Solving Minimax Problems with Feasible Sequential Quadratic Programming

Size: px
Start display at page:

Download "Solving Minimax Problems with Feasible Sequential Quadratic Programming"

Transcription

1 Qianli Deng (Shally) Advisor: Dr. Mark A. Austin Department of Civil and Environmental Engineering Institute for Systems Research University of Maryland, College Park, MD Solving Minimax Problems with Feasible Sequential Quadratic Programming 05/06/2014

2 Constrained minimax problem bl x bu nb g j ( x) 0 j = 1,..., n g ( x) c, x d 0 j = 1,..., n h j ( x) = 0 j = 1,..., n h ( x) a, x b = 0 j = 1,..., n j j j LI j j j LE NI NE 2 5/5/2014

3 Constrained minimax problem * Objectives bl x bu nb g j ( x) 0 j = 1,..., n g ( x) c, x d 0 j = 1,..., n h j ( x) = 0 j = 1,..., n h ( x) a, x b = 0 j = 1,..., n j j j LI j j j LE NI NE 3 5/5/2014

4 Constrained minimax problem * Objectives bl x bu nb g j ( x) 0 j = 1,..., n g ( x) c, x d 0 j = 1,..., n h j ( x) = 0 j = 1,..., n h ( x) a, x b = 0 j = 1,..., n j j j LI j j j LE NI NE * Bounds * Nonlinear inequality * Linear inequality * Nonlinear equality * Linear equality 4 5/5/2014

5 FSQP Algorithm A random point A point fitting all linear constraints A point fitting all constraints An optimal point fitting all constraints 5 5/5/2014

6 FSQP Algorithm A random point A point fitting all linear constraints A point fitting all constraints An optimal point fitting all constraints 6 5/5/2014

7 FSQP Algorithm A random point A point fitting all linear constraints boundary + linear inequality + linear equality A point fitting all constraints An optimal point fitting all constraints 7 5/5/2014

8 FSQP Algorithm A random point A point fitting all linear constraints boundary + linear inequality + linear equality A point fitting all constraints boundary + linear inequality + linear equality + nonlinear inequality + nonlinear equality An optimal point fitting all constraints 8 5/5/2014

9 FSQP Algorithm A random point A point fitting all linear constraints boundary + linear inequality + linear equality A point fitting all constraints boundary + linear inequality + linear equality + nonlinear inequality + nonlinear equality An optimal point fitting all constraints 9 5/5/2014

10 FSQP Algorithm Step 1. Initialization xk a point; H Hessian matrix k Step 2. A search line d k direction Step 3. Line search t k distance Step 4. Updates x k + 1 H k + 1 an update point; an update Hessian matrix 10 5/5/2014

11 Initialization x 0 H 0 = an initial point fitting all constraints = an identity matrix p 0, j k = a constant = 0 { } NE f ( x, p) = max f ( x) p h ( x) m f i j j i I j= 1 j = 1,..., n NE n 11 5/5/2014

12 Computation of a search line min d, H '(,, ) 0 kd + f xk d pk d 2 0 bl xk + d bu s. t. 0 g j ( xk ) + g j ( xk ), d 0, j = 1,..., ti 0 h ( ) ( ), 0, j 1,..., n j xk + hj xk d = e 0 a, j 1,..., te n j xk d b = + = j e η min d d, d d + γ n k k d R, γ R 1 s. t. bl xk d bu 1 f '( xk, d, pk ) γ g x + g x d γ j = n 1 j( k ) j ( k ), 1,..., i c x + d d j = t n 1 j, k j 1,..., i i h x h x d γ j n 1 j ( k ) + j ( k ), = 1,..., e a x d b j t n 1 j, k + = j = 1,..., e e ρ = + k 0 κ 0 κ k dk /( dk vk ) v = d τ 1 1 max(0.5, k ) 12 5/5/2014

13 Line search Armijo line search 0 0 dk, Hkdk ni + ne = 0 No nonlinear constraints δk = f '( xk, dk, pk ) ni + ne 0 NE f '( x, d, p) = max{ f ( x) + f ( x), d } f ( x) p h ( x), d i I f i i f I j i j= 1 n f ( x + t d, p ) f ( x, p ) +αtδ m k k k k m k k k g ( x + td ) 0, j = 1,..., n c, x + td d, j = 1,..., n h ( x + td ) 0, j = 1,..., n j k k NI j k k j LI j k k NE NE = f ( x, p) max{ f ( x)} p h ( x) m f i j j i I j= 1 n 13 5/5/2014

14 Updates x = x + + t d k 1 k k k H k + 1 p k + 1, j updated by BFGS formula with Powell s modification η = x x, γ = L( x, p ) L( x, p ) k + 1 k + 1 k k + 1 x k + 1 k x k k 1, η γ 0.2η H η T θ k + 1 = 0.8η k + 1H kη k + 1 otherwise T T η k + 1H kη k + 1 η k + 1γ k + 1 ξ = θ γ + (1 θ ) H γ H k = k + 1 k + 1 k + 1 k + 1 k + 1 k k + 1 H η η H ξ ξ T T k k + 1 k + 1 k k + 1 k + 1 k + 1 = H k + T T η k + 1H kη k + 1 η k + 1ξ k +1 p = max{ ε 1 µ j, δ pk, j} k, j k, j j 1 p T T k + 1 k + 1 k + 1 k k µ ε otherwise 14 5/5/2014

