computability and complexity theory

Size: px
Start display at page:

Download "computability and complexity theory"

Transcription

1 computability and complexity theory Instructor: Prof. James R. Lee TA: Jeffrey Hon CSE P31 Spring 2016 Course web page: Sign up for the mailing list! Textbooks: Computational Complexity: A Modern Approach (Arora and Barak) Introduction to the Theory of Computation (Sipser) Evaluation and grading: 70% weekly homeworks, 30% class project Important note: Next Wednesday (April 6 th ), I will be in Germany.

2 course content Fundamentally, we ask the questions: What can a computer do? What can it do efficiently? What can t it do? Why are compilers so bad at catching bugs? Why can t they optimize my code better? Parallelize it? Why does proving theorems seem hard? Why can t they solve chess? Go? Why does AI seem hard? Is there a mathematical basis for the singularity? Is there secure cryptography? Is it safe against quantum computers?

3 aliens who play chess Suppose an alien came to earth and claimed it could play perfect chess. Before admitting defeat as the inferior species, is there any way we could test his/her/its claim? Yes. In complexity theory, this is the theorem that IP = PSPACE. We wouldn t need to spend billions of years playing against the alien over and over. Instead, we would engage in a short conversation about the sums of certain polynomials over a finite field.

4 proofs and computational problems The Riemann hypothesis (A conjecture about the zeros of the Riemann zeta function.) This is considered by some to be the most important unsolved problem in mathematics. ($1M Clay Math prize) 3D Bin Packing is NP-complete There is a finite set of (a billion, say) of rectangular boxes of different sizes such that if you knew how to pack these boxes into the trunk of your car, you would also know a proof of the Riemann hypothesis. (Indeed, proofs of the Riemann hypothesis with at most a million symbols are in 1-1 correspondence with ways to pack the boxes into your car.)

5 zero-knowledge proofs Suppose you manage to prove the Riemann Hypothesis. (Good work. This should get you at least a B+ in the course!) But you signed an NDA. Your company won t let you publish it. Can you still win the $1M prize? Yes! There is a way to convince someone that you know a proof without revealing anything other than the fact that you proved it.

6 probabilistically checkable proofs Proof correct? The verifier says I agree. Proof wrong? Then 99/100 times, the verifier will say Wait! I found a bug. PCP Theorem: There is a way to write down the proof so that its validity can be checked by someone who picks random words.

7 Hello world. First assignment for freshman CSE students: Write a Java program that prints Hello world. on the screen and then exits. Efficiency is not an issue. No partial credit. TA staff is annoyed: OK, let s write an autograder script. If should take a Java program P as input and - PASS if P prints Hello world. and halts - FAIL otherwise Need to handle code like this: How would such a script work?

8 Hello world. First assignment for freshman CSE students: Write a Java program that prints Hello world. on the screen and then exits. Efficiency is not an issue. No partial credit. This seems mean: This program passes if and only if the Riemann Hypothesis is false. Writing this autograder seems like a nightmare.

9 Hello world. First assignment for freshman CSE students: Write a Java program that prints Hello world. on the screen and then exits. Efficiency is not an issue. No partial credit. Despite the simplicity of the assignment, there is NO PROGRAM that can grade it correctly. (We ll prove it.)

10 What does it mean that two sets have the same size? cardinality

11 What does it mean that two sets have the same size? cardinality

12 cardinality Definition: Two sets A and B have the same cardinality if there is a one-to-one correspondence between the elements of A and those of B. More precisely, if there is a 1-1 and onto function f A B. a b c d e f A B The definition also makes sense for infinite sets!

13 cardinality Do the natural numbers and the even natural numbers have the same cardinality? Yes! What s the map f N 2N? f n = 2n

14 countable sets Definition: A set is countably infinite iff it has the same cardinality as N. A set is countable if it is finite or countably infinite. Equivalent: A set S is countably infinite iff there is an 1-1 and onto function g N S Equivalent: A set S is countably infinite iff we can order the elements S = {x 0, x 1, x 2, x 3, } Question: If g N S is just onto, do we still know that S is countably infinite?

15 the set Z of all integers

16 the set Q of rational numbers We can t do the same thing we did for the integers. Between any two rational numbers there are an infinite number of others.

17 the set of positive rational numbers 1/1 1/2 1/3 1/4 1/ 1/6 1/7 1/8... 2/1 2/2 2/3 2/4 2/ 2/6 2/7 2/8... 3/1 3/2 3/3 3/4 3/ 3/6 3/7 3/8... 4/1 4/2 4/3 4/4 4/ 4/6 4/7 4/8... /1 /2 /3 /4 / /6 /7... 6/1 6/2 6/3 6/4 6/ 6/6... 7/1 7/2 7/3 7/4 7/

18 the set of positive rational numbers The set of all positive rational numbers is countable. Q + = 1/1, 2/1, 1/2, 3/1, 2/2,1/3, 4/1, 2/3, 3/2, 1/4, /1, 4/2, 3/3, 2/4, 1/, List elements in order of numerator+denominator, breaking ties according to denominator. Only k numbers have total of sum of k + 1, so every positive rational number comes up some point. Technique is called dovetailing. Notice that repeats are OK because we can skip over them. Formal statement: A set S is countable iff there is an onto map g N S.

