CSCI 1951G Optimization Methods in Finance Part 09: Interior Point Methods


 Collin McDonald
 11 months ago
 Views:
Transcription
1 CSCI 1951G Optimization Methods in Finance Part 09: Interior Point Methods March 23, / 35
2 This material is covered in S. Boyd, L. Vandenberge s book Convex Optimization Some of the materials and the figures are taken from it. 2 / 35
3 Context Two weeks ago: unconstrained problems, solved with descent methods Last week: linearly constrained problems, solved with Newton s method This week: inequality constrained problems, solved with interior point methods 3 / 35
4 Inequality constrained minimization problems min f 0 (x) s.t. f i (x) 0, i = 1,..., m Ax = b f 0,..., f m : convex and twice continuously differentiable, A R p n, rank(a) = p < n) Assume: optimal solution x exists, with obj. value p. problem is strictly feasible (i.e., feasible region has interior points) Slater s condition hold: There exist λ and ν that, with x, satisfy KKTs. 4 / 35
5 Hierarchy of algorithms Transforming constrained problem to unconstrained: always possible, but has drawbacks Solving the constrained problem: direct, leverages problem structure What s the constrained problem class that is the easiest to solve? Quadratic Problems with Linear equality Constraints (LCQP) Only require to solve...a system of linear equations How did we solve generic problems with linear equality constraints? With Newton s method, which solves a sequence of...lcqps! We will solve inequality constrained problems with interior point methods, which solve a sequence of linear constrained problems! 5 / 35
6 Problem Transformation Goal: approximate the Inequality Constrained Problem (ICP) with an Equality Constrained Problem (ECP) solvable with Newton s method; We start by transforming the ICP into an equivalent ECP: From: To: min f 0 (x) s.t. f i (x) 0, i = 1,..., m Ax = b min g(x) s.t. Ax = b For g(x) = f 0 (x) + m I _ (f i (x)) where I _ (u) = i=1 { 0 u 0 u > 0 So we just use Newton s method and we are done. The End. Nope. 6 / 35
7 Logarithmic barrier min f 0 (x) + s.t. Ax = b m I _ (f i (x)) i=1 The obj. function is in general not differentiable: We can t use Newton s method. We want to approximate I _ (u) with a differentiable function: Î _ (u) = 1 t log( u) with domain R ++, and where t > 0 is a parameter 7 / 35
8 Logarithmic barrier The problem (11.3) has no inequality constraints, but its objective function is not (in general) differentiable, so Newton s method cannot be applied. 8 / 35 Î _ (u) 11.2is convex Logarithmic andbarrier differentiable function and central path u Figure 11.1 The dashed lines show the function I (u), and the solid curves show Î (u) = (1/t) log( u), for t =0.5, 1, 2. The curve for t = 2 gives the best approximation.
