J. Marín-Solano (UB), M. Bosch-Príncep (UB), J. Dhaene (KUL), C. Ribas (UB), O. Roch (UB), S. Vanduffel (KUL)

Size: px
Start display at page:

Download "J. Marín-Solano (UB), M. Bosch-Príncep (UB), J. Dhaene (KUL), C. Ribas (UB), O. Roch (UB), S. Vanduffel (KUL)"

Transcription

1 BUY AND HOLD STRATEGIES IN OPTIMAL PORTFOLIO SELECTION PROBLEMS: COMONOTONIC APPROXIMATIONS J. Marín-Solano (UB), M. Bosch-Príncep (UB), J. Dhaene (KUL), C. Ribas (UB), O. Roch (UB), S. Vanduffel (KUL)

2 MULTIPERIOD OPTIMAL PORTFOLIO SELECTION PROBLEM 1. Investment strategies. 2. Buy and hold strategy. Terminal wealth. 3. Upper and lower bounds for the terminal wealth. 4. Optimal portfolio.

3 1. INVESTMENT STRATEGIES There are (m+1) securities. One of them is riskfree: There are m risky assets: By defining B i (t) = 1 σ i d j=1 dp i (t) P i (t) = µ idt + σ ij W j (t), d j=1 σ ij dw j (t). dp i (t) P i (t) = µ idt + σ i db i (t), i = 1,..., m. dp 0 (t) P 0 (t) = rdt.

4 From the solution to this equation, [( P i (t) = p i exp µ i 1 ) 2 σ2 i ] t + σ i B i (t), we obtain that the random yearly returns of asset i in year k, Y i k, are independent and have identical normal distributions with E [Y i k ] = µ i 1 2 σ2 i, Var [Yk i ] = σi 2, and Cov [Yk i, Y j l ] = 0 if k l, σ ij if k = l.

5 Let Π(t) = (Π 0 (t), Π 1 (t),..., Π m (t)) denote the vector describing the proportions of wealth invested in each asset at time t. In general, a vector Π(t) will define an investment strategy. If one unit of a security is constructed according to the investment strategy Π(t), let P (t) be the price of that unit at time t. Then, m [ dp (t) P (t) = Π i (t) dp i m ] (t) P i (t) = m Π i (t)(µ i r) + r dt+ Π i (t)σ i db i (t). i=0 i=1 If Π(t) is prefixed, P (t) can be obtained by solving the stochastic differential equation above (constantly rebalanced portfolio). i=1

6 2. BUY AND HOLD STRATEGY. TERMINAL WEALTH The new amounts of money α(t) are invested at time t = 0, 1,..., n 1 in some prefixed proportions π(t) = ( π 0 (t), π 1 (t),..., π m (t)). Fractions π i (t) are always the same. Denoting π i (0) = π i, then ( π 0 (t),..., π m (t)) = (π 0,..., π m ), for every t = 0, 1,..., n 1. New quantities are invested once in a period of time (typically, once in a year), i.e., α i if t = i, for i = 0, 1,..., n 1, α(t) = 0 otherwise. The decision maker follows a buy and hold strategy, i.e., no securities are sold.

7 Objective: To compute the terminal wealth W n (π) for a given buy and hold strategy π = (π 0, π 1,..., π m ). Let Zj i be the sum of returns of 1 unit of capital invested at time t = j of asset i from time t = j to the final time t = n, Z i j = n k=j+1 Y i k. The terminal wealth invested in asset i is W i n(π) = n 1 j=0 π i α j e Zi j, whereas the terminal wealth will be given by W (π) = m W i (π) = i=0 m i=0 n 1 j=0 π i α j e Zi j.

8 3. UPPER AND LOWER BOUNDS FOR THE TERMINAL WEALTH Let X = (X 1, X 2,..., X n ) and let S = X 1 + X X n. It can be shown that where S c = n i=1 S l cx n i=1 F 1 X i (U) and S l = X i cx S c, n E [X i Λ]. i=1

9 If S = n ᾱ i e Z i with ᾱ i 0, i=1 S c = n i=1 F 1 ᾱ i e Z i (U) = n ᾱ i e E [ Z i ]+σ Zi Φ 1 (U). i=1 For a given Λ = n γ j Zj, j=1 S l = n ᾱ i E [e Z i Λ] = i=1 n ᾱ i e E [ Z i ]+ 1 2(1 r 2 i )σ 2 Zi +r i σ Zi Φ 1 (U). i=1 We need values of γ j that minimize of the distance between S and S l.

10 Maximal Variance lower bound approach. As we have that Var[S] = Var[S l ] + E[Var[S Λ]], it seems reasonable to choose the coefficients γ j such that the variance of S l is maximized: γ k = ᾱ k e E [ Z k ]+ 1 2 σ2 Zk. Taylor-based lower bound approach. Λ is a linear transformation of a first order approximation to S: γ k = ᾱ k e E [ Z k ].

11 Comonotonic Upper Bound B&H strategy: W c (π) = m i=0 n 1 j=0 π i α j e (n j)(µ i 1 2 σ2 i )+ n jσ i Φ 1 (U). Note that W c (π) is a linear combination of fractions π i, i = 0,..., m. Comonotonic Lower Bound B&H strategy: W l (π) = m i=0 n 1 j=0 π i α j e (n j) (µ i 1 2 r2 ij σ2 i )+r ij n jσi Φ 1 (U) where the correlation coefficients r ij are given by r MV ij = σ i [ (n j) m s,k=0 m k=0 n 1 l=0 π kα l (n max(j, l))σ ik e (n l)µ k n 1 t,l=0 π sπ k α t α l (n max(t, l))σ sk e (n t)µ s+(n l)µ k ] 1/2.