19 the set Q of rational numbers

20 Claim: Σ is countable for every finite alphabet Σ

21 the set of all Java programs is countable

22 are the real numbers countable? Theorem [Cantor]: The set of real numbers between 0 and 1 is not countable. Proof will be by contradiction. Uses a new method called diagonalization.

23 real numbers between 0 and 1: [0,1) Every number between 0 and 1 has an infinite decimal expansion: 1/2 = /3 = /7 = π-3 = / = = Representation is unique except for the cases that the decimal expansion ends in all 0 s or all 9 s.

24 proof that [0,1) is uncountable Suppose, for the sake of contradiction, that there is a list of them: r r r r r r r r

25 proof that [0,1) is uncountable Suppose, for the sake of contradiction, that there is a list of them: r r r r r r r r

26 proof that [0,1) is uncountable Suppose, for the sake of contradiction, that there is a list of them: Flipping 6 rule: r If 0 digit 0is, make 0 it r If 3 digit 3is not 3, make 3 it r r r r r r

27 proof that [0,1) is uncountable Suppose, for the sake of contradiction, that there is a list of them: Flipping 6 rule: r If 0 digit 0is, make 0 it r If 3 digit 3is not 3, make 3 it r r r r r r If diagonal element is 0. x 11 x 22 x 33 x 44 x then let s called the flipped number 0. x 11 x 22 x 33 x 44 x It cannot appear anywhere on the list!

28 proof that [0,1) is uncountable Suppose, for the sake of contradiction, that there is a list of them: Flipping 6 rule: r If 0 digit 0is, make 0 it r If 3 digit 3is not 3, make 3 it r r rfor every 0. n 1 1: r n 0. x 11 x 22 x 33 x 44 x r because the numbers differ on rthe 7 nth 0. digit! r If diagonal element is 0. x 11 x 22 x 33 x 44 x then let s called the flipped number 0. x 11 x 22 x 33 x 44 x It cannot appear anywhere on the list!

29 proof that [0,1) is uncountable Suppose, for the sake of contradiction, that there is a list of them: Flipping 6 rule: r If 0 digit 0is, make 0 it r If 3 digit 3is not 3, make 3 it r r rfor every 0. n 1 1: r n 0. x 11 x 22 x 33 x 44 x r because the numbers differ on rthe 7 nth 0. digit! r So the list is incomplete, which is a contradiction Thus the real numbers between 0 and 1 are uncountable.

30 the set of all functions f N {0,, 9} is uncountable

31 uncomputable functions We have seen that: The set of all (Java) programs is countable The set of all functions f N {0,, 9} is not countable So: There must be some function f N {0,, 9} that is not computable by any Java program! Interesting maybe. Can we come up with an explicit function that is uncomputable? And why are we talking about Java?

intro to the theory of computation

intro to the theory of computation intro to the theory of computation Instructor: Prof. James R. Lee TA: Yiqing Ai CSE 431 Winter 2018 Course web page: http://www.cs.washington.edu/cse431 Sign up for the mailing list! Textbook: Primary:

More information

CSE 311: Foundations of Computing. Lecture 26: More on Limits of FSMs, Cardinality

CSE 311: Foundations of Computing. Lecture 26: More on Limits of FSMs, Cardinality CSE 311: Foundations of Computing Lecture 26: More on Limits of FSMs, Cardinality Last time: Languages and Representations All Context-Free??? Prove there is Regular a context-free DFA language 0* NFA

More information

CSE 311: Foundations of Computing. Lecture 26: Cardinality, Uncomputability

CSE 311: Foundations of Computing. Lecture 26: Cardinality, Uncomputability CSE 311: Foundations of Computing Lecture 26: Cardinality, Uncomputability Last time: Languages and Representations All 0*? Context-Free e.g. palindromes, balanced parens, {0 n 1 n :n 0} Regular Finite

More information

CSE 311: Foundations of Computing. Lecture 26: Cardinality

CSE 311: Foundations of Computing. Lecture 26: Cardinality CSE 311: Foundations of Computing Lecture 26: Cardinality Cardinality and Computability Computers as we know them grew out of a desire to avoid bugs in mathematical reasoning A brief history of reasoning

More information

CSE 311: Foundations of Computing. Lecture 27: Undecidability

CSE 311: Foundations of Computing. Lecture 27: Undecidability CSE 311: Foundations of Computing Lecture 27: Undecidability Last time: Countable sets A set is countable iff we can order the elements of as = {,,, Countable sets: N-the natural numbers Z - the integers

More information

Math 3361-Modern Algebra Lecture 08 9/26/ Cardinality

Math 3361-Modern Algebra Lecture 08 9/26/ Cardinality Math 336-Modern Algebra Lecture 08 9/26/4. Cardinality I started talking about cardinality last time, and you did some stuff with it in the Homework, so let s continue. I said that two sets have the same

