Strong ETH Breaks With Merlin and Arthur. Or: Short Non-Interactive Proofs of Batch Evaluation

Size: px
Start display at page:

Download "Strong ETH Breaks With Merlin and Arthur. Or: Short Non-Interactive Proofs of Batch Evaluation"

Transcription

1 Strong ETH Breaks With Merlin and Arthur Or: Short Non-Interactive Proofs of Batch Evaluation Ryan Williams Stanford

2 Two Stories Story #1: The ircuit and the Adversarial loud. Given: a 1,, a K F n Want: a 1,, a K F Let me do it! Would naively take ~ s K time / n variables = Arithmetic ircuit over +, in field F omputes some polynomial x 1,, x n F x 1,, x n of degree d

3 Two Stories Story #1: The ircuit and the Adversarial loud. Given: a 1,, a K F n Want: a 1,, a K F a 1 = 0,, a K = 0 You owe me $200. / n variables = Arithmetic ircuit over +, in field F omputes some polynomial x 1,, x n F x 1,, x n of degree d

4 Two Stories Story #1: The ircuit and the Adversarial loud. Given: a 1,, a K F n Want: a 1,, a K F a 1 = 0,, a K = 0 You owe me $200. / n variables How can very quickly check the work of the loud? (without just doing the work himself ) IP = PSPAE [LFKN 92, Shamir 92] - intractable provers Delegating omputation [GKR 08,,RRR 16] O(1)-round interactive proofs for low-depth ckts with fast verification

5 Two Stories Story #1: The ircuit and the Adversarial loud. Given: a 1,, a K F n Want: a 1,, a K F Note the input itself is K n + s size NON-INTERATIVE! Deg. d / n variables Thm: Verifier alg. where for all x 1,, x n and a 1,, a K F n, There is a proof of length O(K d) the loud can send, along with values a 1,, a K F, such that dk F The Verifier can toss poly log coins and check the proof in about O(K n + d + s) time, with probability of error ε. ε

6 Two Stories Story #2: The Many Exponential Time Hypotheses. Once upon a time 3-SAT = { satisfiability of formulas in NF, all clauses have at most 3 literals} Exponential Time Hypothesis (ETH) [IPZ 01] : 3-SAT requires at least 2 αn (randomized) time, for some α > 0 (n = # of variables in the formula) Best known 3-SAT algorithm: about n time Vast strengthening of P NP

7 Many Exponential-Time Lower Bounds, assuming ETH! Assuming ETH, the problems Independent Set, lique, Vertex over, Dominating Set, Graph oloring, Max ut, Set Splitting, Hitting Set, Min Bisection, Feedback Vertex Set, Hamiltonian Path, Max Leaf Spanning Tree, Subset Sum, Knapsack, 3-Dimensional Matching, luster Editing, Treewidth and many others do not have 2 o(n) time algorithms. (Note: Not easy! These do not follow from typical NP-completeness reductions)

8 ould We Predict the Exact Exponents of Running Times? Find evidence that 3-SAT is not in n time? (Note for n 10 8, n is pretty small!) Assuming ETH, we can distinguish between runtimes like 2 n and 2 n/log n, but not between 1.2 n and 1.3 n Need a stronger ETH... Best known k-sat algorithms: 2 n n/o(k) time Achieved by four different algorithmic paradigms!

9 Strong Exponential Time Hypothesis (SETH) [IP 01,IP 09] SETH: For every ε > 0 there exists a k 3 such that Satisfiability of k-nfs requires (2-ε) n time. Theorem: SETH ETH An even more productive hypothesis! Tight lower bounds on many natural polynomial-time tasks, edit distance [BI 15], LS [ABV 15], dynamic graph algorithms [AV 14], many refs very recently! Refuting SETH new circuit lower bounds [JMV] (Valiant series-parallel circuits)

10 Nondeterministic Strong ETH (NSETH) [GIMPS 16] NSETH: For every ε > 0 there exists a k 3 such that refuting unsatisfiable k-nfs requires (2-ε) n nondeterministic time. We cannot (yet?) refute this. But we can lay some other conjectures to rest MA-SETH AM-SETH We hardly knew ye

11 Non-Interactive Proofs of UNSAT That Beat Exhaustive Search Thm: There is a proof system for UNSAT such that every UNSAT Boolean formula of poly(n) size has a proof of length ~ 2 n/2 verifiable with poly(n) bits of randomness in ~ 2 n/2 time. (an even count SAT assignments) If this proof system can be de-randomized then NSETH is false! The derandomization problem reduces to an interesting univariate polynomial identity test

12 Thm: For all x 1,, x n and all a 1,, a K F n, there is a Verifier alg: There is a proof of length O(K d) the loud can send, along with values a 1,, a K F, such that the Verifier can toss poly log dk F coins and check the proof in ε about O(K n + d + s) time, with probability of error ε. Given: a 1,, a K F n Want: a 1,, a K F Naively takes ~ s K time get ~ s + K Degree d n variables / Idea: Define a univariate polynomial that simulates evaluation of on the a i Degree d n variables