9 Logarithmic barrier min f 0 (x) 1 t s.t. Ax = b m log( f i (x)) i=1 The objective function is convex and differentiable: we can use Newton s method φ(x) = m i=1 log( f i(x)) is called the logarithmic barrier for the problem 9 / 35
10 Example: Inequality form linear programming min c T x Ax b The logarithmic barrier for this problem is m φ(x) = log(b i a T i x) i=1 where a i are the rows of A. 10 / 35
11 How to choose t? min f 0 (x) + 1 t φ(x) s.t. Ax = b is an approximation of the original problem. How does the quality of the approximation change with t? As t grows, 1 t φ(x) tends to I _ (f i (x)) so the approximation quality increases So let s just use a large t? Nope. 11 / 35
12 Why not using (immediately) a large t? What s the intuition behind Newton s method? Replace obj. function with 2ndorder Taylor approximation at x: f(x + v) f(x) + f(x) T v vt 2 f(x)v When does this approximation (and Newton s method) work well? When the Hessian changes slowly Is it the case for the barrier function? 12 / 35
13 Back to the example min c T x s.t. Ax b φ(x) = 2 φ(x) = m log(b i a T i x) i=1 m i=1 1 (b i a T i x)2 a ia T i The Hessian changes fast as x gets close to the boundary of the feasible region. 13 / 35
14 Why not using (immediately) a large t? The Hessian of the function f t φ varies rapidly near the boundary of the feasible set. This fact makes directly using a large t not efficient Instead, we will solve a sequence of problems in the form for increasing values of t min f 0 (x) + 1 t φ(x) s.t. Ax = b We start each Newton minimization at the solution of the problem for the previous value of t. 14 / 35
15 The central path Slight rewrite: min tf 0 (x) + φ(x) s.t. Ax = b Assume it has a unique solution x (t) for each t > 0. Central path: {x (t) : t > 0} (made of central points) 15 / 35
16 The central path Necessary and sufficient conditions for x (t): Strict feasibility: Ax (t) = b f i (x (t)) < 0, i = 1,..., m Zero of the Lagrangian (centrality condition): Exists ˆν 0 = t f 0 (x (t)) + φ(x (t)) + A Tˆν m = t f 0 (x 1 (t)) + f i (x (t)) f i(x (t)) + A Tˆν i=1 16 / 35
17 Back to the example min c T x s.t. Ax b Centrality condition: φ(x) = m log(b i a T i x) i=1 0 = t f 0 (x (t)) + φ(x (t)) + A Tˆν m 1 = tc + b i a T i xa i i=1 17 / 35
18 Back to the example we see that x (t) minimizes the Lagrangian 18 / 35 0 = tc + m 1 b i a T i xa i 566 i=1 11 Interiorpoint methods c x x (10) Figure 11.2 Central path for an LP with n = 2 and m = 6. The dashed curves show three contour lines of the logarithmic barrier function φ. The central path converges to the optimal point x as t.alsoshownisthe point on the central path with t = 10. The optimality condition (11.9) at this point can be verified geometrically: The line c T x = c T x (10) is tangent to the contour line of φ through x (10).
19 Dual point from the central path Every central point x (t) yields a dual feasible point (λ (t), ν (t)), thus a...lower bound to the optimal obj. value p : λ 1 i (t) = tf i (x (t)), i = 1,..., m ν (t) = ˆν t The proof gives us a lot of information 19 / 35
20 Proof λ i (t) > 0 because f i (x (t)) < 0 Rewrite the centrality condition: m 0 = t f 0 (x 1 (t)) + f i=1 i (x (t)) f i(x (t)) + A Tˆν m = f 0 (x (t)) + λ i (t) f i (x (t)) + A T ν (t) The above equals i=1 L x (x (t), λ (t), ν (t)) = 0 i.e., x (t)...minimizes the Lagrangian at λ (t), ν (t); 20 / 35
21 Proof Let s look at the dual function: m g(λ (t), ν (t)) = f 0 (x (t)) + λ i (t)f i x (t) + ν (t)(ax b) i=1 It holds g(λ (t), ν (t)) = f 0 (x (t)) m/t So f 0 (x (t))p m/t i.e., x ( t) is no more than m/tsuboptimal! x (t) converges to x as t. 21 / 35
22 The barrier method To get an εapproximation we could just set t =m/ε and solve min m ε f 0(x) + φ(x) Ax = b This method does not scale well with the size of the problem and with ε. Barrier method: Compute x (t) for an increasing sequence of values t until t m/ε 22 / 35
23 The barrier method input: strictly feasible x = x (0), t = t (0) > 0, µ > 1, ε > 0 repeat: 1 Centering step: Compute x (t) by minimizing tf 0 + φ subject to Ax = b, starting at x 2 Update: x x (t) 3 Stopping criterion: quit if m/t < ε 4 Increase t: t µt What can we ask about this algorithm? 23 / 35
24 The barrier method What can we ask about this algorithm? 1 How many iterations does it take to converge? 2 Do we need to optimally solve the centering step? 3 What is a good value for µ? 4 How to choose t (0)? 24 / 35