15 Implementation JFS Initial.java MiniMax.java Direction_d0.java KKT.java Direction_d1.java Arcsearch.java Check.java BFGS_Powell.java MiniMax.java Direction_d0.java KKT.java Direction_d1.java Arcsearch.java Check.java BFGS_Powell.java 15 5/5/2014

16 Implementation JFS Initial.java MiniMax.java Loop 1. Find initial feasible point Direction_d0.java KKT.java Direction_d1.java Arcsearch.java Check.java BFGS_Powell.java MiniMax.java Direction_d0.java KKT.java Direction_d1.java Arcsearch.java Check.java BFGS_Powell.java Loop 2. Find optimal point 16 5/5/2014

17 Implementation JFS Initial.java MiniMax.java Loop 1. Find initial feasible point Direction_d0.java KKT.java Direction_d1.java Arcsearch.java Check.java BFGS_Powell.java MiniMax.java Direction_d0.java KKT.java Direction_d1.java Arcsearch.java Check.java BFGS_Powell.java Loop 2. Find optimal point 17 5/5/2014

18 Implementation JFS Initial.java Find a point fitting all linear constraints MiniMax.java Find point fitting all constraints (linear + nonlinear) Direction_d0.java KKT.java Direction_d1.java Arcsearch.java Check.java BFGS_Powell.java Find the optimal point also fitting all constraints (linear + nonlinear) MiniMax.java Direction_d0.java KKT.java Direction_d1.java Arcsearch.java Check.java BFGS_Powell.java 18 5/5/2014

19 Implementation Three open-source Java libraries were leveraged: 1) JAMA (Version 1.0.3; 11/2012) 2) Apache Commons.Lang (Version 3.3.2; 04/2014) 3) Joptimizer (Version 3.3.0; 04/2014) /5/2014

20 , Validation JFS Initial.java MiniMax.java Direction_d0.java KKT.java Direction_d1.java Arcsearch.java Check.java BFGS_Powell.java 20 5/5/2014

21 , Validation JFS Initial.java MiniMax.java Direction_d0.java KKT.java Direction_d1.java Arcsearch.java Check.java BFGS_Powell.java testjfs testinitial.java test testminimax.java test testkkt.java test testbfgs_powell.java 21 5/5/2014

22 , Validation JFS Initial.java MiniMax.java Direction_d0.java KKT.java Direction_d1.java Arcsearch.java Check.java BFGS_Powell.java testjfs testinitial.java test testminimax.java test testkkt.java test testbfgs_powell.java 22 5/5/2014

23 , Validation JFS Initial.java MiniMax.java Direction_d0.java KKT.java Direction_d1.java Arcsearch.java Check.java BFGS_Powell.java testjfs testinitial.java test testminimax.java test testkkt.java test testbfgs_powell.java 23 5/5/2014

24 , Validation JFS Initial.java MiniMax.java Direction_d0.java KKT.java Direction_d1.java Arcsearch.java Check.java BFGS_Powell.java testjfs testinitial.java test testminimax.java test testkkt.java test testbfgs_powell.java 24 5/5/2014

25 , Validation JFS Initial.java MiniMax.java Direction_d0.java KKT.java Direction_d1.java Arcsearch.java Check.java BFGS_Powell.java testjfs testinitial.java test testminimax.java test testkkt.java test testbfgs_powell.java 25 5/5/2014

26 , Validation testjfs testinitial.java test testminimax.java test testkkt.java test testbfgs_powell.java 26 5/5/2014

27 , Validation testjfs QP with LI, LE consts testinitial.java test testminimax.java QP with LI, LE consts linear consts in QP test testkkt.java QP with linear consts test Same program checking with Matlab testbfgs_powell.java 27 5/5/2014

28 , Validation LP, QP, NP NI, LI, NE, LE consts QP with LI, LE consts Feasible point, NP with consts testjfs testinitial.java test testminimax.java QP with LI, LE consts linear consts in QP test testkkt.java QP with linear consts test Same program checking with Matlab testbfgs_powell.java 28 5/5/2014

29 , Example 1 min f ( x) = x + x x R x1 0 x2 0 x1 1 0 x2 1 0 Known minimizer: x x = ( 3, 2) ; f ( x ) = 5 T 0 0 = (1,0) ; f ( x ) = 1 * T * Reference: Hock, Willi, and Klaus Schittkowski. "Test examples for nonlinear programming codes." Journal of Optimization Theory and Applications 30.1 (1980): /5/2014

30 , Example 1 min f ( x) = x + x x R x1 0 x2 0 x1 1 0 x2 1 0 Known minimizer: x x = ( 3, 2) ; f ( x ) = 5 T 0 0 = (1,0) ; f ( x ) = 1 * T * Reference: Hock, Willi, and Klaus Schittkowski. "Test examples for nonlinear programming codes." Journal of Optimization Theory and Applications 30.1 (1980): /5/2014