13 Thm: For all x 1,, x n and all a 1,, a K F n, there is a Verifier alg: There is a proof of length O(K d) the loud can send, along with values a 1,, a K F, such that the Verifier can toss poly log dk F coins and check the proof in ε about O(K n + d + s) time, with probability of error ε. Given: a 1,, a K F n Want: a 1,, a K F Naively takes ~ s K time get ~ s + K Degree d n variables / Idea: Define a univariate polynomial that simulates evaluation of on the a i p 1 (x) p 2 (x) Degree d The loud sends this polynomial Q(x), of degree K d. Verifier: 1. Evals Q β 1,, Q β K to get a 1,, a K 2. Picks random r F, F large extension of F 3. hecks Q r = p 1 (r),, p n (r). p n 1 p (x) degree K polys. Let β 1,, β K F be distinct. for all i = 1,, n, & j = 1,, K, p i β j = α j i

14 Given: a 1,, a K F n Want: a 1,, a K F Would naively take s K time to compute Idea: Define a univariate polynomial that simulates evaluation of on the a i Q x : = p 1 (x) p 2 (x) Degree d The loud sends Q (x), of degree K d Verifier: 1. Evaluates Q β 1,, Q β K to obtain the values a 1,, a K [ Use Fast Fourier Transform: O K d time] 2. Picks unifom random r F, where p n 1 p (x) degree K polynomials For all i, j, p i β j = α j i for distinct β 1,, β K F poly dk F ε F is an extension field of F 3. hecks Q r = p 1 (r),, p n (r) [ Evaluate each p i on r, then evaluate Takes O s + K n time] orrectness: [Euler??] For every pair p(x), q(x) of distinct polynomials of degree D, p(r) = q(r) for D + 1 points r.

15 Thm: There is a proof system for UNSAT such that every UNSAT Boolean formula of poly(n) size has a proof of length ~ 2 n/2 verifiable with poly(n) bits of randomness in ~ 2 n/2 time. Proof: Let F be a field of char 2 n. Given a Boolean formula B: 1. Arithmetize B: WLOG, B has O log n depth. Define n-variate polynomial P over F equivalent to B (over 0, 1 n ) by replacing a b a b, a b a + b a b, a (1 a) For all a 0, 1 n, P a 1,, a n = B a 1,, a n 2. Partial-Sum P: Define a new polynomial P in n/2 variables: P x 1,, x n/2 a n/2+1,,a n {0,1} P x 1,, x n/2, a n/2+1,, a n Note that degree(p ) poly(n) and size(p ) 2 n/2 poly(n) 3. Apply Protocol! loud proves that P a = 0 for all a 0, 1 n/2 The proof is a polynomial Q y of degree poly(n) 2 n/2 over F such that Q β i = P a i, where a i 0, 1 n/2. Verifier checks Q(β i ) = 0 on all 2 n/2 relevant points.

16 onclusion Similar results hold for Permanent, ounting liques,., any problem in the class VNP 3-Round (AMA) proof system for QBF in 2 3n/4 time Are there more tombstones? Suppose we are given two arithmetic circuits (x), D(x) of size n, degree n, and one variable x. Testing whether D is easy: O n 2 deterministic time O n randomized time an D be tested in O n A yes answer NSETH is false! time? Thank you!

CS151 Complexity Theory. Lecture 13 May 15, 2017

CS151 Complexity Theory. Lecture 13 May 15, 2017 CS151 Complexity Theory Lecture 13 May 15, 2017 Relationship to other classes To compare to classes of decision problems, usually consider P #P which is a decision class easy: NP, conp P #P easy: P #P

More information

Introduction to Interactive Proofs & The Sumcheck Protocol

Introduction to Interactive Proofs & The Sumcheck Protocol CS294: Probabilistically Checkable and Interactive Proofs January 19, 2017 Introduction to Interactive Proofs & The Sumcheck Protocol Instructor: Alessandro Chiesa & Igor Shinkar Scribe: Pratyush Mishra

More information

Lecture 19: Interactive Proofs and the PCP Theorem

Lecture 19: Interactive Proofs and the PCP Theorem Lecture 19: Interactive Proofs and the PCP Theorem Valentine Kabanets November 29, 2016 1 Interactive Proofs In this model, we have an all-powerful Prover (with unlimited computational prover) and a polytime

More information

2 Evidence that Graph Isomorphism is not NP-complete

2 Evidence that Graph Isomorphism is not NP-complete Topics in Theoretical Computer Science April 11, 2016 Lecturer: Ola Svensson Lecture 7 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Complexity Theory of Polynomial-Time Problems

Complexity Theory of Polynomial-Time Problems Complexity Theory of Polynomial-Time Problems Lecture 11: Nondeterministic SETH Karl Bringmann Complexity Inside P SAT 2 n 3SUM n 2 OV n 2 Colinearity n 2 3SUM-hard APSP n 3 APSP equivalent Radius n 3

More information

CS151 Complexity Theory. Lecture 14 May 17, 2017

CS151 Complexity Theory. Lecture 14 May 17, 2017 CS151 Complexity Theory Lecture 14 May 17, 2017 IP = PSPACE Theorem: (Shamir) IP = PSPACE Note: IP PSPACE enumerate all possible interactions, explicitly calculate acceptance probability interaction extremely

More information

Hardness for easy problems. An introduction

Hardness for easy problems. An introduction Hardness for easy problems An introduction The real world and hard problems I ve got data. I want to solve this algorithmic problem but I m stuck! Ok, thanks, I feel better that none of my attempts worked.

