) Pencils Yangfeng Su Department of Mathematics, Fudan University Zhaojun Bai Department of Computer Science,

More information

Eigenvalue and Eigenvector Problems

Eigenvalue and Eigenvector Problems Eigenvalue and Eigenvector Problems An attempt to introduce eigenproblems Radu Trîmbiţaş Babeş-Bolyai University April 8, 2009 Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems

More information

What s Eigenanalysis? Matrix eigenanalysis is a computational theory for the matrix equation

What s Eigenanalysis? Matrix eigenanalysis is a computational theory for the matrix equation Eigenanalysis What s Eigenanalysis? Fourier s Eigenanalysis Model is a Replacement Process Powers and Fourier s Model Differential Equations and Fourier s Model Fourier s Model Illustrated What is Eigenanalysis?

More information

Eigenvalue Problems. Eigenvalue problems occur in many areas of science and engineering, such as structural analysis

Eigenvalue Problems. Eigenvalue problems occur in many areas of science and engineering, such as structural analysis Eigenvalue Problems Eigenvalue problems occur in many areas of science and engineering, such as structural analysis Eigenvalues also important in analyzing numerical methods Theory and algorithms apply

More information

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Eigenvector Error Bound and Perturbation for Polynomial and Rational Eigenvalue Problems

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. Eigenvector Error Bound and Perturbation for Polynomial and Rational Eigenvalue Problems MATHEMATICAL ENGINEERING TECHNICAL REPORTS Eigenvector Error Bound and Perturbation for Polynomial and Rational Eigenvalue Problems Yuji NAKATSUKASA and Françoise TISSEUR METR 2016 04 April 2016 DEPARTMENT

More information

Optimization Theory. A Concise Introduction. Jiongmin Yong

Optimization Theory. A Concise Introduction. Jiongmin Yong October 11, 017 16:5 ws-book9x6 Book Title Optimization Theory 017-08-Lecture Notes page 1 1 Optimization Theory A Concise Introduction Jiongmin Yong Optimization Theory 017-08-Lecture Notes page Optimization

More information

Resonant MEMS, Eigenvalues, and Numerical Pondering

Resonant MEMS, Eigenvalues, and Numerical Pondering Resonant MEMS, Eigenvalues, and Numerical Pondering David Bindel UC Berkeley, CS Division Resonant MEMS, Eigenvalues,and Numerical Pondering p.1/27 Introduction I always pass on good advice. It is the

More information

CHAPTER 5 REVIEW. c 1. c 2 can be considered as the coordinates of v

CHAPTER 5 REVIEW. c 1. c 2 can be considered as the coordinates of v CHAPTER 5 REVIEW Throughout this note, we assume that V and W are two vector spaces with dimv = n and dimw = m. T : V W is a linear transformation.. A map T : V W is a linear transformation if and only

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 4 Eigenvalue Problems Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Math Matrix Algebra

Math Matrix Algebra Math 44 - Matrix Algebra Review notes - 4 (Alberto Bressan, Spring 27) Review of complex numbers In this chapter we shall need to work with complex numbers z C These can be written in the form z = a+ib,

More information

ON SYLVESTER S LAW OF INERTIA FOR NONLINEAR EIGENVALUE PROBLEMS

ON SYLVESTER S LAW OF INERTIA FOR NONLINEAR EIGENVALUE PROBLEMS ON SYLVESTER S LAW OF INERTIA FOR NONLINEAR EIGENVALUE PROBLEMS ALEKSANDRA KOSTIĆ AND HEINRICH VOSS Key words. eigenvalue, variational characterization, principle, Sylvester s law of inertia AMS subject

More information

Linear Algebra 1. M.T.Nair Department of Mathematics, IIT Madras. and in that case x is called an eigenvector of T corresponding to the eigenvalue λ.

Linear Algebra 1. M.T.Nair Department of Mathematics, IIT Madras. and in that case x is called an eigenvector of T corresponding to the eigenvalue λ. Linear Algebra 1 M.T.Nair Department of Mathematics, IIT Madras 1 Eigenvalues and Eigenvectors 1.1 Definition and Examples Definition 1.1. Let V be a vector space (over a field F) and T : V V be a linear

More information

A UNIFIED APPROACH TO FIEDLER-LIKE PENCILS VIA STRONG BLOCK MINIMAL BASES PENCILS.

A UNIFIED APPROACH TO FIEDLER-LIKE PENCILS VIA STRONG BLOCK MINIMAL BASES PENCILS. A UNIFIED APPROACH TO FIEDLER-LIKE PENCILS VIA STRONG BLOCK MINIMAL BASES PENCILS M I BUENO, F M DOPICO, J PÉREZ, R SAAVEDRA, AND B ZYKOSKI Abstract The standard way of solving the polynomial eigenvalue

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall 2015 1 / 14 Introduction We define eigenvalues and eigenvectors. We discuss how to

More information

PALINDROMIC POLYNOMIAL EIGENVALUE PROBLEMS: GOOD VIBRATIONS FROM GOOD LINEARIZATIONS

PALINDROMIC POLYNOMIAL EIGENVALUE PROBLEMS: GOOD VIBRATIONS FROM GOOD LINEARIZATIONS PALINDROMIC POLYNOMIAL EIGENVALUE PROBLEMS: GOOD VIBRATIONS FROM GOOD LINEARIZATIONS D STEVEN MACKEY, NILOUFER MACKEY, CHRISTIAN MEHL, AND VOLKER MEHRMANN Abstract Palindromic polynomial eigenvalue problems

More information

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued)

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued) 1 A linear system of equations of the form Sections 75, 78 & 81 a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m can be written in matrix

More information

A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error

A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error Calcolo manuscript No. (will be inserted by the editor) A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error M. I Bueno F. M. Dopico

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.2: Fundamentals 2 / 31 Eigenvalues and Eigenvectors Eigenvalues and eigenvectors of

More information