12 and m r T ij = m k=0 n 1 s,k=0 t,l=0 n 1 l=0 π kα l (n max(j, l))σ ik e (n l) [µ k 1 2 σ2 k] σ i (n j) 1/2 π s π k α t α l (n max(t, l))σ sk e (n t) [µ s 1 2 σ2 s]+(n l)[µ k 1 2 σ2 k] 1/2

13 Numerical illustration: 2 risky, 1 risk-free. µ 1 = 0.06, µ 2 = 0.1, σ 1 = 0.1, σ 2 = 0.2, Pearson s correlation: 0.5, r = Every period α i = 1, invested in proportions: 19% risk-free asset, 45% first risky asset, 36% in the second risky asset. This amount is invested for i = 0,..., 19, whereas in i = 20 the invested amount is α 20 = 0. The simulated results were obtained with 500,000 random paths.

14 p MC LB MV LB T UB % +1.46% % % +0.79% % % +0.57% % , % -0.00% % % +0.09% -3.92% % -0.34% +3.32% % +0.10% % % -0.27% % % -0.93% %

15 4. OPTIMAL PORTFOLIO Possible criteria: maximizing an expected utility, Yaari s dual theory of choice under risk: max π ρ f [W n (π)] = max π 0 f(pr(w n (π) > x))dx, risk measures (some of them correspond to distorted expectations ρ f [W n (π)] for appropriate choices of the distorsion function f).

16 Value at Risk at level p: Q p [X] = F 1 X (p) = inf{x R F X(x) p}. If F X is an strictly increasing function, then it coincides with the related risk measure Q + p [X] = sup{x R F X (x) p}, p (0, 1). Additive for sums of comonotonic risks. Conditional Left Tail Expectation at level p (CLT E p [X]): CLT E p [X] = E [ X X < Q + p [X] ], p (0, 1).

17 For the upper and lower bounds in B&H strategy: Q p [W c (π)] = Q p [W l (π)] = CLT E p [W c (π)] = CLT E p [W l (π)] = m i=0 m i=0 m i=0 m i=0 n 1 j=0 n 1 j=0 n 1 j=0 n 1 j=0 π i α j e (n j)(µ i 1 2 σ2 i )+ n jσ i Φ 1 (p), π i α j e (n j) (µ i 1 2 r2 ij σ2 i )+r ij n jσi Φ 1 (p), π i α j e µ i(n j) 1 Φ( n jσ i Φ 1 (p)) p π i α j e µ i(n j) 1 Φ( n jr ij σ i Φ 1 (p)) p,.

18 Maximizing the Value at Risk: for a given probability p and a given investment strategy, let K p (π) be the p-target capital defined as the (1 p)-th order + -quantile of terminal wealth, K p (π) = Q + 1 p [W (π)]. For the optimal case: Alternatives: Kp = max π Q+ 1 p [W (π)]. K c p = max π Q + 1 p [W c (π)] or K l p = max π Q + 1 p [W l (π)].

19 r MC LB MV LB T UB π 0 100% 100% 100% 100% π 1 0% 0% 0% 0% π 2 0% 0% 0% 0% K % MC LB MV LB T UB π % 33.83% 34.36% 57.14% π % 40.79% 39.87% 0% π % 25.38% 25.77% 42.86% K

20 Maximizing the CLTE: max π CLT E 1 p [W (π)]. This optimization problem describes decisions of risk averse investors. The CLT E 1 p has the following nice property (lacking with the VaR): CLT E 1 p [W c (π)] CLT E 1 p [W (π)] CLT E 1 p [W l (π)]. Alternative: max π CLT E 1 p [W l (π)].

21 r MC LB MV LB T UB π 0 100% 100% 100% 100% π 1 0% 0% 0% 0% π 2 0% 0% 0% 0% K % MC LB MV LB T UB π % 37.36% 38.44% 57.14% π % 34.62% 32.74% 0% π % 28.02% 28.82% 42.86% K

Miloš Kopa. Decision problems with stochastic dominance constraints

Miloš Kopa. Decision problems with stochastic dominance constraints Decision problems with stochastic dominance constraints Motivation Portfolio selection model Mean risk models max λ Λ m(λ r) νr(λ r) or min λ Λ r(λ r) s.t. m(λ r) µ r is a random vector of assets returns

More information

COMPARING APPROXIMATIONS FOR RISK MEASURES RELATED TO SUMS OF CORRELATED LOGNORMAL RANDOM VARIABLES MASTERARBEIT

COMPARING APPROXIMATIONS FOR RISK MEASURES RELATED TO SUMS OF CORRELATED LOGNORMAL RANDOM VARIABLES MASTERARBEIT COMPARING APPROXIMATIONS FOR RISK MEASURES RELATED TO SUMS OF CORRELATED LOGNORMAL RANDOM VARIABLES MASTERARBEIT Technische Universität Chemnitz Fakultät für Mathematik Integrierter Internationaler Master-

More information

Aggregate Risk. MFM Practitioner Module: Quantitative Risk Management. John Dodson. February 6, Aggregate Risk. John Dodson.