More information

Lecture 12: Interactive Proofs

Lecture 12: Interactive Proofs princeton university cos 522: computational complexity Lecture 12: Interactive Proofs Lecturer: Sanjeev Arora Scribe:Carl Kingsford Recall the certificate definition of NP. We can think of this characterization

More information

1. Introduction Recap

1. Introduction Recap 1. Introduction Recap 1. Tractable and intractable problems polynomial-boundness: O(n k ) 2. NP-complete problems informal definition 3. Examples of P vs. NP difference may appear only slightly 4. Optimization

More information

A FINE-GRAINED APPROACH TO

A FINE-GRAINED APPROACH TO A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY Virginia Vassilevska Williams MIT ICDT 2018 THE CENTRAL QUESTION OF ALGORITHMS RESEARCH ``How fast can we solve fundamental problems, in the worst case?

More information

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms Computer Science 385 Analysis of Algorithms Siena College Spring 2011 Topic Notes: Limitations of Algorithms We conclude with a discussion of the limitations of the power of algorithms. That is, what kinds

More information

1 Randomized reduction: a first start

1 Randomized reduction: a first start 6.S078 Fine-Grained Algorithms and Complexity MIT Lectures 3 and 4 February 14 and 21, 2018 Today: In the previous two lectures, we mentioned ETH and SETH, about the time complexity of SAT. Today we want

More information

Kernel-Size Lower Bounds. The Evidence from Complexity Theory

Kernel-Size Lower Bounds. The Evidence from Complexity Theory : The Evidence from Complexity Theory IAS Worker 2013, Warsaw Part 2/3 Note These slides are a slightly revised version of a 3-part tutorial given at the 2013 Workshop on Kernelization ( Worker ) at the

More information

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine.

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine. The Class NP NP is the problems that can be solved in polynomial time by a nondeterministic machine. NP The time taken by nondeterministic TM is the length of the longest branch. The collection of all

More information

Polynomial Representations of Threshold Functions and Algorithmic Applications. Joint with Josh Alman (Stanford) and Timothy M.

Polynomial Representations of Threshold Functions and Algorithmic Applications. Joint with Josh Alman (Stanford) and Timothy M. Polynomial Representations of Threshold Functions and Algorithmic Applications Ryan Williams Stanford Joint with Josh Alman (Stanford) and Timothy M. Chan (Waterloo) Outline The Context: Polynomial Representations,

More information

6.S078 A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY LECTURE 1

6.S078 A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY LECTURE 1 6.S078 A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY LECTURE 1 Not a requirement, but fun: OPEN PROBLEM Sessions!!! (more about this in a week) 6.S078 REQUIREMENTS 1. Class participation: worth

More information

Permanent and Determinant

Permanent and Determinant Permanent and Determinant non-identical twins Avi Wigderson IAS, Princeton Meet the twins F field, char(f) 2. X M n (F) matrix of variables X ij Det n (X) = σ Sn sgn(σ) i [n] X iσ(i) Per n (X) = σ Sn i

More information

Algorithms as Lower Bounds

Algorithms as Lower Bounds Algorithms as Lower Bounds Lecture 3 Part 1: Solving QBF and NC1 Lower Bounds (Joint work with Rahul Santhanam, U. Edinburgh) Part 2: Time-Space Tradeoffs for SAT Ryan Williams Stanford University Quantified

More information

A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY. Virginia Vassilevska Williams Stanford University

A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY. Virginia Vassilevska Williams Stanford University A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY Virginia Vassilevska Williams Stanford University THE CENTRAL QUESTION OF ALGORITHMS RESEARCH ``How fast can we solve fundamental problems, in the worst

More information

Computational Complexity Theory

Computational Complexity Theory Computational Complexity Theory Marcus Hutter Canberra, ACT, 0200, Australia http://www.hutter1.net/ Assumed Background Preliminaries Turing Machine (TM) Deterministic Turing Machine (DTM) NonDeterministic

More information

Interactive Proofs 1

Interactive Proofs 1 CS294: Probabilistically Checkable and Interactive Proofs January 24, 2017 Interactive Proofs 1 Instructor: Alessandro Chiesa & Igor Shinkar Scribe: Mariel Supina 1 Pspace IP The first proof that Pspace