31 , Example 2 min f ( x) = ( x + 3 x + x ) + 4( x x ) x R x1, x2, x3 0 3 x1 6x2 4x x1 x2 x3 = 0 Known global minimizer: x = (0, 0,1) ; f ( x ) = 1 * T * Reference: Hock, Willi, and Klaus Schittkowski. "Test examples for nonlinear programming codes." Journal of Optimization Theory and Applications 30.1 (1980): /5/2014

32 , Example /5/2014

33 Example /5/2014

34 Project Schedule October Literature review; Specify the implementation module details; Structure the implementation; November Develop the quadratic programming module; Unconstrained quadratic program; Strictly convex quadratic program; Validate the quadratic programming module; December Develop the Gradient and Hessian matrix calculation module; Validate the Gradient and Hessian matrix calculation module; Midterm project report and presentation; 34 5/5/2014

35 January Develop Armijo line search module; Validate Armijo line search module; Develop the feasible initial point module; February Validate the feasible initial point module; Integrate the program; March Debug and document the program; Validate and test the program with case application; April d ɶ Add arch search variable ; Compare calculation efficiency of line search with arch search methods; May Develop the user interface if time available; Final project report and presentation; 35 5/5/2014

36 , Deliverables Project proposal Algorithm description Well-documented Java codes Test cases: LP, QP, NP with NI, LI, NE, LE constraints Validation results Presentations Project reports 36 5/5/2014

37 Bibliography 37 5/5/2014

Numerical Methods. V. Leclère May 15, x R n

Numerical Methods. V. Leclère May 15, x R n Numerical Methods V. Leclère May 15, 2018 1 Some optimization algorithms Consider the unconstrained optimization problem min f(x). (1) x R n A descent direction algorithm is an algorithm that construct

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

Algorithms for constrained local optimization

Algorithms for constrained local optimization Algorithms for constrained local optimization Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Algorithms for constrained local optimization p. Feasible direction methods Algorithms for constrained

More information

4F3 - Predictive Control

4F3 - Predictive Control 4F3 Predictive Control - Lecture 3 p 1/21 4F3 - Predictive Control Lecture 3 - Predictive Control with Constraints Jan Maciejowski jmm@engcamacuk 4F3 Predictive Control - Lecture 3 p 2/21 Constraints on

More information

An Active Set Strategy for Solving Optimization Problems with up to 200,000,000 Nonlinear Constraints

An Active Set Strategy for Solving Optimization Problems with up to 200,000,000 Nonlinear Constraints An Active Set Strategy for Solving Optimization Problems with up to 200,000,000 Nonlinear Constraints Klaus Schittkowski Department of Computer Science, University of Bayreuth 95440 Bayreuth, Germany e-mail:

More information

Algorithms for Constrained Optimization

Algorithms for Constrained Optimization 1 / 42 Algorithms for Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University April 19, 2015 2 / 42 Outline 1. Convergence 2. Sequential quadratic

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization E5295/5B5749 Convex optimization with engineering applications Lecture 8 Smooth convex unconstrained and equality-constrained minimization A. Forsgren, KTH 1 Lecture 8 Convex optimization 2006/2007 Unconstrained

More information

A Constraint-Reduced MPC Algorithm for Convex Quadratic Programming, with a Modified Active-Set Identification Scheme

A Constraint-Reduced MPC Algorithm for Convex Quadratic Programming, with a Modified Active-Set Identification Scheme A Constraint-Reduced MPC Algorithm for Convex Quadratic Programming, with a Modified Active-Set Identification Scheme M. Paul Laiu 1 and (presenter) André L. Tits 2 1 Oak Ridge National Laboratory laiump@ornl.gov

More information

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection 6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE Three Alternatives/Remedies for Gradient Projection Two-Metric Projection Methods Manifold Suboptimization Methods

More information

A feasible descent SQP algorithm for general constrained optimization without strict complementarity

A feasible descent SQP algorithm for general constrained optimization without strict complementarity Journal of Computational and Applied Mathematics 180 (2005) 391 412 www.elsevier.com/locate/cam A feasible descent SQP algorithm for general constrained optimization without strict complementarity Jin-Bao

More information

Solving l 1 Regularized Least Square Problems with Hierarchical Decomposition

Solving l 1 Regularized Least Square Problems with Hierarchical Decomposition Solving l 1 Least Square s with 1 mzhong1@umd.edu 1 AMSC and CSCAMM University of Maryland College Park Project for AMSC 663 October 2 nd, 2012 Outline 1 The 2 Outline 1 The 2 Compressed Sensing Example

More information

Zero-Order Methods for the Optimization of Noisy Functions. Jorge Nocedal

Zero-Order Methods for the Optimization of Noisy Functions. Jorge Nocedal Zero-Order Methods for the Optimization of Noisy Functions Jorge Nocedal Northwestern University Simons Institute, October 2017 1 Collaborators Albert Berahas Northwestern University Richard Byrd University

More information

Numerical Optimization. Review: Unconstrained Optimization

Numerical Optimization. Review: Unconstrained Optimization Numerical Optimization Finding the best feasible solution Edward P. Gatzke Department of Chemical Engineering University of South Carolina Ed Gatzke (USC CHE ) Numerical Optimization ECHE 589, Spring 2011

More information

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review Department of Statistical Sciences and Operations Research Virginia Commonwealth University Oct 16, 2013 (Lecture 14) Nonlinear Optimization