Aggregate Risk. MFM Practitioner Module: Quantitative Risk Management. John Dodson. February 6, Aggregate Risk. John Dodson. MFM Practitioner Module: Quantitative Risk Management February 6, 2019 As we discussed last semester, the general goal of risk measurement is to come up with a single metric that can be used to make financial

More information

Optimal Investment Strategies: A Constrained Optimization Approach

Optimal Investment Strategies: A Constrained Optimization Approach Optimal Investment Strategies: A Constrained Optimization Approach Janet L Waldrop Mississippi State University jlc3@ramsstateedu Faculty Advisor: Michael Pearson Pearson@mathmsstateedu Contents Introduction

More information

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011

HJB equations. Seminar in Stochastic Modelling in Economics and Finance January 10, 2011 Department of Probability and Mathematical Statistics Faculty of Mathematics and Physics, Charles University in Prague petrasek@karlin.mff.cuni.cz Seminar in Stochastic Modelling in Economics and Finance

More information

Consumption. Consider a consumer with utility. v(c τ )e ρ(τ t) dτ.

Consumption. Consider a consumer with utility. v(c τ )e ρ(τ t) dτ. Consumption Consider a consumer with utility v(c τ )e ρ(τ t) dτ. t He acts to maximize expected utility. Utility is increasing in consumption, v > 0, and concave, v < 0. 1 The utility from consumption

More information

Comonotonicity and Maximal Stop-Loss Premiums

Comonotonicity and Maximal Stop-Loss Premiums Comonotonicity and Maximal Stop-Loss Premiums Jan Dhaene Shaun Wang Virginia Young Marc J. Goovaerts November 8, 1999 Abstract In this paper, we investigate the relationship between comonotonicity and

More information

Markowitz Efficient Portfolio Frontier as Least-Norm Analytic Solution to Underdetermined Equations

Markowitz Efficient Portfolio Frontier as Least-Norm Analytic Solution to Underdetermined Equations Markowitz Efficient Portfolio Frontier as Least-Norm Analytic Solution to Underdetermined Equations Sahand Rabbani Introduction Modern portfolio theory deals in part with the efficient allocation of investments

More information

Utility Theory CHAPTER Single period utility theory

Utility Theory CHAPTER Single period utility theory CHAPTER 7 Utility Theory 7.. Single period utility theory We wish to use a concept of utility that is able to deal with uncertainty. So we introduce the von Neumann Morgenstern utility function. The investor

More information

Modern Portfolio Theory with Homogeneous Risk Measures

Modern Portfolio Theory with Homogeneous Risk Measures Modern Portfolio Theory with Homogeneous Risk Measures Dirk Tasche Zentrum Mathematik Technische Universität München http://www.ma.tum.de/stat/ Rotterdam February 8, 2001 Abstract The Modern Portfolio

More information

Notes on Recursive Utility. Consider the setting of consumption in infinite time under uncertainty as in

Notes on Recursive Utility. Consider the setting of consumption in infinite time under uncertainty as in Notes on Recursive Utility Consider the setting of consumption in infinite time under uncertainty as in Section 1 (or Chapter 29, LeRoy & Werner, 2nd Ed.) Let u st be the continuation utility at s t. That

More information

Thomas Knispel Leibniz Universität Hannover

Thomas Knispel Leibniz Universität Hannover Optimal long term investment under model ambiguity Optimal long term investment under model ambiguity homas Knispel Leibniz Universität Hannover knispel@stochastik.uni-hannover.de AnStAp0 Vienna, July

More information

arxiv: v1 [math.pr] 24 Sep 2018

arxiv: v1 [math.pr] 24 Sep 2018 A short note on Anticipative portfolio optimization B. D Auria a,b,1,, J.-A. Salmerón a,1 a Dpto. Estadística, Universidad Carlos III de Madrid. Avda. de la Universidad 3, 8911, Leganés (Madrid Spain b

More information

Corrections to Theory of Asset Pricing (2008), Pearson, Boston, MA

Corrections to Theory of Asset Pricing (2008), Pearson, Boston, MA Theory of Asset Pricing George Pennacchi Corrections to Theory of Asset Pricing (8), Pearson, Boston, MA. Page 7. Revise the Independence Axiom to read: For any two lotteries P and P, P P if and only if

More information

March 16, Abstract. We study the problem of portfolio optimization under the \drawdown constraint" that the

March 16, Abstract. We study the problem of portfolio optimization under the \drawdown constraint that the ON PORTFOLIO OPTIMIZATION UNDER \DRAWDOWN" CONSTRAINTS JAKSA CVITANIC IOANNIS KARATZAS y March 6, 994 Abstract We study the problem of portfolio optimization under the \drawdown constraint" that the wealth

More information

Birgit Rudloff Operations Research and Financial Engineering, Princeton University

Birgit Rudloff Operations Research and Financial Engineering, Princeton University TIME CONSISTENT RISK AVERSE DYNAMIC DECISION MODELS: AN ECONOMIC INTERPRETATION Birgit Rudloff Operations Research and Financial Engineering, Princeton University brudloff@princeton.edu Alexandre Street

More information

Perturbative Approaches for Robust Intertemporal Optimal Portfolio Selection

Perturbative Approaches for Robust Intertemporal Optimal Portfolio Selection Perturbative Approaches for Robust Intertemporal Optimal Portfolio Selection F. Trojani and P. Vanini ECAS Course, Lugano, October 7-13, 2001 1 Contents Introduction Merton s Model and Perturbative Solution

More information

Ambiguity and Information Processing in a Model of Intermediary Asset Pricing

Ambiguity and Information Processing in a Model of Intermediary Asset Pricing Ambiguity and Information Processing in a Model of Intermediary Asset Pricing Leyla Jianyu Han 1 Kenneth Kasa 2 Yulei Luo 1 1 The University of Hong Kong 2 Simon Fraser University December 15, 218 1 /

More information

Decision principles derived from risk measures

Decision principles derived from risk measures Decision principles derived from risk measures Marc Goovaerts Marc.Goovaerts@econ.kuleuven.ac.be Katholieke Universiteit Leuven Decision principles derived from risk measures - Marc Goovaerts p. 1/17 Back