25 Convergence The algorithm stops when m/t < ε t starts at t (0) t increases to µt at each iteration How to compute the number of iterations needed? We must find the smallest i such that It holds: i = m ε < t(0) µ i log m εt (0) log m Is there anything important that this analysis does not tell us? It does not tell us whether, as t grows, the centering step becomes more difficult. (It does not) 25 / 35
26 35 Newton iterations m Figure 11.8 Average number of Newton steps required to solve 100 randomly generated LPs of different dimensions, with n = 2m. Error bars show standard deviation, around the average value, for each value of m. The growth in the number of Newton steps required, as the problem dimensions range over a 100:1 ratio, is very small. 26 / 35
27 The barrier method What can we ask about this algorithm? 1 How many iterations does it take to converge? 2 Do we need to optimally solve the centering step? 3 What is a good value for µ? 4 How to choose t (0)? 27 / 35
28 Solving the centering step optimally? Computing x (t) exactly is not necessary: the central path has no significance, it just leads to a solution of the original problem Inexact centering will still lead to the solution but the points (λ (t), ν (t)) may not be dual feasible. This issue can be corrected (homework) Additionally, getting a extremely accurate minimizer of tf 0 + φ only takes a few more Newton iterations than a good minimizer, so why not just go for it? 28 / 35
29 The barrier method What can we ask about this algorithm? 1 How many iterations does it take to converge? 2 Do we need to optimally solve the centering step? 3 What is a good value for µ? 4 How to choose t (0)? 29 / 35
30 Choosing µ The choice of µ involves a tradeoff between the number of outer iterations of the barrier method and the number of inner iterations of the Newton s method For small µ, t grows...slowly: the initial point of Newton s method is very good: in few inner iterations it converges to the next x(t). successive x(t), x(µt) are close so more outer iterations are needed For larger µ, the opposite holds. The two effects really cancel out: the total number of inner iterations stay constant for sufficiently large µ. 30 / 35
31 11 Interiorpoint methods duality gap µ =50 µ =150 µ = Newton iterations Figure 11.4 Progress of barrier method for a small LP, showing duality gap versus cumulative number of Newton steps. Three plots are shown, corresponding to three values of the parameter µ: 2, 50, and 150. In each case, we have approximately linear convergence of duality gap. Newton s method is λ(x) 2 /2 10 5, where λ(x) is the Newton decrement of the 31 / 35
32 11.3 The barrier method Newton iterations µ Figure 11.5 Tradeoff in the choice of the parameter µ, for a small LP. The vertical axis shows the total number of Newton steps required to reduce the duality gap from 100 to 10 3, and the horizontal axis shows µ. The plot shows the barrier method works well for values of µ larger than around 3, but is otherwise not sensitive to the value of µ. This plot shows that the barrier method performs very well for a wide range of 32 / 35
33 The barrier method What can we ask about this algorithm? 1 How many iterations does it take to converge? 2 Do we need to optimally solve the centering step? 3 What is a good value for µ? 4 How to choose t (0)? 33 / 35
34 How to choose t (0) A very large initial t incurs in more inner iterations at the first outer iteration A very small initial t incurs in more outer iterations m/t (0) is the 1st duality gap. We want to choose t (0) so that m/t (0) µ(f 0 (x (0) ) p ). If we have feasible dual points (λ, ν), with duality gap η = f 0 (x (0) ) g(λ, ν), then we can take t (0) = m/η. Thus in the 1st outer iteration we get the same duality gap as the initial primal and dual. 34 / 35
35 Recap Inequality constrained problems Up and down a hierarchy of algorithms The central path Getting the dual points and the optimality certificate The barrier method Convergence, parameters, and other details 35 / 35
Interior Point Algorithms for Constrained Convex Optimization
Interior Point Algorithms for Constrained Convex Optimization Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Inequality constrained minimization problems
More informationConvex Optimization. Newton s method. ENSAE: Optimisation 1/44
Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)
More informationBarrier Method. Javier Peña Convex Optimization /36725
Barrier Method Javier Peña Convex Optimization 10725/36725 1 Last time: Newton s method For rootfinding F (x) = 0 x + = x F (x) 1 F (x) For optimization x f(x) x + = x 2 f(x) 1 f(x) Assume f strongly