More information

One-to-one functions and onto functions

One-to-one functions and onto functions MA 3362 Lecture 7 - One-to-one and Onto Wednesday, October 22, 2008. Objectives: Formalize definitions of one-to-one and onto One-to-one functions and onto functions At the level of set theory, there are

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 27

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 27 CS 70 Discrete Mathematics for CS Spring 007 Luca Trevisan Lecture 7 Infinity and Countability Consider a function f that maps elements of a set A (called the domain of f ) to elements of set B (called

More information

ECS 120 Lesson 18 Decidable Problems, the Halting Problem

ECS 120 Lesson 18 Decidable Problems, the Halting Problem ECS 120 Lesson 18 Decidable Problems, the Halting Problem Oliver Kreylos Friday, May 11th, 2001 In the last lecture, we had a look at a problem that we claimed was not solvable by an algorithm the problem

More information

Computability and Complexity

Computability and Complexity What is this course about? Computability and Complexity Winter 2009 Prof. Anna Karlin TA: Thach Nguyen Amazing, foundational, blow-your-mind kind of ideas It won t be obvious how this will help you with

More information

Assignment #2 COMP 3200 Spring 2012 Prof. Stucki

Assignment #2 COMP 3200 Spring 2012 Prof. Stucki Assignment #2 COMP 3200 Spring 2012 Prof. Stucki 1) Construct deterministic finite automata accepting each of the following languages. In (a)-(c) the alphabet is = {0,1}. In (d)-(e) the alphabet is ASCII

More information

Math.3336: Discrete Mathematics. Cardinality of Sets

Math.3336: Discrete Mathematics. Cardinality of Sets Math.3336: Discrete Mathematics Cardinality of Sets Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall 2018

More information

Turing Machines, diagonalization, the halting problem, reducibility

Turing Machines, diagonalization, the halting problem, reducibility Notes on Computer Theory Last updated: September, 015 Turing Machines, diagonalization, the halting problem, reducibility 1 Turing Machines A Turing machine is a state machine, similar to the ones we have

More information

Undecidability. Andreas Klappenecker. [based on slides by Prof. Welch]

Undecidability. Andreas Klappenecker. [based on slides by Prof. Welch] Undecidability Andreas Klappenecker [based on slides by Prof. Welch] 1 Sources Theory of Computing, A Gentle Introduction, by E. Kinber and C. Smith, Prentice-Hall, 2001 Automata Theory, Languages and

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 20. To Infinity And Beyond: Countability and Computability

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 20. To Infinity And Beyond: Countability and Computability EECS 70 Discrete Mathematics and Probability Theory Spring 014 Anant Sahai Note 0 To Infinity And Beyond: Countability and Computability This note ties together two topics that might seem like they have

More information

Turing Machine Recap

Turing Machine Recap Turing Machine Recap DFA with (infinite) tape. One move: read, write, move, change state. High-level Points Church-Turing thesis: TMs are the most general computing devices. So far no counter example Every

More information

1 Reals are Uncountable

1 Reals are Uncountable CS 30: Discrete Math in CS (Winter 2019): Lecture 6 Date: 11th January, 2019 (Friday) Topic: Uncountability and Undecidability Disclaimer: These notes have not gone through scrutiny and in all probability

More information

highlights proof by contradiction what about the real numbers?

highlights proof by contradiction what about the real numbers? CSE 311: Foundations of Computing Fall 2013 Lecture 27: Turing machines and decidability highlights Cardinality A set S is countableiffwe can writeit as S={s 1, s 2, s 3,...} indexed by N Set of rationals

More information

Sets are one of the basic building blocks for the types of objects considered in discrete mathematics.

Sets are one of the basic building blocks for the types of objects considered in discrete mathematics. Section 2.1 Introduction Sets are one of the basic building blocks for the types of objects considered in discrete mathematics. Important for counting. Programming languages have set operations. Set theory

More information

CS 154 Introduction to Automata and Complexity Theory

CS 154 Introduction to Automata and Complexity Theory CS 154 Introduction to Automata and Complexity Theory cs154.stanford.edu 1 INSTRUCTORS & TAs Ryan Williams Cody Murray Lera Nikolaenko Sunny Rajan 2 Textbook 3 Homework / Problem Sets Homework will be

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Define and compute the cardinality of a set. Use functions to compare the sizes of sets. Classify sets

More information

Turing Machines Part III

Turing Machines Part III Turing Machines Part III Announcements Problem Set 6 due now. Problem Set 7 out, due Monday, March 4. Play around with Turing machines, their powers, and their limits. Some problems require Wednesday's

More information

MA 301 Test 4, Spring 2007

MA 301 Test 4, Spring 2007 MA 0 Test 4, Spring 007 hours, calculator allowed, no notes. Provide paper for the students to do work on. Students should not write answers on test sheet. TA Grades, 5, 6, 7 All answers must be justified.