More information

Asset Pricing. Chapter V. Risk Aversion and Investment Decisions, Part I. June 20, 2006

Asset Pricing. Chapter V. Risk Aversion and Investment Decisions, Part I. June 20, 2006 Chapter V. Risk Aversion and Investment Decisions, Part I June 20, 2006 The Canonical Portfolio Problem The various problems considered in this chapter (and the next) max a EU(Ỹ1) = max EU (Y 0 (1 + r

More information

1: PROBABILITY REVIEW

1: PROBABILITY REVIEW 1: PROBABILITY REVIEW Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 1: Probability Review 1 / 56 Outline We will review the following

More information

Research Article Continuous Time Portfolio Selection under Conditional Capital at Risk

Research Article Continuous Time Portfolio Selection under Conditional Capital at Risk Hindawi Publishing Corporation Journal of Probability and Statistics Volume 2010, Article ID 976371, 26 pages doi:10.1155/2010/976371 Research Article Continuous Time Portfolio Selection under Conditional

More information

ECON4510 Finance Theory Lecture 2

ECON4510 Finance Theory Lecture 2 ECON4510 Finance Theory Lecture 2 Diderik Lund Department of Economics University of Oslo 26 August 2013 Diderik Lund, Dept. of Economics, UiO ECON4510 Lecture 2 26 August 2013 1 / 31 Risk aversion and

More information

Choice Under Uncertainty

Choice Under Uncertainty Choice Under Uncertainty Z a finite set of outcomes. P the set of probabilities on Z. p P is (p 1,...,p n ) with each p i 0 and n i=1 p i = 1 Binary relation on P. Objective probability case. Decision

More information

Speculation and the Bond Market: An Empirical No-arbitrage Framework

Speculation and the Bond Market: An Empirical No-arbitrage Framework Online Appendix to the paper Speculation and the Bond Market: An Empirical No-arbitrage Framework October 5, 2015 Part I: Maturity specific shocks in affine and equilibrium models This Appendix present

More information

Optimal portfolio strategies under partial information with expert opinions

Optimal portfolio strategies under partial information with expert opinions 1 / 35 Optimal portfolio strategies under partial information with expert opinions Ralf Wunderlich Brandenburg University of Technology Cottbus, Germany Joint work with Rüdiger Frey Research Seminar WU

More information

MFM Practitioner Module: Risk & Asset Allocation. John Dodson. January 25, 2012

MFM Practitioner Module: Risk & Asset Allocation. John Dodson. January 25, 2012 MFM Practitioner Module: Risk & Asset Allocation January 25, 2012 Optimizing Allocations Once we have 1. chosen the markets and an investment horizon 2. modeled the markets 3. agreed on an objective with

More information

A new approach for investment performance measurement. 3rd WCMF, Santa Barbara November 2009

A new approach for investment performance measurement. 3rd WCMF, Santa Barbara November 2009 A new approach for investment performance measurement 3rd WCMF, Santa Barbara November 2009 Thaleia Zariphopoulou University of Oxford, Oxford-Man Institute and The University of Texas at Austin 1 Performance

More information

FIN 550 Practice Exam Answers. A. Linear programs typically have interior solutions.

FIN 550 Practice Exam Answers. A. Linear programs typically have interior solutions. FIN 550 Practice Exam Answers Phil Dybvig. True-False 25 points A. Linear programs typically have interior solutions. False. Unless the objective is zero, all solutions are at the boundary. B. A local

More information

Nonlife Actuarial Models. Chapter 4 Risk Measures

Nonlife Actuarial Models. Chapter 4 Risk Measures Nonlife Actuarial Models Chapter 4 Risk Measures Learning Objectives 1. Risk measures based on premium principles 2. Risk measures based on capital requirements 3. Value-at-Risk and conditional tail expectation

More information

A SECOND ORDER STOCHASTIC DOMINANCE PORTFOLIO EFFICIENCY MEASURE

A SECOND ORDER STOCHASTIC DOMINANCE PORTFOLIO EFFICIENCY MEASURE K Y B E R N E I K A V O L U M E 4 4 ( 2 0 0 8 ), N U M B E R 2, P A G E S 2 4 3 2 5 8 A SECOND ORDER SOCHASIC DOMINANCE PORFOLIO EFFICIENCY MEASURE Miloš Kopa and Petr Chovanec In this paper, we introduce

More information

of space-time diffusions

of space-time diffusions Optimal investment for all time horizons and Martin boundary of space-time diffusions Sergey Nadtochiy and Michael Tehranchi October 5, 2012 Abstract This paper is concerned with the axiomatic foundation

More information

Distortion Risk Measures: Coherence and Stochastic Dominance

Distortion Risk Measures: Coherence and Stochastic Dominance Distortion Risk Measures: Coherence and Stochastic Dominance Dr. Julia L. Wirch Dr. Mary R. Hardy Dept. of Actuarial Maths Dept. of Statistics and and Statistics Actuarial Science Heriot-Watt University

More information

Introduction to Computational Finance and Financial Econometrics Probability Theory Review: Part 2

Introduction to Computational Finance and Financial Econometrics Probability Theory Review: Part 2 Introduction to Computational Finance and Financial Econometrics Probability Theory Review: Part 2 Eric Zivot July 7, 2014 Bivariate Probability Distribution Example - Two discrete rv s and Bivariate pdf

More information

Asset Pricing. Chapter IX. The Consumption Capital Asset Pricing Model. June 20, 2006