More information

Line Search Methods for Unconstrained Optimisation

Line Search Methods for Unconstrained Optimisation Line Search Methods for Unconstrained Optimisation Lecture 8, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The Generic

More information

School Year Calendar,

School Year Calendar, School Year Calendar, 0- August 0 0 First day for Start of st quarter September 0 Labor Day 0 ; schools closed for st -quarter progress reports 0 st -quarter progress reports Updated as of May 0; see www.baltimorecityschools.org

More information

An Inexact Newton Method for Nonlinear Constrained Optimization

An Inexact Newton Method for Nonlinear Constrained Optimization An Inexact Newton Method for Nonlinear Constrained Optimization Frank E. Curtis Numerical Analysis Seminar, January 23, 2009 Outline Motivation and background Algorithm development and theoretical results

More information

Some new facts about sequential quadratic programming methods employing second derivatives

Some new facts about sequential quadratic programming methods employing second derivatives To appear in Optimization Methods and Software Vol. 00, No. 00, Month 20XX, 1 24 Some new facts about sequential quadratic programming methods employing second derivatives A.F. Izmailov a and M.V. Solodov

More information

MPC Infeasibility Handling

MPC Infeasibility Handling MPC Handling Thomas Wiese, TU Munich, KU Leuven supervised by H.J. Ferreau, Prof. M. Diehl (both KUL) and Dr. H. Gräb (TUM) October 9, 2008 1 / 42 MPC General MPC Strategies 2 / 42 Linear Discrete-Time

More information

Sub-Sampled Newton Methods

Sub-Sampled Newton Methods Sub-Sampled Newton Methods F. Roosta-Khorasani and M. W. Mahoney ICSI and Dept of Statistics, UC Berkeley February 2016 F. Roosta-Khorasani and M. W. Mahoney (UCB) Sub-Sampled Newton Methods Feb 2016 1

More information

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods Quasi-Newton Methods General form of quasi-newton methods: x k+1 = x k α

More information

An Inexact Newton Method for Optimization

An Inexact Newton Method for Optimization New York University Brown Applied Mathematics Seminar, February 10, 2009 Brief biography New York State College of William and Mary (B.S.) Northwestern University (M.S. & Ph.D.) Courant Institute (Postdoc)

More information

PDE-Constrained and Nonsmooth Optimization

PDE-Constrained and Nonsmooth Optimization Frank E. Curtis October 1, 2009 Outline PDE-Constrained Optimization Introduction Newton s method Inexactness Results Summary and future work Nonsmooth Optimization Sequential quadratic programming (SQP)

More information

Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions

Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions International Journal of Control Vol. 00, No. 00, January 2007, 1 10 Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions I-JENG WANG and JAMES C.

More information

5.5 Quadratic programming

5.5 Quadratic programming 5.5 Quadratic programming Minimize a quadratic function subject to linear constraints: 1 min x t Qx + c t x 2 s.t. a t i x b i i I (P a t i x = b i i E x R n, where Q is an n n matrix, I and E are the

More information

Global convergence of a regularized factorized quasi-newton method for nonlinear least squares problems

Global convergence of a regularized factorized quasi-newton method for nonlinear least squares problems Volume 29, N. 2, pp. 195 214, 2010 Copyright 2010 SBMAC ISSN 0101-8205 www.scielo.br/cam Global convergence of a regularized factorized quasi-newton method for nonlinear least squares problems WEIJUN ZHOU

More information

CE 191: Civil & Environmental Engineering Systems Analysis. LEC 17 : Final Review

CE 191: Civil & Environmental Engineering Systems Analysis. LEC 17 : Final Review CE 191: Civil & Environmental Engineering Systems Analysis LEC 17 : Final Review Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley Fall 2014 Prof. Moura UC Berkeley

More information

2.3 Linear Programming

2.3 Linear Programming 2.3 Linear Programming Linear Programming (LP) is the term used to define a wide range of optimization problems in which the objective function is linear in the unknown variables and the constraints are

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

On Nesterov s Random Coordinate Descent Algorithms - Continued

On Nesterov s Random Coordinate Descent Algorithms - Continued On Nesterov s Random Coordinate Descent Algorithms - Continued Zheng Xu University of Texas At Arlington February 20, 2015 1 Revisit Random Coordinate Descent The Random Coordinate Descent Upper and Lower

More information

A Robust Implementation of a Sequential Quadratic Programming Algorithm with Successive Error Restoration

A Robust Implementation of a Sequential Quadratic Programming Algorithm with Successive Error Restoration A Robust Implementation of a Sequential Quadratic Programming Algorithm with Successive Error Restoration Address: Prof. K. Schittkowski Department of Computer Science University of Bayreuth D - 95440

More information

A COMPARATIVE STUDY ON OPTIMIZATION METHODS FOR THE CONSTRAINED NONLINEAR PROGRAMMING PROBLEMS

A COMPARATIVE STUDY ON OPTIMIZATION METHODS FOR THE CONSTRAINED NONLINEAR PROGRAMMING PROBLEMS A COMPARATIVE STUDY ON OPTIMIZATION METHODS FOR THE CONSTRAINED NONLINEAR PROGRAMMING PROBLEMS OZGUR YENIAY Received 2 August 2004 and in revised form 12 November 2004 Constrained nonlinear programming