More information

INAPPROX APPROX PTAS. FPTAS Knapsack P

INAPPROX APPROX PTAS. FPTAS Knapsack P CMPSCI 61: Recall From Last Time Lecture 22 Clique TSP INAPPROX exists P approx alg for no ε < 1 VertexCover MAX SAT APPROX TSP some but not all ε< 1 PTAS all ε < 1 ETSP FPTAS Knapsack P poly in n, 1/ε

More information

NP-Complete problems

NP-Complete problems NP-Complete problems NP-complete problems (NPC): A subset of NP. If any NP-complete problem can be solved in polynomial time, then every problem in NP has a polynomial time solution. NP-complete languages

More information

Arthur-Merlin Streaming Complexity

Arthur-Merlin Streaming Complexity Weizmann Institute of Science Joint work with Ran Raz Data Streams The data stream model is an abstraction commonly used for algorithms that process network traffic using sublinear space. A data stream

More information

CS/COE

CS/COE CS/COE 1501 www.cs.pitt.edu/~nlf4/cs1501/ P vs NP But first, something completely different... Some computational problems are unsolvable No algorithm can be written that will always produce the correct

More information

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam

Limits to Approximability: When Algorithms Won't Help You. Note: Contents of today s lecture won t be on the exam Limits to Approximability: When Algorithms Won't Help You Note: Contents of today s lecture won t be on the exam Outline Limits to Approximability: basic results Detour: Provers, verifiers, and NP Graph

More information

Agenda. What is a complexity class? What are the important complexity classes? How do you prove an algorithm is in a certain class

Agenda. What is a complexity class? What are the important complexity classes? How do you prove an algorithm is in a certain class Complexity Agenda What is a complexity class? What are the important complexity classes? How do you prove an algorithm is in a certain class Complexity class A complexity class is a set All problems within

More information

Notes on Complexity Theory Last updated: November, Lecture 10

Notes on Complexity Theory Last updated: November, Lecture 10 Notes on Complexity Theory Last updated: November, 2015 Lecture 10 Notes by Jonathan Katz, lightly edited by Dov Gordon. 1 Randomized Time Complexity 1.1 How Large is BPP? We know that P ZPP = RP corp

More information

Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun

Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun 1 Probabilistic Method Lecture Notes CS:5360 Randomized Algorithms Lecture 20 and 21: Nov 6th and 8th, 2018 Scribe: Qianhang Sun Turning the MaxCut proof into an algorithm. { Las Vegas Algorithm Algorithm

More information

CS 583: Algorithms. NP Completeness Ch 34. Intractability

CS 583: Algorithms. NP Completeness Ch 34. Intractability CS 583: Algorithms NP Completeness Ch 34 Intractability Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Standard working

More information

Complexity Theory of Polynomial-Time Problems

Complexity Theory of Polynomial-Time Problems Complexity Theory of Polynomial-Time Problems Lecture 2: SETH and OV Karl Bringmann Tutorial Slot Tuesday, 16:15-18:00 works for everybody? alternative time slot: Mo Tue Wed Thu Fri 10-12 12-14 new 14-16

More information

Doubly Efficient Interactive Proofs. Ron Rothblum

Doubly Efficient Interactive Proofs. Ron Rothblum Doubly Efficient Interactive Proofs Ron Rothblum Outsourcing Computation Weak client outsources computation to the cloud. x y = f(x) Outsourcing Computation We do not want to blindly trust the cloud. x

More information

Connections between exponential time and polynomial time problem Lecture Notes for CS294

Connections between exponential time and polynomial time problem Lecture Notes for CS294 Connections between exponential time and polynomial time problem Lecture Notes for CS294 Lecturer: Russell Impagliazzo Scribe: Stefan Schneider November 10, 2015 We connect problems that have exponential

More information

BBM402-Lecture 11: The Class NP

BBM402-Lecture 11: The Class NP BBM402-Lecture 11: The Class NP Lecturer: Lale Özkahya Resources for the presentation: http://ocw.mit.edu/courses/electrical-engineering-andcomputer-science/6-045j-automata-computability-andcomplexity-spring-2011/syllabus/

More information

Introduction. Pvs.NPExample

Introduction. Pvs.NPExample Introduction Computer Science & Engineering 423/823 Design and Analysis of Algorithms Lecture 09 NP-Completeness (Chapter 34) Stephen Scott (Adapted from Vinodchandran N. Variyam) sscott@cse.unl.edu I

More information

No Harder Than. We want these transformations to effectively be a problem-hardness version of #, which we will call No Harder Than.