Asset Pricing. Chapter IX. The Consumption Capital Asset Pricing Model. June 20, 2006 Chapter IX. The Consumption Capital Model June 20, 2006 The Representative Agent Hypothesis and its Notion of Equilibrium 9.2.1 An infinitely lived Representative Agent Avoid terminal period problem Equivalence

More information

Portfolio Optimization in discrete time

Portfolio Optimization in discrete time Portfolio Optimization in discrete time Wolfgang J. Runggaldier Dipartimento di Matematica Pura ed Applicata Universitá di Padova, Padova http://www.math.unipd.it/runggaldier/index.html Abstract he paper

More information

Asset Pricing. Chapter III. Making Choice in Risky Situations. June 20, 2006

Asset Pricing. Chapter III. Making Choice in Risky Situations. June 20, 2006 Chapter III. Making Choice in Risky Situations June 20, 2006 A future risky cash flow is modelled as a random variable State-by-state dominance =>incomplete ranking «riskier» Table 3.1: Asset Payoffs ($)

More information

Robustness and bootstrap techniques in portfolio efficiency tests

Robustness and bootstrap techniques in portfolio efficiency tests Robustness and bootstrap techniques in portfolio efficiency tests Dept. of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic July 8, 2013 Motivation Portfolio selection

More information

Approximation around the risky steady state

Approximation around the risky steady state Approximation around the risky steady state Centre for International Macroeconomic Studies Conference University of Surrey Michel Juillard, Bank of France September 14, 2012 The views expressed herein

More information

VaR bounds in models with partial dependence information on subgroups

VaR bounds in models with partial dependence information on subgroups VaR bounds in models with partial dependence information on subgroups L. Rüschendorf J. Witting February 23, 2017 Abstract We derive improved estimates for the model risk of risk portfolios when additional

More information

Some results on Denault s capital allocation rule

Some results on Denault s capital allocation rule Faculty of Economics and Applied Economics Some results on Denault s capital allocation rule Steven Vanduffel and Jan Dhaene DEPARTMENT OF ACCOUNTANCY, FINANCE AND INSURANCE (AFI) AFI 0601 Some Results

More information

Solution of the Financial Risk Management Examination

Solution of the Financial Risk Management Examination Solution of the Financial Risk Management Examination Thierry Roncalli January 8 th 014 Remark 1 The first five questions are corrected in TR-GDR 1 and in the document of exercise solutions, which is available

More information

3E4: Modelling Choice

3E4: Modelling Choice 3E4: Modelling Choice Lecture 6 Goal Programming Multiple Objective Optimisation Portfolio Optimisation Announcements Supervision 2 To be held by the end of next week Present your solutions to all Lecture

More information

In the Ramsey model we maximized the utility U = u[c(t)]e nt e t dt. Now

In the Ramsey model we maximized the utility U = u[c(t)]e nt e t dt. Now PERMANENT INCOME AND OPTIMAL CONSUMPTION On the previous notes we saw how permanent income hypothesis can solve the Consumption Puzzle. Now we use this hypothesis, together with assumption of rational

More information

Proving the Regularity of the Minimal Probability of Ruin via a Game of Stopping and Control

Proving the Regularity of the Minimal Probability of Ruin via a Game of Stopping and Control Proving the Regularity of the Minimal Probability of Ruin via a Game of Stopping and Control Erhan Bayraktar University of Michigan joint work with Virginia R. Young, University of Michigan K αρλoβασi,

More information

Fundamentals in Optimal Investments. Lecture I

Fundamentals in Optimal Investments. Lecture I Fundamentals in Optimal Investments Lecture I + 1 Portfolio choice Portfolio allocations and their ordering Performance indices Fundamentals in optimal portfolio choice Expected utility theory and its

More information

Are Probabilities Used in Markets? 1

Are Probabilities Used in Markets? 1 Journal of Economic Theory 91, 8690 (2000) doi:10.1006jeth.1999.2590, available online at http:www.idealibrary.com on NOTES, COMMENTS, AND LETTERS TO THE EDITOR Are Probabilities Used in Markets? 1 Larry

More information

MFM Practitioner Module: Risk & Asset Allocation. John Dodson. February 4, 2015

MFM Practitioner Module: Risk & Asset Allocation. John Dodson. February 4, 2015 & & MFM Practitioner Module: Risk & Asset Allocation February 4, 2015 & Meucci s Program for Asset Allocation detect market invariance select the invariants estimate the market specify the distribution

More information

ИЗМЕРЕНИЕ РИСКА MEASURING RISK Arcady Novosyolov Institute of computational modeling SB RAS Krasnoyarsk, Russia,

ИЗМЕРЕНИЕ РИСКА MEASURING RISK Arcady Novosyolov Institute of computational modeling SB RAS Krasnoyarsk, Russia, ИЗМЕРЕНИЕ РИСКА EASURING RISK Arcady Novosyolov Institute of computational modeling SB RAS Krasnoyarsk, Russia, anov@ksckrasnru Abstract Problem of representation of human preferences among uncertain outcomes

More information

Wealth, Information Acquisition and Portfolio Choice: A Correction

Wealth, Information Acquisition and Portfolio Choice: A Correction Wealth, Information Acquisition and Portfolio Choice: A Correction Joel Peress INSEAD There is an error in our 2004 paper Wealth, Information Acquisition and Portfolio Choice. This note shows how to correct

More information

Utility Maximization in Hidden Regime-Switching Markets with Default Risk

Utility Maximization in Hidden Regime-Switching Markets with Default Risk Utility Maximization in Hidden Regime-Switching Markets with Default Risk José E. Figueroa-López Department of Mathematics and Statistics Washington University in St. Louis figueroa-lopez@wustl.edu pages.wustl.edu/figueroa