More information

Section Summary. Sequences. Recurrence Relations. Summations. Examples: Geometric Progression, Arithmetic Progression. Example: Fibonacci Sequence

Section Summary. Sequences. Recurrence Relations. Summations. Examples: Geometric Progression, Arithmetic Progression. Example: Fibonacci Sequence Section 2.4 1 Section Summary Sequences. Examples: Geometric Progression, Arithmetic Progression Recurrence Relations Example: Fibonacci Sequence Summations 2 Introduction Sequences are ordered lists of

More information

15-251: Great Theoretical Ideas in Computer Science Fall 2016 Lecture 6 September 15, Turing & the Uncomputable

15-251: Great Theoretical Ideas in Computer Science Fall 2016 Lecture 6 September 15, Turing & the Uncomputable 15-251: Great Theoretical Ideas in Computer Science Fall 2016 Lecture 6 September 15, 2016 Turing & the Uncomputable Comparing the cardinality of sets A B if there is an injection (one-to-one map) from

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science Lecture 28: A Computational Lens on Proofs December 6th, 2016 Evolution of proof First there was GORM GORM = Good Old Regular Mathematics Pythagoras s

More information

Discrete Mathematics and Probability Theory Spring 2015 Vazirani Midterm #2 Solution

Discrete Mathematics and Probability Theory Spring 2015 Vazirani Midterm #2 Solution CS 70 Discrete Mathematics and Probability Theory Spring 015 Vazirani Midterm # Solution PRINT your name:, (last) SIGN your name: (first) PRINT your student ID: CIRCLE your exam room: 3106 Etcheverry 3108

More information

MATH 3300 Test 1. Name: Student Id:

MATH 3300 Test 1. Name: Student Id: Name: Student Id: There are nine problems (check that you have 9 pages). Solutions are expected to be short. In the case of proofs, one or two short paragraphs should be the average length. Write your

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

CSE 4111/5111/6111 Computability Jeff Edmonds Assignment 3: Diagonalization & Halting Problem Due: One week after shown in slides

CSE 4111/5111/6111 Computability Jeff Edmonds Assignment 3: Diagonalization & Halting Problem Due: One week after shown in slides CSE 4111/5111/6111 Computability Jeff Edmonds Assignment 3: Diagonalization & Halting Problem Due: One week after shown in slides First Person: Second Person: Family Name: Family Name: Given Name: Given

More information

CSE 311 Lecture 28: Undecidability of the Halting Problem. Emina Torlak and Kevin Zatloukal

CSE 311 Lecture 28: Undecidability of the Halting Problem. Emina Torlak and Kevin Zatloukal CSE 311 Lecture 28: Undecidability of the Halting Problem Emina Torlak and Kevin Zatloukal 1 Topics Final exam Logistics, format, and topics. Countability and uncomputability A quick recap of Lecture 27.

More information

Chapter 20. Countability The rationals and the reals. This chapter covers infinite sets and countability.

Chapter 20. Countability The rationals and the reals. This chapter covers infinite sets and countability. Chapter 20 Countability This chapter covers infinite sets and countability. 20.1 The rationals and the reals You re familiar with three basic sets of numbers: the integers, the rationals, and the reals.

More information

CS6901: review of Theory of Computation and Algorithms

CS6901: review of Theory of Computation and Algorithms CS6901: review of Theory of Computation and Algorithms Any mechanically (automatically) discretely computation of problem solving contains at least three components: - problem description - computational

More information

The Two Faces of Infinity Dr. Bob Gardner Great Ideas in Science (BIOL 3018)

The Two Faces of Infinity Dr. Bob Gardner Great Ideas in Science (BIOL 3018) The Two Faces of Infinity Dr. Bob Gardner Great Ideas in Science (BIOL 3018) From the webpage of Timithy Kohl, Boston University INTRODUCTION Note. We will consider infinity from two different perspectives:

More information

CSCI3390-Lecture 6: An Undecidable Problem

CSCI3390-Lecture 6: An Undecidable Problem CSCI3390-Lecture 6: An Undecidable Problem September 21, 2018 1 Summary The language L T M recognized by the universal Turing machine is not decidable. Thus there is no algorithm that determines, yes or

More information

CITS2211 Discrete Structures (2017) Cardinality and Countability

CITS2211 Discrete Structures (2017) Cardinality and Countability CITS2211 Discrete Structures (2017) Cardinality and Countability Highlights What is cardinality? Is it the same as size? Types of cardinality and infinite sets Reading Sections 45 and 81 84 of Mathematics

More information

CS3719 Theory of Computation and Algorithms

CS3719 Theory of Computation and Algorithms CS3719 Theory of Computation and Algorithms Any mechanically (automatically) discretely computation of problem solving contains at least three components: - problem description - computational tool - analysis

More information

Warm-Up Problem. Please fill out your Teaching Evaluation Survey! Please comment on the warm-up problems if you haven t filled in your survey yet.

Warm-Up Problem. Please fill out your Teaching Evaluation Survey! Please comment on the warm-up problems if you haven t filled in your survey yet. Warm-Up Problem Please fill out your Teaching Evaluation Survey! Please comment on the warm-up problems if you haven t filled in your survey yet Warm up: Given a program that accepts input, is there an

More information

Show Your Work! Point values are in square brackets. There are 35 points possible. Tables of tautologies and contradictions are on the last page.