More information

Simulating Solid Tumor Growth Using Multigrid Algorithms

Simulating Solid Tumor Growth Using Multigrid Algorithms Simulating Solid Tumor Growth Using Multigrid Algorithms Asia Wyatt Applied Mathematics, Statistics, and Scientific Computation Program Advisor: Doron Levy Department of Mathematics/CSCAMM Abstract In

More information

On the convergence properties of the modified Polak Ribiére Polyak method with the standard Armijo line search

On the convergence properties of the modified Polak Ribiére Polyak method with the standard Armijo line search ANZIAM J. 55 (E) pp.e79 E89, 2014 E79 On the convergence properties of the modified Polak Ribiére Polyak method with the standard Armijo line search Lijun Li 1 Weijun Zhou 2 (Received 21 May 2013; revised

More information

Optimization Problems with Constraints - introduction to theory, numerical Methods and applications

Optimization Problems with Constraints - introduction to theory, numerical Methods and applications Optimization Problems with Constraints - introduction to theory, numerical Methods and applications Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes (SOP)

More information

Penalty and Barrier Methods General classical constrained minimization problem minimize f(x) subject to g(x) 0 h(x) =0 Penalty methods are motivated by the desire to use unconstrained optimization techniques

More information

Quasi-Newton Methods

Quasi-Newton Methods Quasi-Newton Methods Werner C. Rheinboldt These are excerpts of material relating to the boos [OR00 and [Rhe98 and of write-ups prepared for courses held at the University of Pittsburgh. Some further references

More information

Convex Optimization. Prof. Nati Srebro. Lecture 12: Infeasible-Start Newton s Method Interior Point Methods

Convex Optimization. Prof. Nati Srebro. Lecture 12: Infeasible-Start Newton s Method Interior Point Methods Convex Optimization Prof. Nati Srebro Lecture 12: Infeasible-Start Newton s Method Interior Point Methods Equality Constrained Optimization f 0 (x) s. t. A R p n, b R p Using access to: 2 nd order oracle

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization 1 Origins Instructor: Michael Saunders Spring 2015 Notes 9: Augmented Lagrangian Methods

More information

Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization

Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization Infeasibility Detection and an Inexact Active-Set Method for Large-Scale Nonlinear Optimization Frank E. Curtis, Lehigh University involving joint work with James V. Burke, University of Washington Daniel

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 19: Midterm 2 Review Prof. John Gunnar Carlsson November 22, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I November 22, 2010 1 / 34 Administrivia

More information

5 Quasi-Newton Methods

5 Quasi-Newton Methods Unconstrained Convex Optimization 26 5 Quasi-Newton Methods If the Hessian is unavailable... Notation: H = Hessian matrix. B is the approximation of H. C is the approximation of H 1. Problem: Solve min

More information

A Regularized Interior-Point Method for Constrained Nonlinear Least Squares

A Regularized Interior-Point Method for Constrained Nonlinear Least Squares A Regularized Interior-Point Method for Constrained Nonlinear Least Squares XII Brazilian Workshop on Continuous Optimization Abel Soares Siqueira Federal University of Paraná - Curitiba/PR - Brazil Dominique

More information

Optimization. Yuh-Jye Lee. March 21, Data Science and Machine Intelligence Lab National Chiao Tung University 1 / 29

Optimization. Yuh-Jye Lee. March 21, Data Science and Machine Intelligence Lab National Chiao Tung University 1 / 29 Optimization Yuh-Jye Lee Data Science and Machine Intelligence Lab National Chiao Tung University March 21, 2017 1 / 29 You Have Learned (Unconstrained) Optimization in Your High School Let f (x) = ax

More information

Computational Optimization. Augmented Lagrangian NW 17.3

Computational Optimization. Augmented Lagrangian NW 17.3 Computational Optimization Augmented Lagrangian NW 17.3 Upcoming Schedule No class April 18 Friday, April 25, in class presentations. Projects due unless you present April 25 (free extension until Monday

More information

Stochastic Optimization Algorithms Beyond SG

Stochastic Optimization Algorithms Beyond SG Stochastic Optimization Algorithms Beyond SG Frank E. Curtis 1, Lehigh University involving joint work with Léon Bottou, Facebook AI Research Jorge Nocedal, Northwestern University Optimization Methods

More information

2 Chapter 1 rely on approximating (x) by using progressively ner discretizations of [0; 1] (see, e.g. [5, 7, 8, 16, 18, 19, 20, 23]). Specically, such

2 Chapter 1 rely on approximating (x) by using progressively ner discretizations of [0; 1] (see, e.g. [5, 7, 8, 16, 18, 19, 20, 23]). Specically, such 1 FEASIBLE SEQUENTIAL QUADRATIC PROGRAMMING FOR FINELY DISCRETIZED PROBLEMS FROM SIP Craig T. Lawrence and Andre L. Tits ABSTRACT Department of Electrical Engineering and Institute for Systems Research

More information

Modeling Multiphase Flow in Porous Media with Complementary Constraints

Modeling Multiphase Flow in Porous Media with Complementary Constraints Background Modeling Multiphase Flow in Porous Media with Complementary Constraints Applied Math, Statistics, and Scientific Computation, University of Maryland - College Park October 07, 2014 Advisors