More information

Introduction to Stochastic Optimization Part 4: Multi-stage decision

Introduction to Stochastic Optimization Part 4: Multi-stage decision Introduction to Stochastic Optimization Part 4: Multi-stage decision problems April 23, 29 The problem ξ = (ξ,..., ξ T ) a multivariate time series process (e.g. future interest rates, future asset prices,

More information

Choice under Uncertainty

Choice under Uncertainty In the Name of God Sharif University of Technology Graduate School of Management and Economics Microeconomics 2 44706 (1394-95 2 nd term) Group 2 Dr. S. Farshad Fatemi Chapter 6: Choice under Uncertainty

More information

Equilibrium Valuation with Growth Rate Uncertainty

Equilibrium Valuation with Growth Rate Uncertainty Equilibrium Valuation with Growth Rate Uncertainty Lars Peter Hansen University of Chicago Toulouse p. 1/26 Portfolio dividends relative to consumption. 2 2.5 Port. 1 Port. 2 Port. 3 3 3.5 4 1950 1955

More information

Mathematical Behavioural Finance A Mini Course

Mathematical Behavioural Finance A Mini Course Mathematical Behavioural Finance A Mini Course Xunyu Zhou January 2013 Winter School @ Lunteren Chapter 4: Portfolio Choice under CPT 1 Formulation of CPT Portfolio Choice Model 2 Divide and Conquer 3

More information

Inverse Stochastic Dominance Constraints Duality and Methods

Inverse Stochastic Dominance Constraints Duality and Methods Duality and Methods Darinka Dentcheva 1 Andrzej Ruszczyński 2 1 Stevens Institute of Technology Hoboken, New Jersey, USA 2 Rutgers University Piscataway, New Jersey, USA Research supported by NSF awards

More information

Better than Dynamic Mean-Variance Policy in Market with ALL Risky Assets

Better than Dynamic Mean-Variance Policy in Market with ALL Risky Assets Better than Dynamic Mean-Variance Policy in Market with ALL Risky Assets Xiangyu Cui and Duan Li Department of Systems Engineering & Engineering Management The Chinese University of Hong Kong June 15,

More information

FINM6900 Finance Theory Noisy Rational Expectations Equilibrium for Multiple Risky Assets

FINM6900 Finance Theory Noisy Rational Expectations Equilibrium for Multiple Risky Assets FINM69 Finance Theory Noisy Rational Expectations Equilibrium for Multiple Risky Assets February 3, 212 Reference Anat R. Admati, A Noisy Rational Expectations Equilibrium for Multi-Asset Securities Markets,

More information

Conditional Expectation and Independence Exercises

Conditional Expectation and Independence Exercises Conditional Expectation and Independence Exercises Exercise 3.1. Show the four following properties : for any random variables and Y and for any real numbers a and b, (E1) E P [a + by ] = ae P [] + be

More information

Quadratic Programming

Quadratic Programming Quadratic Programming Quadratic programming is a special case of non-linear programming, and has many applications. One application is for optimal portfolio selection, which was developed by Markowitz

More information

Asymptotic behaviour of multivariate default probabilities and default correlations under stress

Asymptotic behaviour of multivariate default probabilities and default correlations under stress Asymptotic behaviour of multivariate default probabilities and default correlations under stress 7th General AMaMeF and Swissquote Conference EPFL, Lausanne Natalie Packham joint with Michael Kalkbrener

More information

On a relationship between distorted and spectral risk measures

On a relationship between distorted and spectral risk measures MPRA Munich Personal RePEc Archive On a relationship between distorted and spectral risk measures Gzyl Henryk and Mayoral Silvia November 26 Online at http://mpra.ub.uni-muenchen.de/916/ MPRA Paper No.

More information

Competitive Equilibria in a Comonotone Market

Competitive Equilibria in a Comonotone Market Competitive Equilibria in a Comonotone Market 1/51 Competitive Equilibria in a Comonotone Market Ruodu Wang http://sas.uwaterloo.ca/ wang Department of Statistics and Actuarial Science University of Waterloo

More information

ECO 317 Economics of Uncertainty Fall Term 2009 Problem Set 3 Answer Key The distribution was as follows: <

ECO 317 Economics of Uncertainty Fall Term 2009 Problem Set 3 Answer Key The distribution was as follows: < ECO 317 Economics of Uncertainty Fall Term 2009 Problem Set 3 Answer Key The distribution was as follows: Question 1: 100 90-99 80-89 70-79 < 70 1 11 3 1 3 (a) (5 points) F 1 being FOSD over F 2 is equivalent

More information

Portfolio Allocation using High Frequency Data. Jianqing Fan

Portfolio Allocation using High Frequency Data. Jianqing Fan Portfolio Allocation using High Frequency Data Princeton University With Yingying Li and Ke Yu http://www.princeton.edu/ jqfan September 10, 2010 About this talk How to select sparsely optimal portfolio?

More information

Characterization of Upper Comonotonicity via Tail Convex Order

Characterization of Upper Comonotonicity via Tail Convex Order Characterization of Upper Comonotonicity via Tail Convex Order Hee Seok Nam a,, Qihe Tang a, Fan Yang b a Department of Statistics and Actuarial Science, University of Iowa, 241 Schaeffer Hall, Iowa City,

More information

Coherent Risk Measures. Acceptance Sets. L = {X G : X(ω) < 0, ω Ω}.