Show Your Work! Point values are in square brackets. There are 35 points possible. Tables of tautologies and contradictions are on the last page. Formal Methods Midterm 1, Spring, 2007 Name Show Your Work! Point values are in square brackets. There are 35 points possible. Tables of tautologies and contradictions are on the last page. 1. Use truth

More information

Algebra Exam. Solutions and Grading Guide

Algebra Exam. Solutions and Grading Guide Algebra Exam Solutions and Grading Guide You should use this grading guide to carefully grade your own exam, trying to be as objective as possible about what score the TAs would give your responses. Full

More information

Welcome to CS103! Three Handouts Today: Course Overview Introduction to Set Theory The Limits of Computation

Welcome to CS103! Three Handouts Today: Course Overview Introduction to Set Theory The Limits of Computation Welcome to CS103! Three Handouts Today: Course Overview Introduction to Set Theory The Limits of Computation Course Staff Keith Schwarz (htiek@cs.stanford.edu) Rakesh Achanta (rakesha@stanford.edu) Kyle

More information

6.045J/18.400J: Automata, Computability and Complexity Final Exam. There are two sheets of scratch paper at the end of this exam.

6.045J/18.400J: Automata, Computability and Complexity Final Exam. There are two sheets of scratch paper at the end of this exam. 6.045J/18.400J: Automata, Computability and Complexity May 20, 2005 6.045 Final Exam Prof. Nancy Lynch Name: Please write your name on each page. This exam is open book, open notes. There are two sheets

More information

NP and NP Completeness

NP and NP Completeness CS 374: Algorithms & Models of Computation, Spring 2017 NP and NP Completeness Lecture 23 April 20, 2017 Chandra Chekuri (UIUC) CS374 1 Spring 2017 1 / 44 Part I NP Chandra Chekuri (UIUC) CS374 2 Spring

More information

Some. AWESOME Great Theoretical Ideas in Computer Science about Generating Functions Probability

Some. AWESOME Great Theoretical Ideas in Computer Science about Generating Functions Probability 15-251 Some AWESOME Great Theoretical Ideas in Computer Science about Generating Functions Probability 15-251 Some AWESOME Great Theoretical Ideas in Computer Science about Generating Functions Infinity

More information

P versus NP. Math 40210, Spring April 8, Math (Spring 2012) P versus NP April 8, / 9

P versus NP. Math 40210, Spring April 8, Math (Spring 2012) P versus NP April 8, / 9 P versus NP Math 40210, Spring 2014 April 8, 2014 Math 40210 (Spring 2012) P versus NP April 8, 2014 1 / 9 Properties of graphs A property of a graph is anything that can be described without referring

More information

INFINITY: CARDINAL NUMBERS

INFINITY: CARDINAL NUMBERS INFINITY: CARDINAL NUMBERS BJORN POONEN 1 Some terminology of set theory N := {0, 1, 2, 3, } Z := {, 2, 1, 0, 1, 2, } Q := the set of rational numbers R := the set of real numbers C := the set of complex

More information

Turing & the Uncomputable; Intro to Time Complexity

Turing & the Uncomputable; Intro to Time Complexity 5-25: Great Ideas in Theoretical Computer Science Spring 209 Lecture 6 February 5, 209 Turing & the Uncomputable; Intro to Time Complexity Uncountable to uncomputable The real number /7 is computable.

More information

SAT, NP, NP-Completeness

SAT, NP, NP-Completeness CS 473: Algorithms, Spring 2018 SAT, NP, NP-Completeness Lecture 22 April 13, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 57 Part I Reductions Continued Ruta (UIUC)

More information

Definition: Let S and T be sets. A binary relation on SxT is any subset of SxT. A binary relation on S is any subset of SxS.

Definition: Let S and T be sets. A binary relation on SxT is any subset of SxT. A binary relation on S is any subset of SxS. 4 Functions Before studying functions we will first quickly define a more general idea, namely the notion of a relation. A function turns out to be a special type of relation. Definition: Let S and T be

More information

Undecidability. Almost all Languages are undecidable. Question: Is it just weird languages that no one would care about which are undecidable?

Undecidability. Almost all Languages are undecidable. Question: Is it just weird languages that no one would care about which are undecidable? 15-251: Great Theoretical Ideas in Computer Science Lecture 7 Undecidability Almost all Languages are undecidable Set of all languages: Set of all dec. lang.: Most languages do not have a TM deciding them

More information

Math 300: Final Exam Practice Solutions

Math 300: Final Exam Practice Solutions Math 300: Final Exam Practice Solutions 1 Let A be the set of all real numbers which are zeros of polynomials with integer coefficients: A := {α R there exists p(x) = a n x n + + a 1 x + a 0 with all a

More information

Cantor and Infinite Sets

Cantor and Infinite Sets Cantor and Infinite Sets Galileo and the Infinite There are many whole numbers that are not perfect squares: 2, 3, 5, 6, 7, 8, 10, 11, and so it would seem that all numbers, including both squares and