More information

A GLOBALLY CONVERGENT STABILIZED SQP METHOD

A GLOBALLY CONVERGENT STABILIZED SQP METHOD A GLOBALLY CONVERGENT STABILIZED SQP METHOD Philip E. Gill Daniel P. Robinson July 6, 2013 Abstract Sequential quadratic programming SQP methods are a popular class of methods for nonlinearly constrained

More information

Primal-Dual Interior-Point Methods for Linear Programming based on Newton s Method

Primal-Dual Interior-Point Methods for Linear Programming based on Newton s Method Primal-Dual Interior-Point Methods for Linear Programming based on Newton s Method Robert M. Freund March, 2004 2004 Massachusetts Institute of Technology. The Problem The logarithmic barrier approach

More information

Lecture 13: Constrained optimization

Lecture 13: Constrained optimization 2010-12-03 Basic ideas A nonlinearly constrained problem must somehow be converted relaxed into a problem which we can solve (a linear/quadratic or unconstrained problem) We solve a sequence of such problems

More information

CSCI 1951-G Optimization Methods in Finance Part 09: Interior Point Methods

CSCI 1951-G Optimization Methods in Finance Part 09: Interior Point Methods CSCI 1951-G Optimization Methods in Finance Part 09: Interior Point Methods March 23, 2018 1 / 35 This material is covered in S. Boyd, L. Vandenberge s book Convex Optimization https://web.stanford.edu/~boyd/cvxbook/.

More information

Scientific Computing: Optimization

Scientific Computing: Optimization Scientific Computing: Optimization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 March 8th, 2011 A. Donev (Courant Institute) Lecture

More information

Unconstrained optimization

Unconstrained optimization Chapter 4 Unconstrained optimization An unconstrained optimization problem takes the form min x Rnf(x) (4.1) for a target functional (also called objective function) f : R n R. In this chapter and throughout

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-3: Unconstrained optimization II Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428

More information

Non-negative Matrix Factorization via accelerated Projected Gradient Descent

Non-negative Matrix Factorization via accelerated Projected Gradient Descent Non-negative Matrix Factorization via accelerated Projected Gradient Descent Andersen Ang Mathématique et recherche opérationnelle UMONS, Belgium Email: manshun.ang@umons.ac.be Homepage: angms.science

More information

Numerical Optimization of Partial Differential Equations

Numerical Optimization of Partial Differential Equations Numerical Optimization of Partial Differential Equations Part I: basic optimization concepts in R n Bartosz Protas Department of Mathematics & Statistics McMaster University, Hamilton, Ontario, Canada

More information

Qing-Juan Xu & Jin-Bao Jian

Qing-Juan Xu & Jin-Bao Jian A nonlinear norm-relaxed method for finely discretized semi-infinite optimization problems Qing-Juan Xu & Jin-Bao Jian Nonlinear Dynamics An International Journal of Nonlinear Dynamics and Chaos in Engineering

More information

Numerical Optimization: Basic Concepts and Algorithms

Numerical Optimization: Basic Concepts and Algorithms May 27th 2015 Numerical Optimization: Basic Concepts and Algorithms R. Duvigneau R. Duvigneau - Numerical Optimization: Basic Concepts and Algorithms 1 Outline Some basic concepts in optimization Some

More information

Reduced-Hessian Methods for Constrained Optimization

Reduced-Hessian Methods for Constrained Optimization Reduced-Hessian Methods for Constrained Optimization Philip E. Gill University of California, San Diego Joint work with: Michael Ferry & Elizabeth Wong 11th US & Mexico Workshop on Optimization and its

More information

Nonlinear Model Predictive Control Tools (NMPC Tools)

Nonlinear Model Predictive Control Tools (NMPC Tools) Nonlinear Model Predictive Control Tools (NMPC Tools) Rishi Amrit, James B. Rawlings April 5, 2008 1 Formulation We consider a control system composed of three parts([2]). Estimator Target calculator Regulator

More information

Support Vector Machines: Maximum Margin Classifiers

Support Vector Machines: Maximum Margin Classifiers Support Vector Machines: Maximum Margin Classifiers Machine Learning and Pattern Recognition: September 16, 2008 Piotr Mirowski Based on slides by Sumit Chopra and Fu-Jie Huang 1 Outline What is behind

More information

Global Convergence of Perry-Shanno Memoryless Quasi-Newton-type Method. 1 Introduction

Global Convergence of Perry-Shanno Memoryless Quasi-Newton-type Method. 1 Introduction ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.11(2011) No.2,pp.153-158 Global Convergence of Perry-Shanno Memoryless Quasi-Newton-type Method Yigui Ou, Jun Zhang

More information

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods Optimality Conditions: Equality Constrained Case As another example of equality

More information

An Alternative Three-Term Conjugate Gradient Algorithm for Systems of Nonlinear Equations

An Alternative Three-Term Conjugate Gradient Algorithm for Systems of Nonlinear Equations International Journal of Mathematical Modelling & Computations Vol. 07, No. 02, Spring 2017, 145-157 An Alternative Three-Term Conjugate Gradient Algorithm for Systems of Nonlinear Equations L. Muhammad