Coherent Risk Measures. Acceptance Sets. L = {X G : X(ω) < 0, ω Ω}. So far in this course we have used several different mathematical expressions to quantify risk, without a deeper discussion of their properties. Coherent Risk Measures Lecture 11, Optimisation in Finance

More information

Optimization Techniques and Problem Analysis for Managers

Optimization Techniques and Problem Analysis for Managers Optimization Techniques and Problem Analysis for Managers Optimization is one of the most basic subjects in management and economics. Dynamic programming and Control Problem are powerful tools in related

More information

100 if α=red 0 if α=red f A,r = f A,b =

100 if α=red 0 if α=red f A,r = f A,b = 14.123 Problem Set 2 Solution Suehyun Kwon Q1. There are two urns, A and B, each consisting of 100 balls, some are black and some are red. In urn A there are 30 red balls, but the number of red balls in

More information

Efficient portfolios in financial markets with proportional transaction costs

Efficient portfolios in financial markets with proportional transaction costs Joint work E. Jouini and V. Portes Conference in honour of Walter Schachermayer, July 2010 Contents 1 2 3 4 : An efficient portfolio is an admissible portfolio which is optimal for at least one agent.

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Output Analysis for Monte-Carlo Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Output Analysis

More information

A Correction. Joel Peress INSEAD. Abstract

A Correction. Joel Peress INSEAD. Abstract Wealth, Information Acquisition and ortfolio Choice A Correction Joel eress INSEAD Abstract There is an error in my 2004 paper Wealth, Information Acquisition and ortfolio Choice. This note shows how to

More information

Nonlinear Optimization: The art of modeling

Nonlinear Optimization: The art of modeling Nonlinear Optimization: The art of modeling INSEAD, Spring 2006 Jean-Philippe Vert Ecole des Mines de Paris Jean-Philippe.Vert@mines.org Nonlinear optimization c 2003-2006 Jean-Philippe Vert, (Jean-Philippe.Vert@mines.org)

More information

Probabilities & Statistics Revision

Probabilities & Statistics Revision Probabilities & Statistics Revision Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 January 6, 2017 Christopher Ting QF

More information

Bounds for Stop-Loss Premiums of Deterministic and Stochastic Sums of Random Variables

Bounds for Stop-Loss Premiums of Deterministic and Stochastic Sums of Random Variables Bounds for Stop-Loss Premiums of Deterministic and Stochastic Sums of Random Variables Tom Hoedemakers Grzegorz Darkiewicz Griselda Deelstra Jan Dhaene Michèle Vanmaele Abstract In this paper we present

More information

Linear Programming and the Control of Diffusion Processes

Linear Programming and the Control of Diffusion Processes Linear Programming and the Control of Diffusion Processes Andrew Ahn Department of IE and OR, Columbia University, New York, NY 10027, aja2133@columbia.edu. Martin Haugh Department of IE and OR, Columbia

More information

Efficient optimization of the reward-risk ratio with polyhedral risk measures

Efficient optimization of the reward-risk ratio with polyhedral risk measures Math Meth Oper Res (2017) 86:625 653 https://doi.org/10.1007/s00186-017-0613-1 ORIGINAL ARTICLE Efficient optimization of the reward-risk ratio with polyhedral risk measures Wlodzimierz Ogryczak 1 Michał

More information

Linear Programming: Chapter 1 Introduction

Linear Programming: Chapter 1 Introduction Linear Programming: Chapter 1 Introduction Robert J. Vanderbei October 17, 2007 Operations Research and Financial Engineering Princeton University Princeton, NJ 08544 http://www.princeton.edu/ rvdb Resource

More information

ECON4515 Finance theory 1 Diderik Lund, 5 May Perold: The CAPM

ECON4515 Finance theory 1 Diderik Lund, 5 May Perold: The CAPM Perold: The CAPM Perold starts with a historical background, the development of portfolio theory and the CAPM. Points out that until 1950 there was no theory to describe the equilibrium determination of

More information

Generalized Hypothesis Testing and Maximizing the Success Probability in Financial Markets

Generalized Hypothesis Testing and Maximizing the Success Probability in Financial Markets Generalized Hypothesis Testing and Maximizing the Success Probability in Financial Markets Tim Leung 1, Qingshuo Song 2, and Jie Yang 3 1 Columbia University, New York, USA; leung@ieor.columbia.edu 2 City

More information

1 Markov decision processes

1 Markov decision processes 2.997 Decision-Making in Large-Scale Systems February 4 MI, Spring 2004 Handout #1 Lecture Note 1 1 Markov decision processes In this class we will study discrete-time stochastic systems. We can describe

More information

Speculative Investor Behavior and Learning

Speculative Investor Behavior and Learning Speculative Investor Behavior and Learning QJE 1996 Stephen Morris presentation by Jonathan R. L. Halket Speculative Investor Behavior and Learning by Stephen Morris p. 1/13 Introduction and Motivation

More information

A Measure of Monotonicity of Two Random Variables

A Measure of Monotonicity of Two Random Variables Journal of Mathematics and Statistics 8 (): -8, 0 ISSN 549-3644 0 Science Publications A Measure of Monotonicity of Two Random Variables Farida Kachapova and Ilias Kachapov School of Computing and Mathematical

More information

Hamilton-Jacobi-Bellman Equation of an Optimal Consumption Problem

Hamilton-Jacobi-Bellman Equation of an Optimal Consumption Problem Hamilton-Jacobi-Bellman Equation of an Optimal Consumption Problem Shuenn-Jyi Sheu Institute of Mathematics, Academia Sinica WSAF, CityU HK June 29-July 3, 2009 1. Introduction X c,π t is the wealth with

More information

IOANNIS KARATZAS Mathematics and Statistics Departments Columbia University

IOANNIS KARATZAS Mathematics and Statistics Departments Columbia University STOCHASTIC PORTFOLIO THEORY IOANNIS KARATZAS Mathematics and Statistics Departments Columbia University ik@math.columbia.edu Joint work with Dr. E. Robert FERNHOLZ, C.I.O. of INTECH Enhanced Investment

More information

Quantile-quantile plots and the method of peaksover-threshold

Quantile-quantile plots and the method of peaksover-threshold Problems in SF2980 2009-11-09 12 6 4 2 0 2 4 6 0.15 0.10 0.05 0.00 0.05 0.10 0.15 Figure 2: qqplot of log-returns (x-axis) against quantiles of a standard t-distribution with 4 degrees of freedom (y-axis).