More information12. Interiorpoint methods
12. Interiorpoint methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity
More information12. Interiorpoint methods
12. Interiorpoint methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity
More informationLecture 9 Sequential unconstrained minimization
S. Boyd EE364 Lecture 9 Sequential unconstrained minimization brief history of SUMT & IP methods logarithmic barrier function central path UMT & SUMT complexity analysis feasibility phase generalized inequalities
More informationInequality constrained minimization: logbarrier method
Inequality constrained minimization: logbarrier method We wish to solve min c T x subject to Ax b with n = 50 and m = 100. We use the barrier method with logarithmic barrier function m ϕ(x) = log( (a
More informationLecture 16: October 22
0725/36725: Conve Optimization Fall 208 Lecturer: Ryan Tibshirani Lecture 6: October 22 Scribes: Nic Dalmasso, Alan Mishler, Benja LeRoy Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:
More informationLecture 15 Newton Method and SelfConcordance. October 23, 2008
Newton Method and SelfConcordance October 23, 2008 Outline Lecture 15 Selfconcordance Notion Selfconcordant Functions Operations Preserving Selfconcordance Properties of Selfconcordant Functions Implications
More informationCS711008Z Algorithm Design and Analysis
CS711008Z Algorithm Design and Analysis Lecture 8 Linear programming: interior point method Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 31 Outline Brief
More informationLecture 14 Barrier method
L. Vandenberghe EE236A (Fall 201314) Lecture 14 Barrier method centering problem Newton decrement local convergence of Newton method shortstep barrier method global convergence of Newton method predictorcorrector
More informationConvex Optimization and l 1 minimization
Convex Optimization and l 1 minimization Sangwoon Yun Computational Sciences Korea Institute for Advanced Study December 11, 2009 2009 NIMS Thematic Winter School Outline I. Convex Optimization II. l
More informationApplications of Linear Programming
Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 9 Nonlinear programming In case of LP, the goal
More informationPrimalDual InteriorPoint Methods. Ryan Tibshirani Convex Optimization
PrimalDual InteriorPoint Methods Ryan Tibshirani Convex Optimization 10725 Given the problem Last time: barrier method min x subject to f(x) h i (x) 0, i = 1,... m Ax = b where f, h i, i = 1,... m are
More informationCSE4830 Kernel Methods in Machine Learning
CSE4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This
More informationA Tutorial on Convex Optimization II: Duality and Interior Point Methods
A Tutorial on Convex Optimization II: Duality and Interior Point Methods Haitham Hindi Palo Alto Research Center (PARC), Palo Alto, California 94304 email: hhindi@parc.com Abstract In recent years, convex
More informationHomework 4. Convex Optimization /36725
Homework 4 Convex Optimization 10725/36725 Due Friday November 4 at 5:30pm submitted to Christoph Dann in Gates 8013 (Remember to a submit separate writeup for each problem, with your name at the top)
More informationPrimalDual InteriorPoint Methods
PrimalDual InteriorPoint Methods Lecturer: Aarti Singh Coinstructor: Pradeep Ravikumar Convex Optimization 10725/36725 Outline Today: Primaldual interiorpoint method Special case: linear programming
More information10. Unconstrained minimization
Convex Optimization Boyd & Vandenberghe 10. Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method selfconcordant functions implementation
More informationLagrange duality. The Lagrangian. We consider an optimization program of the form
Lagrange duality Another way to arrive at the KKT conditions, and one which gives us some insight on solving constrained optimization problems, is through the Lagrange dual. The dual is a maximization
More informationConstrained Optimization and Lagrangian Duality
CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may
More informationCSCI : Optimization and Control of Networks. Review on Convex Optimization
CSCI7000016: Optimization and Control of Networks Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one
More informationPrimalDual InteriorPoint Methods. Ryan Tibshirani Convex Optimization /36725
PrimalDual InteriorPoint Methods Ryan Tibshirani Convex Optimization 10725/36725 Given the problem Last time: barrier method min x subject to f(x) h i (x) 0, i = 1,... m Ax = b where f, h i, i = 1,...