No Harder Than. We want these transformations to effectively be a problem-hardness version of #, which we will call No Harder Than. No Harder Than We want these transformations to effectively be a problem-hardness version of #, which we will call No Harder Than. If we can reduce problem B to problem A appropriately, then we say that

More information

Holger Dell Saarland University and Cluster of Excellence (MMCI) Simons Institute for the Theory of Computing

Holger Dell Saarland University and Cluster of Excellence (MMCI) Simons Institute for the Theory of Computing Fine-Grained Complexity Classification of Counting Problems Holger Dell Saarland University and Cluster of Excellence (MMCI) Simons Institute for the Theory of Computing 1 In P or not in P? Exact counting

More information

Interactive Proofs. Merlin-Arthur games (MA) [Babai] Decision problem: D;

Interactive Proofs. Merlin-Arthur games (MA) [Babai] Decision problem: D; Interactive Proofs n x: read-only input finite σ: random bits control Π: Proof work tape Merlin-Arthur games (MA) [Babai] Decision problem: D; input string: x Merlin Prover chooses the polynomial-length

More information

Complexity, P and NP

Complexity, P and NP Complexity, P and NP EECS 477 Lecture 21, 11/26/2002 Last week Lower bound arguments Information theoretic (12.2) Decision trees (sorting) Adversary arguments (12.3) Maximum of an array Graph connectivity

More information

20.1 2SAT. CS125 Lecture 20 Fall 2016

20.1 2SAT. CS125 Lecture 20 Fall 2016 CS125 Lecture 20 Fall 2016 20.1 2SAT We show yet another possible way to solve the 2SAT problem. Recall that the input to 2SAT is a logical expression that is the conunction (AND) of a set of clauses,

More information

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Nathan Brunelle Department of Computer Science University of Virginia www.cs.virginia.edu/~njb2b/theory

More information

NP-Hardness reductions

NP-Hardness reductions NP-Hardness reductions Definition: P is the class of problems that can be solved in polynomial time, that is n c for a constant c Roughly, if a problem is in P then it's easy, and if it's not in P then

More information

Real Interactive Proofs for VPSPACE

Real Interactive Proofs for VPSPACE Brandenburgische Technische Universität, Cottbus-Senftenberg, Germany Colloquium Logicum Hamburg, September 2016 joint work with M. Baartse 1. Introduction Blum-Shub-Smale model of computability and complexity

More information

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH.

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH. CMPSCI 601: Recall From Last Time Lecture 26 Theorem: All CFL s are in sac. Facts: ITADD, MULT, ITMULT and DIVISION on -bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE

More information

How proofs are prepared at Camelot

How proofs are prepared at Camelot How proofs are prepared at Camelot Andreas Björklund Lund University Petteri Kaski Aalto University Fine-Grained Complexity and Algorithm Design Reunion Simons Institute, UC Berkeley 15 December 2016 Fine-grained

More information

Lecture 26. Daniel Apon

Lecture 26. Daniel Apon Lecture 26 Daniel Apon 1 From IPPSPACE to NPPCP(log, 1): NEXP has multi-prover interactive protocols If you ve read the notes on the history of the PCP theorem referenced in Lecture 19 [3], you will already

More information

CSE 548: (Design and) Analysis of Algorithms

CSE 548: (Design and) Analysis of Algorithms 1 / 38 CSE 548: (Design and) Analysis of Algorithms NP and Complexity Classes R. Sekar 2 / 38 Search and Optimization Problems Many problems of our interest are search problems with exponentially (or even

More information

From Secure MPC to Efficient Zero-Knowledge

From Secure MPC to Efficient Zero-Knowledge From Secure MPC to Efficient Zero-Knowledge David Wu March, 2017 The Complexity Class NP NP the class of problems that are efficiently verifiable a language L is in NP if there exists a polynomial-time

More information

2 Natural Proofs: a barrier for proving circuit lower bounds

2 Natural Proofs: a barrier for proving circuit lower bounds Topics in Theoretical Computer Science April 4, 2016 Lecturer: Ola Svensson Lecture 6 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

Limitations of Algorithm Power

Limitations of Algorithm Power Limitations of Algorithm Power Objectives We now move into the third and final major theme for this course. 1. Tools for analyzing algorithms. 2. Design strategies for designing algorithms. 3. Identifying

More information

Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA.

Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA. Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA NP Completeness Susmita Sur-Kolay Advanced Computing and Microelectronics Unit

More information

NP Completeness and Approximation Algorithms

NP Completeness and Approximation Algorithms Winter School on Optimization Techniques December 15-20, 2016 Organized by ACMU, ISI and IEEE CEDA NP Completeness and Approximation Algorithms Susmita Sur-Kolay Advanced Computing and Microelectronic

More information

Exponential time vs probabilistic polynomial time

Exponential time vs probabilistic polynomial time Exponential time vs probabilistic polynomial time Sylvain Perifel (LIAFA, Paris) Dagstuhl January 10, 2012 Introduction Probabilistic algorithms: can toss a coin polynomial time (worst case) probability

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Review Basic reduction strategies. Simple equivalence: INDEPENDENT-SET P VERTEX-COVER. Special case to general case: VERTEX-COVER P SET-COVER. Encoding with gadgets:

More information

A An Overview of Complexity Theory for the Algorithm Designer

A An Overview of Complexity Theory for the Algorithm Designer A An Overview of Complexity Theory for the Algorithm Designer A.1 Certificates and the class NP A decision problem is one whose answer is either yes or no. Two examples are: SAT: Given a Boolean formula