More information

Math Lecture 3 Notes

Math Lecture 3 Notes Math 1010 - Lecture 3 Notes Dylan Zwick Fall 2009 1 Operations with Real Numbers In our last lecture we covered some basic operations with real numbers like addition, subtraction and multiplication. This

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2017 http://cseweb.ucsd.edu/classes/sp17/cse105-ab/ Today's learning goals Sipser Ch 5.1 Define and explain core examples of decision problems: A DFA, E DFA, EQ DFA,

More information

Discrete Structures for Computer Science

Discrete Structures for Computer Science Discrete Structures for Computer Science William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #10: Sequences and Summations Based on materials developed by Dr. Adam Lee Today s Topics Sequences

More information

Lecture 19: Interactive Proofs and the PCP Theorem

Lecture 19: Interactive Proofs and the PCP Theorem Lecture 19: Interactive Proofs and the PCP Theorem Valentine Kabanets November 29, 2016 1 Interactive Proofs In this model, we have an all-powerful Prover (with unlimited computational prover) and a polytime

More information

Countable and uncountable sets. Matrices.

Countable and uncountable sets. Matrices. Lecture 11 Countable and uncountable sets. Matrices. Instructor: Kangil Kim (CSE) E-mail: kikim01@konkuk.ac.kr Tel. : 02-450-3493 Room : New Milenium Bldg. 1103 Lab : New Engineering Bldg. 1202 Next topic:

More information

Countable and uncountable sets. Matrices.

Countable and uncountable sets. Matrices. CS 441 Discrete Mathematics for CS Lecture 11 Countable and uncountable sets. Matrices. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Arithmetic series Definition: The sum of the terms of the

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 2 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 2 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 2 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 1.4.2, 1.4.4, 1.4.9, 1.4.11,

More information

P versus NP. Math 40210, Spring September 16, Math (Spring 2012) P versus NP September 16, / 9

P versus NP. Math 40210, Spring September 16, Math (Spring 2012) P versus NP September 16, / 9 P versus NP Math 40210, Spring 2012 September 16, 2012 Math 40210 (Spring 2012) P versus NP September 16, 2012 1 / 9 Properties of graphs A property of a graph is anything that can be described without

More information

Sequences are ordered lists of elements

Sequences are ordered lists of elements Sequences are ordered lists of elements Definition: A sequence is a function from the set of integers, either set {0,1,2,3, } or set {1,2,3,4,..}, to a set S. We use the notation a n to denote the image

More information

A non-turing-recognizable language

A non-turing-recognizable language CS 360: Introduction to the Theory of Computing John Watrous, University of Waterloo A non-turing-recognizable language 1 OVERVIEW Thus far in the course we have seen many examples of decidable languages

More information

Section 7.5: Cardinality

Section 7.5: Cardinality Section 7: Cardinality In this section, we shall consider extend some of the ideas we have developed to infinite sets One interesting consequence of this discussion is that we shall see there are as many

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

P vs NP & Computational Complexity

P vs NP & Computational Complexity P vs NP & Computational Complexity Miles Turpin MATH 89S Professor Hubert Bray P vs NP is one of the seven Clay Millennium Problems. The Clay Millenniums have been identified by the Clay Mathematics Institute

More information

Hilbert s problems, Gödel, and the limits of computation

Hilbert s problems, Gödel, and the limits of computation Hilbert s problems, Gödel, and the limits of computation Logan Axon Gonzaga University November 14, 2013 Hilbert at the ICM At the 1900 International Congress of Mathematicians in Paris, David Hilbert

More information

Basics of Proofs. 1 The Basics. 2 Proof Strategies. 2.1 Understand What s Going On

Basics of Proofs. 1 The Basics. 2 Proof Strategies. 2.1 Understand What s Going On Basics of Proofs The Putnam is a proof based exam and will expect you to write proofs in your solutions Similarly, Math 96 will also require you to write proofs in your homework solutions If you ve seen

More information

Welcome to CS103! Two Handouts Today: Course Overview Introduction to Set Theory The Limits of Computation

Welcome to CS103! Two Handouts Today: Course Overview Introduction to Set Theory The Limits of Computation Welcome to CS103! Two Handouts Today: Course Overview Introduction to Set Theory The Limits of Computation Course Staff Keith Schwarz (htiek@cs.stanford.edu) Kyle Brogle (broglek@stanford.edu) Maurizio

More information

Undecidability COMS Ashley Montanaro 4 April Department of Computer Science, University of Bristol Bristol, UK

Undecidability COMS Ashley Montanaro 4 April Department of Computer Science, University of Bristol Bristol, UK COMS11700 Undecidability Department of Computer Science, University of Bristol Bristol, UK 4 April 2014 COMS11700: Undecidability Slide 1/29 Decidability We are particularly interested in Turing machines

More information

DRAFT. Diagonalization. Chapter 4

DRAFT. Diagonalization. Chapter 4 Chapter 4 Diagonalization..the relativized P =?NP question has a positive answer for some oracles and a negative answer for other oracles. We feel that this is further evidence of the difficulty of the

More information

CHAPTER 8: EXPLORING R

CHAPTER 8: EXPLORING R CHAPTER 8: EXPLORING R LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN In the previous chapter we discussed the need for a complete ordered field. The field Q is not complete, so we constructed

More information

Finite and Infinite Sets

Finite and Infinite Sets Chapter 9 Finite and Infinite Sets 9. Finite Sets Preview Activity (Equivalent Sets, Part ). Let A and B be sets and let f be a function from A to B..f W A! B/. Carefully complete each of the following

More information

Mathematics 220 Workshop Cardinality. Some harder problems on cardinality.