More informationUnconstrained minimization
CSCI5254: Convex Optimization & Its Applications Unconstrained minimization terminology and assumptions gradient descent method steepest descent method Newton s method selfconcordant functions 1 Unconstrained
More informationInteriorPoint Methods for Linear Optimization
InteriorPoint Methods for Linear Optimization Robert M. Freund and Jorge Vera March, 204 c 204 Robert M. Freund and Jorge Vera. All rights reserved. Linear Optimization with a Logarithmic Barrier Function
More information11. Equality constrained minimization
Convex Optimization Boyd & Vandenberghe 11. Equality constrained minimization equality constrained minimization eliminating equality constraints Newton s method with equality constraints infeasible start
More informationICSE4030 Kernel Methods in Machine Learning
ICSE4030 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 28. September, 2016 Juho Rousu 28. September, 2016 1 / 38 Convex optimization Convex optimisation This
More informationWritten Examination
Division of Scientific Computing Department of Information Technology Uppsala University Optimization Written Examination 202220 Time: 4:009:00 Allowed Tools: Pocket Calculator, one A4 paper with notes
More informationOptimization Tutorial 1. Basic Gradient Descent
E0 270 Machine Learning Jan 16, 2015 Optimization Tutorial 1 Basic Gradient Descent Lecture by Harikrishna Narasimhan Note: This tutorial shall assume background in elementary calculus and linear algebra.
More informationA Brief Review on Convex Optimization
A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review
More information14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness.
CS/ECE/ISyE 524 Introduction to Optimization Spring 2016 17 14. Duality ˆ Upper and lower bounds ˆ General duality ˆ Constraint qualifications ˆ Counterexample ˆ Complementary slackness ˆ Examples ˆ Sensitivity
More informationNonlinear Optimization for Optimal Control
Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]
More information10 Numerical methods for constrained problems
10 Numerical methods for constrained problems min s.t. f(x) h(x) = 0 (l), g(x) 0 (m), x X The algorithms can be roughly divided the following way: ˆ primal methods: find descent direction keeping inside
More informationLecture 8. Strong Duality Results. September 22, 2008
Strong Duality Results September 22, 2008 Outline Lecture 8 Slater Condition and its Variations Convex Objective with Linear Inequality Constraints Quadratic Objective over Quadratic Constraints Representation
More informationConvex Optimization. 9. Unconstrained minimization. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University
Convex Optimization 9. Unconstrained minimization Prof. Ying Cui Department of Electrical Engineering Shanghai Jiao Tong University 2017 Autumn Semester SJTU Ying Cui 1 / 40 Outline Unconstrained minimization
More informationsubject to (x 2)(x 4) u,
Exercises Basic definitions 5.1 A simple example. Consider the optimization problem with variable x R. minimize x 2 + 1 subject to (x 2)(x 4) 0, (a) Analysis of primal problem. Give the feasible set, the
More informationConvex Optimization. Prof. Nati Srebro. Lecture 12: InfeasibleStart Newton s Method Interior Point Methods
Convex Optimization Prof. Nati Srebro Lecture 12: InfeasibleStart Newton s Method Interior Point Methods Equality Constrained Optimization f 0 (x) s. t. A R p n, b R p Using access to: 2 nd order oracle
More informationMotivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem:
CDS270 Maryam Fazel Lecture 2 Topics from Optimization and Duality Motivation network utility maximization (NUM) problem: consider a network with S sources (users), each sending one flow at rate x s, through
More informationConvex Optimization Lecture 13
Convex Optimization Lecture 13 Today: InteriorPoint (continued) Central Path method for SDP Feasibility and Phase I Methods From Central Path to Primal/Dual Central'Path'Log'Barrier'Method Init: Feasible&#
More informationPrimalDual InteriorPoint Methods for Linear Programming based on Newton s Method