More information

Lecture 18: PCP Theorem and Hardness of Approximation I

Lecture 18: PCP Theorem and Hardness of Approximation I Lecture 18: and Hardness of Approximation I Arijit Bishnu 26.04.2010 Outline 1 Introduction to Approximation Algorithm 2 Outline 1 Introduction to Approximation Algorithm 2 Approximation Algorithm Approximation

More information

PCP Theorem and Hardness of Approximation

PCP Theorem and Hardness of Approximation PCP Theorem and Hardness of Approximation An Introduction Lee Carraher and Ryan McGovern Department of Computer Science University of Cincinnati October 27, 2003 Introduction Assuming NP P, there are many

More information

VIII. NP-completeness

VIII. NP-completeness VIII. NP-completeness 1 / 15 NP-Completeness Overview 1. Introduction 2. P and NP 3. NP-complete (NPC): formal definition 4. How to prove a problem is NPC 5. How to solve a NPC problem: approximate algorithms

More information

CS151 Complexity Theory. Lecture 15 May 22, 2017

CS151 Complexity Theory. Lecture 15 May 22, 2017 CS151 Complexity Theory Lecture 15 New topic(s) Optimization problems, Approximation Algorithms, and Probabilistically Checkable Proofs Optimization Problems many hard problems (especially NP-hard) are

More information

The power and weakness of randomness (when you are short on time) Avi Wigderson Institute for Advanced Study

The power and weakness of randomness (when you are short on time) Avi Wigderson Institute for Advanced Study The power and weakness of randomness (when you are short on time) Avi Wigderson Institute for Advanced Study Plan of the talk Computational complexity -- efficient algorithms, hard and easy problems, P

More information

MTAT Complexity Theory December 8th, Lecture 12

MTAT Complexity Theory December 8th, Lecture 12 MTAT.07.004 Complexity Theory December 8th, 2011 Lecturer: Peeter Laud Lecture 12 Scribe(s): Ilya Kuzovkin Introduction On the previous lecture we had a look onto interactive proofs, where the system consists

More information

NP Complete Problems. COMP 215 Lecture 20

NP Complete Problems. COMP 215 Lecture 20 NP Complete Problems COMP 215 Lecture 20 Complexity Theory Complexity theory is a research area unto itself. The central project is classifying problems as either tractable or intractable. Tractable Worst

More information

Algorithms. NP -Complete Problems. Dong Kyue Kim Hanyang University

Algorithms. NP -Complete Problems. Dong Kyue Kim Hanyang University Algorithms NP -Complete Problems Dong Kyue Kim Hanyang University dqkim@hanyang.ac.kr The Class P Definition 13.2 Polynomially bounded An algorithm is said to be polynomially bounded if its worst-case

More information

Geometric Problems in Moderate Dimensions

Geometric Problems in Moderate Dimensions Geometric Problems in Moderate Dimensions Timothy Chan UIUC Basic Problems in Comp. Geometry Orthogonal range search preprocess n points in R d s.t. we can detect, or count, or report points inside a query

More information

P versus NP. Math 40210, Spring September 16, Math (Spring 2012) P versus NP September 16, / 9

P versus NP. Math 40210, Spring September 16, Math (Spring 2012) P versus NP September 16, / 9 P versus NP Math 40210, Spring 2012 September 16, 2012 Math 40210 (Spring 2012) P versus NP September 16, 2012 1 / 9 Properties of graphs A property of a graph is anything that can be described without

More information

On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product. Lijie Chen (Massachusetts Institute of Technology)

On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product. Lijie Chen (Massachusetts Institute of Technology) On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product Max a,b A B a b Lijie Chen (Massachusetts Institute of Technology) Max-IP and Z-Max-IP (Boolean) Max-IP: Given sets A and B

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science Lecture 28: A Computational Lens on Proofs December 6th, 2016 Evolution of proof First there was GORM GORM = Good Old Regular Mathematics Pythagoras s

More information

CSI 4105 MIDTERM SOLUTION

CSI 4105 MIDTERM SOLUTION University of Ottawa CSI 4105 MIDTERM SOLUTION Instructor: Lucia Moura Feb 6, 2010 10:00 am Duration: 1:50 hs Closed book Last name: First name: Student number: There are 4 questions and 100 marks total.

More information

Lecture 21: Counting and Sampling Problems

Lecture 21: Counting and Sampling Problems princeton univ. F 14 cos 521: Advanced Algorithm Design Lecture 21: Counting and Sampling Problems Lecturer: Sanjeev Arora Scribe: Today s topic of counting and sampling problems is motivated by computational

More information

P, NP, NP-Complete. Ruth Anderson

P, NP, NP-Complete. Ruth Anderson P, NP, NP-Complete Ruth Anderson A Few Problems: Euler Circuits Hamiltonian Circuits Intractability: P and NP NP-Complete What now? Today s Agenda 2 Try it! Which of these can you draw (trace all edges)