Mathematics 220 Workshop Cardinality. Some harder problems on cardinality. Some harder problems on cardinality. These are two series of problems with specific goals: the first goal is to prove that the cardinality of the set of irrational numbers is continuum, and the second

More information

P vs. NP. Data Structures and Algorithms CSE AU 1

P vs. NP. Data Structures and Algorithms CSE AU 1 P vs. NP Data Structures and Algorithms CSE 373-18AU 1 Goals for today Define P, NP, and NP-complete Explain the P vs. NP problem -why it s the biggest open problem in CS. -And what to do when a problem

More information

CS6902 Theory of Computation and Algorithms

CS6902 Theory of Computation and Algorithms CS6902 Theory of Computation and Algorithms Any mechanically (automatically) discretely computation of problem solving contains at least three components: - problem description - computational tool - procedure/analysis

More information

Quadratic Equations Part I

Quadratic Equations Part I Quadratic Equations Part I Before proceeding with this section we should note that the topic of solving quadratic equations will be covered in two sections. This is done for the benefit of those viewing

More information

Announcements. CS243: Discrete Structures. Sequences, Summations, and Cardinality of Infinite Sets. More on Midterm. Midterm.

Announcements. CS243: Discrete Structures. Sequences, Summations, and Cardinality of Infinite Sets. More on Midterm. Midterm. Announcements CS43: Discrete Structures Sequences, Summations, and Cardinality of Infinite Sets Işıl Dillig Homework is graded, scores on Blackboard Graded HW and sample solutions given at end of this

More information

MATH CSE20 Homework 5 Due Monday November 4

MATH CSE20 Homework 5 Due Monday November 4 MATH CSE20 Homework 5 Due Monday November 4 Assigned reading: NT Section 1 (1) Prove the statement if true, otherwise find a counterexample. (a) For all natural numbers x and y, x + y is odd if one of

More information

Algorithms: Lecture 2

Algorithms: Lecture 2 1 Algorithms: Lecture 2 Basic Structures: Sets, Functions, Sequences, and Sums Jinwoo Kim jwkim@jjay.cuny.edu 2.1 Sets 2 1 2.1 Sets 3 2.1 Sets 4 2 2.1 Sets 5 2.1 Sets 6 3 2.1 Sets 7 2.2 Set Operations

More information

Turing s Legacy Continues

Turing s Legacy Continues 15-251: Great Theoretical Ideas in Computer Science Lecture 6 Turing s Legacy Continues Solvable with Python = Solvable with C = Solvable with Java = Solvable with SML = Decidable Languages (decidable

More information

MAT115A-21 COMPLETE LECTURE NOTES

MAT115A-21 COMPLETE LECTURE NOTES MAT115A-21 COMPLETE LECTURE NOTES NATHANIEL GALLUP 1. Introduction Number theory begins as the study of the natural numbers the integers N = {1, 2, 3,...}, Z = { 3, 2, 1, 0, 1, 2, 3,...}, and sometimes

More information

MATH 341, Section 001 FALL 2014 Introduction to the Language and Practice of Mathematics

MATH 341, Section 001 FALL 2014 Introduction to the Language and Practice of Mathematics MATH 341, Section 001 FALL 2014 Introduction to the Language and Practice of Mathematics Class Meetings: MW 9:30-10:45 am in EMS E424A, September 3 to December 10 [Thanksgiving break November 26 30; final

More information

Computational Complexity: A Modern Approach. Draft of a book: Dated January 2007 Comments welcome!

Computational Complexity: A Modern Approach. Draft of a book: Dated January 2007 Comments welcome! i Computational Complexity: A Modern Approach Draft of a book: Dated January 2007 Comments welcome! Sanjeev Arora and Boaz Barak Princeton University complexitybook@gmail.com Not to be reproduced or distributed

More information

Lecture 23: More PSPACE-Complete, Randomized Complexity

Lecture 23: More PSPACE-Complete, Randomized Complexity 6.045 Lecture 23: More PSPACE-Complete, Randomized Complexity 1 Final Exam Information Who: You On What: Everything through PSPACE (today) With What: One sheet (double-sided) of notes are allowed When:

More information

10.1 Radical Expressions and Functions Math 51 Professor Busken

10.1 Radical Expressions and Functions Math 51 Professor Busken 0. Radical Expressions and Functions Math 5 Professor Busken Objectives Find square roots without a calculator Simplify expressions of the form n a n Evaluate radical functions and find the domain of radical