More information

Trust-region methods for rectangular systems of nonlinear equations

Trust-region methods for rectangular systems of nonlinear equations Trust-region methods for rectangular systems of nonlinear equations Margherita Porcelli Dipartimento di Matematica U.Dini Università degli Studi di Firenze Joint work with Maria Macconi and Benedetta Morini

More information

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09

Numerical Optimization Professor Horst Cerjak, Horst Bischof, Thomas Pock Mat Vis-Gra SS09 Numerical Optimization 1 Working Horse in Computer Vision Variational Methods Shape Analysis Machine Learning Markov Random Fields Geometry Common denominator: optimization problems 2 Overview of Methods

More information

4M020 Design tools. Algorithms for numerical optimization. L.F.P. Etman. Department of Mechanical Engineering Eindhoven University of Technology

4M020 Design tools. Algorithms for numerical optimization. L.F.P. Etman. Department of Mechanical Engineering Eindhoven University of Technology 4M020 Design tools Algorithms for numerical optimization L.F.P. Etman Department of Mechanical Engineering Eindhoven University of Technology Wednesday September 3, 2008 1 / 32 Outline 1 Problem formulation:

More information

A New Penalty-SQP Method

A New Penalty-SQP Method Background and Motivation Illustration of Numerical Results Final Remarks Frank E. Curtis Informs Annual Meeting, October 2008 Background and Motivation Illustration of Numerical Results Final Remarks

More information

Optimization. Yuh-Jye Lee. March 28, Data Science and Machine Intelligence Lab National Chiao Tung University 1 / 40

Optimization. Yuh-Jye Lee. March 28, Data Science and Machine Intelligence Lab National Chiao Tung University 1 / 40 Optimization Yuh-Jye Lee Data Science and Machine Intelligence Lab National Chiao Tung University March 28, 2017 1 / 40 The Key Idea of Newton s Method Let f : R n R be a twice differentiable function

More information

Sequential Convex Programming

Sequential Convex Programming Sequential Convex Programming sequential convex programming alternating convex optimization convex-concave procedure Prof. S. Boyd, EE364b, Stanford University Methods for nonconvex optimization problems

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

CE 191: Civil and Environmental Engineering Systems Analysis. LEC 05 : Optimality Conditions

CE 191: Civil and Environmental Engineering Systems Analysis. LEC 05 : Optimality Conditions CE 191: Civil and Environmental Engineering Systems Analysis LEC : Optimality Conditions Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley Fall 214 Prof. Moura

More information

Unconstrained Optimization

Unconstrained Optimization 1 / 36 Unconstrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University February 2, 2015 2 / 36 3 / 36 4 / 36 5 / 36 1. preliminaries 1.1 local approximation

More information

MA/OR/ST 706: Nonlinear Programming Midterm Exam Instructor: Dr. Kartik Sivaramakrishnan INSTRUCTIONS

MA/OR/ST 706: Nonlinear Programming Midterm Exam Instructor: Dr. Kartik Sivaramakrishnan INSTRUCTIONS MA/OR/ST 706: Nonlinear Programming Midterm Exam Instructor: Dr. Kartik Sivaramakrishnan INSTRUCTIONS 1. Please write your name and student number clearly on the front page of the exam. 2. The exam is

More information

CHAPTER 2: QUADRATIC PROGRAMMING

CHAPTER 2: QUADRATIC PROGRAMMING CHAPTER 2: QUADRATIC PROGRAMMING Overview Quadratic programming (QP) problems are characterized by objective functions that are quadratic in the design variables, and linear constraints. In this sense,

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6 - May 8, A.D. 2006 Optimization Group 1 Outline for week

More information

Lecture 15 Newton Method and Self-Concordance. October 23, 2008

Lecture 15 Newton Method and Self-Concordance. October 23, 2008 Newton Method and Self-Concordance October 23, 2008 Outline Lecture 15 Self-concordance Notion Self-concordant Functions Operations Preserving Self-concordance Properties of Self-concordant Functions Implications

More information

Interior Point Algorithms for Constrained Convex Optimization

Interior Point Algorithms for Constrained Convex Optimization Interior Point Algorithms for Constrained Convex Optimization Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Inequality constrained minimization problems

More information

Constrained Optimization and Distributed Computation Based Car-Following Control of A Connected and Autonomous Vehicle Platoon

Constrained Optimization and Distributed Computation Based Car-Following Control of A Connected and Autonomous Vehicle Platoon Constrained Optimization and Distributed Computation Based Car-Following Control of A Connected and Autonomous Vehicle Platoon Siyuan Gong a, Jinglai Shen b, Lili Du a ldu3@iit.edu a: Illinois Institute

More information

Numerical Methods I Solving Nonlinear Equations

Numerical Methods I Solving Nonlinear Equations Numerical Methods I Solving Nonlinear Equations Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 16th, 2014 A. Donev (Courant Institute)

More information

An interior point type QP-free algorithm with superlinear convergence for inequality constrained optimization

An interior point type QP-free algorithm with superlinear convergence for inequality constrained optimization Applied Mathematical Modelling 31 (2007) 1201 1212 www.elsevier.com/locate/apm An interior point type QP-free algorithm with superlinear convergence for inequality constrained optimization Zhibin Zhu *