More information

Towards Hardness of Approximation for Polynomial Time Problems

Towards Hardness of Approximation for Polynomial Time Problems Towards Hardness of Approximation for Polynomial Time Problems Amir Abboud 1 and Arturs Backurs 2 1 Stanford University, Palo Alto, USA abboud@cs.stanford.edu 2 MIT, Cambridge, USA backurs@mit.edu Abstract

More information

PCP Course; Lectures 1, 2

PCP Course; Lectures 1, 2 PCP Course; Lectures 1, 2 Mario Szegedy September 10, 2011 Easy and Hard Problems Easy: Polynomial Time 5n; n 2 ; 4n 3 + n Hard: Super-polynomial Time n log n ; 2 n ; n! Proving that a problem is easy:

More information

Lecture 19: Finish NP-Completeness, conp and Friends

Lecture 19: Finish NP-Completeness, conp and Friends 6.045 Lecture 19: Finish NP-Completeness, conp and Friends 1 Polynomial Time Reducibility f : Σ* Σ* is a polynomial time computable function if there is a poly-time Turing machine M that on every input

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Umans Complexity Theory Lectures Lecture 8: Introduction to Randomized Complexity: - Randomized complexity classes, - Error reduction, - in P/poly - Reingold s Undirected Graph Reachability in RL Randomized

More information

Polynomial kernels for constant-factor approximable problems

Polynomial kernels for constant-factor approximable problems 1 Polynomial kernels for constant-factor approximable problems Stefan Kratsch November 11, 2010 2 What do these problems have in common? Cluster Edge Deletion, Cluster Edge Editing, Edge Dominating Set,

More information

Algebraic Dynamic Programming. Solving Satisfiability with ADP

Algebraic Dynamic Programming. Solving Satisfiability with ADP Algebraic Dynamic Programming Session 12 Solving Satisfiability with ADP Robert Giegerich (Lecture) Stefan Janssen (Exercises) Faculty of Technology Summer 2013 http://www.techfak.uni-bielefeld.de/ags/pi/lehre/adp

More information

Correctness of Dijkstra s algorithm

Correctness of Dijkstra s algorithm Correctness of Dijkstra s algorithm Invariant: When vertex u is deleted from the priority queue, d[u] is the correct length of the shortest path from the source s to vertex u. Additionally, the value d[u]

More information

Shamir s Theorem. Johannes Mittmann. Technische Universität München (TUM)

Shamir s Theorem. Johannes Mittmann. Technische Universität München (TUM) IP = PSPACE Shamir s Theorem Johannes Mittmann Technische Universität München (TUM) 4 th Joint Advanced Student School (JASS) St. Petersburg, April 2 12, 2006 Course 1: Proofs and Computers Johannes Mittmann

More information

Polynomial-time reductions. We have seen several reductions:

Polynomial-time reductions. We have seen several reductions: Polynomial-time reductions We have seen several reductions: Polynomial-time reductions Informal explanation of reductions: We have two problems, X and Y. Suppose we have a black-box solving problem X in

More information

Computational Complexity

Computational Complexity Computational Complexity Ref: Algorithm Design (Ch 8) on Blackboard Mohammad T. Irfan Email: mirfan@bowdoin.edu Web: www.bowdoin.edu/~mirfan Famous complexity classes u NP (non-deterministic polynomial

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Complexity Theory Umans Complexity Theory Lectures Lecture 1a: Problems and Languages Classify problems according to the computational resources required running time storage space parallelism randomness

More information

Computational Intractability 2010/4/15. Lecture 2

Computational Intractability 2010/4/15. Lecture 2 Computational Intractability 2010/4/15 Professor: David Avis Lecture 2 Scribe:Naoki Hatta 1 P and NP 1.1 Definition of P and NP Decision problem it requires yes/no answer. Example: X is a set of strings.

More information

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1 CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Goal: Evaluate the computational requirements (this course s focus: time) to solve

More information

Lecture 22: Derandomization Implies Circuit Lower Bounds

Lecture 22: Derandomization Implies Circuit Lower Bounds Advanced Complexity Theory Spring 2016 Lecture 22: Derandomization Implies Circuit Lower Bounds Prof. Dana Moshkovitz 1 Overview In the last lecture we saw a proof presented by Madhu Sudan that E SIZE(2

More information

Complete problems for classes in PH, The Polynomial-Time Hierarchy (PH) oracle is like a subroutine, or function in

Complete problems for classes in PH, The Polynomial-Time Hierarchy (PH) oracle is like a subroutine, or function in Oracle Turing Machines Nondeterministic OTM defined in the same way (transition relation, rather than function) oracle is like a subroutine, or function in your favorite PL but each call counts as single

More information

Today. Few Comments. PCP Theorem, Simple proof due to Irit Dinur [ECCC, TR05-046]! Based on some ideas promoted in [Dinur- Reingold 04].

Today. Few Comments. PCP Theorem, Simple proof due to Irit Dinur [ECCC, TR05-046]! Based on some ideas promoted in [Dinur- Reingold 04]. Today Few Comments PCP Theorem, Simple proof due to Irit Dinur [ECCC, TR05-046]! Based on some ideas promoted in [Dinur- Reingold 04]. Remarkably simple novel proof. Leads to new quantitative results too!