More information

ON COMPUTAMBLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHENIDUGSPROBLEM. Turing 1936

ON COMPUTAMBLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHENIDUGSPROBLEM. Turing 1936 ON COMPUTAMBLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHENIDUGSPROBLEM Turing 1936 Where are We? Ignoramus et ignorabimus Wir mussen wissen Wir werden wissen We do not know We shall not know We must know

More information

CS154, Lecture 18: 1

CS154, Lecture 18: 1 CS154, Lecture 18: 1 CS 154 Final Exam Wednesday December 12, 12:15-3:15 pm STLC 111 You re allowed one double-sided sheet of notes Exam is comprehensive (but will emphasize post-midterm topics) Look for

More information

Great Theoretical Ideas

Great Theoretical Ideas 15-251 Great Theoretical Ideas in Computer Science Gödel s Legacy: Proofs and Their Limitations Lecture 25 (November 16, 2010) The Halting Problem A Quick Recap of the Previous Lecture Is there a program

More information

6.080 / Great Ideas in Theoretical Computer Science Spring 2008

6.080 / Great Ideas in Theoretical Computer Science Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

COM S 330 Homework 08 Solutions. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem.

COM S 330 Homework 08 Solutions. Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem. COM S 0 Homework 08 Solutions Type your answers to the following questions and submit a PDF file to Blackboard. One page per problem. Problem 1. [10pts] Let M = (S, T, s 0 ) be the state machine where

More information

Theoretical Cryptography, Lectures 18-20

Theoretical Cryptography, Lectures 18-20 Theoretical Cryptography, Lectures 18-20 Instructor: Manuel Blum Scribes: Ryan Williams and Yinmeng Zhang March 29, 2006 1 Content of the Lectures These lectures will cover how someone can prove in zero-knowledge

More information

CS 125 Section #10 (Un)decidability and Probability November 1, 2016

CS 125 Section #10 (Un)decidability and Probability November 1, 2016 CS 125 Section #10 (Un)decidability and Probability November 1, 2016 1 Countability Recall that a set S is countable (either finite or countably infinite) if and only if there exists a surjective mapping

More information

P-adic numbers. Rich Schwartz. October 24, 2014

P-adic numbers. Rich Schwartz. October 24, 2014 P-adic numbers Rich Schwartz October 24, 2014 1 The Arithmetic of Remainders In class we have talked a fair amount about doing arithmetic with remainders and now I m going to explain what it means in a

More information

COMP/MATH 300 Topics for Spring 2017 June 5, Review and Regular Languages

COMP/MATH 300 Topics for Spring 2017 June 5, Review and Regular Languages COMP/MATH 300 Topics for Spring 2017 June 5, 2017 Review and Regular Languages Exam I I. Introductory and review information from Chapter 0 II. Problems and Languages A. Computable problems can be expressed

More information

CSE 20 Discrete Math. Winter, January 24 (Day 5) Number Theory. Instructor: Neil Rhodes. Proving Quantified Statements

CSE 20 Discrete Math. Winter, January 24 (Day 5) Number Theory. Instructor: Neil Rhodes. Proving Quantified Statements CSE 20 Discrete Math Proving Quantified Statements Prove universal statement: x D, P(x)Q(x) Exhaustive enumeration Generalizing from the generic particular Winter, 2006 Suppose x is in D and P(x) Therefore

More information

Mathematics, Proofs and Computation

Mathematics, Proofs and Computation Mathematics, Proofs and Computation Madhu Sudan Harvard December 16, 2016 TIMC: Math, Proofs, Computing 1 of 25 Logic, Mathematics, Proofs Reasoning: Start with body of knowledge. Add to body of knowledge

More information

Basic set-theoretic techniques in logic Part III, Transfinite recursion and induction

Basic set-theoretic techniques in logic Part III, Transfinite recursion and induction Basic set-theoretic techniques in logic Part III, Transfinite recursion and induction Benedikt Löwe Universiteit van Amsterdam Grzegorz Plebanek Uniwersytet Wroc lawski ESSLLI 2011, Ljubljana, Slovenia

More information

Announcements. Problem Set 6 due next Monday, February 25, at 12:50PM. Midterm graded, will be returned at end of lecture.

Announcements. Problem Set 6 due next Monday, February 25, at 12:50PM. Midterm graded, will be returned at end of lecture. Turing Machines Hello Hello Condensed Slide Slide Readers! Readers! This This lecture lecture is is almost almost entirely entirely animations that that show show how how each each Turing Turing machine

More information

Acknowledgments 2. Part 0: Overview 17

Acknowledgments 2. Part 0: Overview 17 Contents Acknowledgments 2 Preface for instructors 11 Which theory course are we talking about?.... 12 The features that might make this book appealing. 13 What s in and what s out............... 14 Possible

More information

Decidability and Undecidability

Decidability and Undecidability Decidability and Undecidability Major Ideas from Last Time Every TM can be converted into a string representation of itself. The encoding of M is denoted M. The universal Turing machine U TM accepts an

More information