More information

Inexact Newton Methods and Nonlinear Constrained Optimization

Inexact Newton Methods and Nonlinear Constrained Optimization Inexact Newton Methods and Nonlinear Constrained Optimization Frank E. Curtis EPSRC Symposium Capstone Conference Warwick Mathematics Institute July 2, 2009 Outline PDE-Constrained Optimization Newton

More information

Convex Optimization. Problem set 2. Due Monday April 26th

Convex Optimization. Problem set 2. Due Monday April 26th Convex Optimization Problem set 2 Due Monday April 26th 1 Gradient Decent without Line-search In this problem we will consider gradient descent with predetermined step sizes. That is, instead of determining

More information

Constrained optimization: direct methods (cont.)

Constrained optimization: direct methods (cont.) Constrained optimization: direct methods (cont.) Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Direct methods Also known as methods of feasible directions Idea in a point x h, generate a

More information

Minimax Design of Complex-Coefficient FIR Filters with Low Group Delay

Minimax Design of Complex-Coefficient FIR Filters with Low Group Delay Minimax Design of Complex-Coefficient FIR Filters with Low Group Delay Wu-Sheng Lu Takao Hinamoto Dept. of Elec. and Comp. Engineering Graduate School of Engineering University of Victoria Hiroshima University

More information

A derivative-free nonmonotone line search and its application to the spectral residual method

A derivative-free nonmonotone line search and its application to the spectral residual method IMA Journal of Numerical Analysis (2009) 29, 814 825 doi:10.1093/imanum/drn019 Advance Access publication on November 14, 2008 A derivative-free nonmonotone line search and its application to the spectral

More information

Optimization. Next: Curve Fitting Up: Numerical Analysis for Chemical Previous: Linear Algebraic and Equations. Subsections

Optimization. Next: Curve Fitting Up: Numerical Analysis for Chemical Previous: Linear Algebraic and Equations. Subsections Next: Curve Fitting Up: Numerical Analysis for Chemical Previous: Linear Algebraic and Equations Subsections One-dimensional Unconstrained Optimization Golden-Section Search Quadratic Interpolation Newton's

More information

Convergence of a Two-parameter Family of Conjugate Gradient Methods with a Fixed Formula of Stepsize

Convergence of a Two-parameter Family of Conjugate Gradient Methods with a Fixed Formula of Stepsize Bol. Soc. Paran. Mat. (3s.) v. 00 0 (0000):????. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v38i6.35641 Convergence of a Two-parameter Family of Conjugate

More information

Chapter 4. Unconstrained optimization

Chapter 4. Unconstrained optimization Chapter 4. Unconstrained optimization Version: 28-10-2012 Material: (for details see) Chapter 11 in [FKS] (pp.251-276) A reference e.g. L.11.2 refers to the corresponding Lemma in the book [FKS] PDF-file

More information

The Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers The Alternating Direction Method of Multipliers With Adaptive Step Size Selection Peter Sutor, Jr. Project Advisor: Professor Tom Goldstein December 2, 2015 1 / 25 Background The Dual Problem Consider

More information

Static unconstrained optimization

Static unconstrained optimization Static unconstrained optimization 2 In unconstrained optimization an objective function is minimized without any additional restriction on the decision variables, i.e. min f(x) x X ad (2.) with X ad R

More information

Lecture V. Numerical Optimization

Lecture V. Numerical Optimization Lecture V Numerical Optimization Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Numerical Optimization p. 1 /19 Isomorphism I We describe minimization problems: to maximize

More information

1. Introduction. We analyze a trust region version of Newton s method for the optimization problem

1. Introduction. We analyze a trust region version of Newton s method for the optimization problem SIAM J. OPTIM. Vol. 9, No. 4, pp. 1100 1127 c 1999 Society for Industrial and Applied Mathematics NEWTON S METHOD FOR LARGE BOUND-CONSTRAINED OPTIMIZATION PROBLEMS CHIH-JEN LIN AND JORGE J. MORÉ To John

More information

Interior-Point and Augmented Lagrangian Algorithms for Optimization and Control

Interior-Point and Augmented Lagrangian Algorithms for Optimization and Control Interior-Point and Augmented Lagrangian Algorithms for Optimization and Control Stephen Wright University of Wisconsin-Madison May 2014 Wright (UW-Madison) Constrained Optimization May 2014 1 / 46 In This

More information

Cubic regularization of Newton s method for convex problems with constraints

Cubic regularization of Newton s method for convex problems with constraints CORE DISCUSSION PAPER 006/39 Cubic regularization of Newton s method for convex problems with constraints Yu. Nesterov March 31, 006 Abstract In this paper we derive efficiency estimates of the regularized

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 15: Nonlinear optimization Prof. John Gunnar Carlsson November 1, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I November 1, 2010 1 / 24

More information

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES

CHARACTERIZATION OF NONLINEAR NEURON RESPONSES CHARACTERIZATION OF NONLINEAR NEURON RESPONSES Matt Whiteway whit8022@umd.edu Dr. Daniel A. Butts dab@umd.edu Neuroscience and Cognitive Science (NACS) Applied Mathematics and Scientific Computation (AMSC)

More information