More information

On Consistent Decision Making. and the Theory of Continuous-Time. Recursive Utility

On Consistent Decision Making. and the Theory of Continuous-Time. Recursive Utility On Consistent Decision Making and the Theory of Continuous-Time Recursive Utility Mogens Ste ensen Köln, April 23, 202 /5 Outline: Quadratic and collective objectives Further comments on consistency Recursive

More information

Convex Stochastic Control and Conjugate Duality in a Problem of Unconstrained Utility Maximization Under a Regime Switching Model

Convex Stochastic Control and Conjugate Duality in a Problem of Unconstrained Utility Maximization Under a Regime Switching Model Convex Stochastic Control and Conjugate Duality in a Problem of Unconstrained Utility Maximization Under a Regime Switching Model by Aaron Xin Situ A thesis presented to the University of Waterloo in fulfilment

More information

A New Theory of Inter-temporal Equilibrium

A New Theory of Inter-temporal Equilibrium Jaime A. Londoño, Escuela de Estadística, Universidad Nacional, Medellín Colombia http://www.docentes.unal.edu.co/jalondonol p. 1/34 A New Theory of Inter-temporal Equilibrium for Security Markets Jaime

More information

Regularly Varying Asymptotics for Tail Risk

Regularly Varying Asymptotics for Tail Risk Regularly Varying Asymptotics for Tail Risk Haijun Li Department of Mathematics Washington State University Humboldt Univ-Berlin Haijun Li Regularly Varying Asymptotics for Tail Risk Humboldt Univ-Berlin

More information

Robust Markowitz portfolio selection. ambiguous covariance matrix

Robust Markowitz portfolio selection. ambiguous covariance matrix under ambiguous covariance matrix University Paris Diderot, LPMA Sorbonne Paris Cité Based on joint work with A. Ismail, Natixis MFO March 2, 2017 Outline Introduction 1 Introduction 2 3 and Sharpe ratio

More information

Linear Programming: Chapter 1 Introduction

Linear Programming: Chapter 1 Introduction Linear Programming: Chapter 1 Introduction Robert J. Vanderbei September 16, 2010 Slides last edited on October 5, 2010 Operations Research and Financial Engineering Princeton University Princeton, NJ

More information

Sample of Ph.D. Advisory Exam For MathFinance

Sample of Ph.D. Advisory Exam For MathFinance Sample of Ph.D. Advisory Exam For MathFinance Students who wish to enter the Ph.D. program of Mathematics of Finance are required to take the advisory exam. This exam consists of three major parts. The

More information

PORTFOLIO OPTIMIZATION WITH PERFORMANCE RATIOS

PORTFOLIO OPTIMIZATION WITH PERFORMANCE RATIOS International Journal of Theoretical and Applied Finance c World Scientific Publishing Company PORTFOLIO OPTIMIZATION WITH PERFORMANCE RATIOS HONGCAN LIN Department of Statistics and Actuarial Science,

More information

Introduction to Dependence Modelling

Introduction to Dependence Modelling Introduction to Dependence Modelling Carole Bernard Berlin, May 2015. 1 Outline Modeling Dependence Part 1: Introduction 1 General concepts on dependence. 2 in 2 or N 3 dimensions. 3 Minimizing the expectation

More information

Reward-Risk Portfolio Selection and Stochastic Dominance

Reward-Risk Portfolio Selection and Stochastic Dominance Institute for Empirical Research in Economics University of Zurich Working Paper Series ISSN 1424-0459 Published in: Journal of Banking and Finance 29 (4), pp. 895-926 Working Paper No. 121 Reward-Risk

More information

Key words. Ambiguous correlation, G-Brownian motion, Hamilton Jacobi Bellman Isaacs equation, Stochastic volatility

Key words. Ambiguous correlation, G-Brownian motion, Hamilton Jacobi Bellman Isaacs equation, Stochastic volatility PORTFOLIO OPTIMIZATION WITH AMBIGUOUS CORRELATION AND STOCHASTIC VOLATILITIES JEAN-PIERRE FOUQUE, CHI SENG PUN, AND HOI YING WONG Abstract. In a continuous-time economy, we investigate the asset allocation

More information

Discrete State Space Methods for Dynamic Economies

Discrete State Space Methods for Dynamic Economies Discrete State Space Methods for Dynamic Economies A Brief Introduction Craig Burnside Duke University September 2006 Craig Burnside (Duke University) Discrete State Space Methods September 2006 1 / 42

More information

Expectations and Variance

Expectations and Variance 4. Model parameters and their estimates 4.1 Expected Value and Conditional Expected Value 4. The Variance 4.3 Population vs Sample Quantities 4.4 Mean and Variance of a Linear Combination 4.5 The Covariance

More information

Jan Kallsen. Risk Management Lecture Notes

Jan Kallsen. Risk Management Lecture Notes Jan Kallsen Risk Management Lecture Notes CAU zu Kiel, WS 6/7, as of January 2, 207 Contents Introduction 5. Motivation and issues............................. 5.. Motivation..............................

More information