More information

Discrete Optimization 2010 Lecture 10 P, N P, and N PCompleteness

Discrete Optimization 2010 Lecture 10 P, N P, and N PCompleteness Discrete Optimization 2010 Lecture 10 P, N P, and N PCompleteness Marc Uetz University of Twente m.uetz@utwente.nl Lecture 9: sheet 1 / 31 Marc Uetz Discrete Optimization Outline 1 N P and co-n P 2 N P-completeness

More information

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München

Complexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München Complexity Theory Jörg Kreiker Chair for Theoretical Computer Science Prof. Esparza TU München Summer term 2010 Lecture 16 IP = PSPACE 3 Goal and Plan Goal IP = PSPACE Plan 1. PSPACE IP by showing QBF

More information

NP-complete problems. CSE 101: Design and Analysis of Algorithms Lecture 20

NP-complete problems. CSE 101: Design and Analysis of Algorithms Lecture 20 NP-complete problems CSE 101: Design and Analysis of Algorithms Lecture 20 CSE 101: Design and analysis of algorithms NP-complete problems Reading: Chapter 8 Homework 7 is due today, 11:59 PM Tomorrow

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Computational Complexity CLRS 34.1-34.4 University of Manitoba COMP 3170 - Analysis of Algorithms & Data Structures 1 / 50 Polynomial

More information

Comp487/587 - Boolean Formulas

Comp487/587 - Boolean Formulas Comp487/587 - Boolean Formulas 1 Logic and SAT 1.1 What is a Boolean Formula Logic is a way through which we can analyze and reason about simple or complicated events. In particular, we are interested

More information

SAT, Coloring, Hamiltonian Cycle, TSP

SAT, Coloring, Hamiltonian Cycle, TSP 1 SAT, Coloring, Hamiltonian Cycle, TSP Slides by Carl Kingsford Apr. 28, 2014 Sects. 8.2, 8.7, 8.5 2 Boolean Formulas Boolean Formulas: Variables: x 1, x 2, x 3 (can be either true or false) Terms: t

More information

QMA(2) workshop Tutorial 1. Bill Fefferman (QuICS)

QMA(2) workshop Tutorial 1. Bill Fefferman (QuICS) QMA(2) workshop Tutorial 1 Bill Fefferman (QuICS) Agenda I. Basics II. Known results III. Open questions/next tutorial overview I. Basics I.1 Classical Complexity Theory P Class of problems efficiently

More information

Verifying Computations in the Cloud (and Elsewhere) Michael Mitzenmacher, Harvard University Work offloaded to Justin Thaler, Harvard University

Verifying Computations in the Cloud (and Elsewhere) Michael Mitzenmacher, Harvard University Work offloaded to Justin Thaler, Harvard University Verifying Computations in the Cloud (and Elsewhere) Michael Mitzenmacher, Harvard University Work offloaded to Justin Thaler, Harvard University Goals of Verifiable Computation Provide user with correctness

More information

Fine Grained Counting Complexity I

Fine Grained Counting Complexity I Fine Grained Counting Complexity I Holger Dell Saarland University and Cluster of Excellence (MMCI) & Simons Institute for the Theory of Computing 1 50 Shades of Fine-Grained #W[1] W[1] fixed-parameter

More information

Faster Satisfiability Algorithms for Systems of Polynomial Equations over Finite Fields and ACC^0[p]

Faster Satisfiability Algorithms for Systems of Polynomial Equations over Finite Fields and ACC^0[p] Faster Satisfiability Algorithms for Systems of Polynomial Equations over Finite Fields and ACC^0[p] Suguru TAMAKI Kyoto University Joint work with: Daniel Lokshtanov, Ramamohan Paturi, Ryan Williams Satisfiability

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Umans Complexity Theory Lectures Lecture 12: The Polynomial-Time Hierarchy Oracle Turing Machines Oracle Turing Machine (OTM): Deterministic multitape TM M with special query tape special states q?, q

More information

De Morgan s a Laws. De Morgan s laws say that. (φ 1 φ 2 ) = φ 1 φ 2, (φ 1 φ 2 ) = φ 1 φ 2.

De Morgan s a Laws. De Morgan s laws say that. (φ 1 φ 2 ) = φ 1 φ 2, (φ 1 φ 2 ) = φ 1 φ 2. De Morgan s a Laws De Morgan s laws say that (φ 1 φ 2 ) = φ 1 φ 2, (φ 1 φ 2 ) = φ 1 φ 2. Here is a proof for the first law: φ 1 φ 2 (φ 1 φ 2 ) φ 1 φ 2 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 a Augustus DeMorgan

More information

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013 Chapter 2 Reductions and NP CS 573: Algorithms, Fall 2013 August 29, 2013 2.1 Reductions Continued 2.1.1 The Satisfiability Problem SAT 2.1.1.1 Propositional Formulas Definition 2.1.1. Consider a set of

More information