PrimalDual InteriorPoint Methods for Linear Programming based on Newton s Method Robert M. Freund March, 2004 2004 Massachusetts Institute of Technology. The Problem The logarithmic barrier approach
More informationOptimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de MatemáticasUniOvi) Numerical Computation Optimization 1 / 30
Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de MatemáticasUniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained
More information5 Handling Constraints
5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest
More informationNewton s Method. Ryan Tibshirani Convex Optimization /36725
Newton s Method Ryan Tibshirani Convex Optimization 10725/36725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, Properties and examples: f (y) = max x
More informationNewton s Method. Javier Peña Convex Optimization /36725
Newton s Method Javier Peña Convex Optimization 10725/36725 1 Last time: dual correspondences Given a function f : R n R, we define its conjugate f : R n R, f ( (y) = max y T x f(x) ) x Properties and
More informationConvex Optimization. Dani Yogatama. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. February 12, 2014
Convex Optimization Dani Yogatama School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA February 12, 2014 Dani Yogatama (Carnegie Mellon University) Convex Optimization February 12,
More informationOptimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers
Optimization for Communications and Networks Poompat Saengudomlert Session 4 Duality and Lagrange Multipliers P Saengudomlert (2015) Optimization Session 4 1 / 14 24 Dual Problems Consider a primal convex
More informationExtreme Abridgment of Boyd and Vandenberghe s Convex Optimization
Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very wellwritten and a pleasure to read. The
More information2.098/6.255/ Optimization Methods Practice True/False Questions
2.098/6.255/15.093 Optimization Methods Practice True/False Questions December 11, 2009 Part I For each one of the statements below, state whether it is true or false. Include a 13 line supporting sentence
More informationminimize x subject to (x 2)(x 4) u,
Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 function with f () on (, L) and that you have explicit formulae for
More informationE5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming
E5295/5B5749 Convex optimization with engineering applications Lecture 5 Convex programming and semidefinite programming A. Forsgren, KTH 1 Lecture 5 Convex optimization 2006/2007 Convex quadratic program
More informationQuiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006
Quiz Discussion IE417: Nonlinear Programming: Lecture 12 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University 16th March 2006 Motivation Why do we care? We are interested in
More informationLecture 14: October 17
1725/36725: Convex Optimization Fall 218 Lecture 14: October 17 Lecturer: Lecturer: Ryan Tibshirani Scribes: Pengsheng Guo, Xian Zhou Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:
More informationLecture 24: August 28
10725: Optimization Fall 2012 Lecture 24: August 28 Lecturer: Geoff Gordon/Ryan Tibshirani Scribes: Jiaji Zhou,Tinghui Zhou,Kawa Cheung Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:
More information5. Duality. Lagrangian
5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized
More informationConvex Optimization. Lecture 12  Equality Constrained Optimization. Instructor: Yuanzhang Xiao. Fall University of Hawaii at Manoa
Convex Optimization Lecture 12  Equality Constrained Optimization Instructor: Yuanzhang Xiao University of Hawaii at Manoa Fall 2017 1 / 19 Today s Lecture 1 Basic Concepts 2 for Equality Constrained
More informationConvex Optimization and SVM
Convex Optimization and SVM Problem 0. Cf lecture notes pages 12 to 18. Problem 1. (i) A slab is an intersection of two half spaces, hence convex. (ii) A wedge is an intersection of two half spaces, hence
More informationTwo hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. xx xxxx 2017 xx:xx xx.
Two hours To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER CONVEX OPTIMIZATION  SOLUTIONS xx xxxx 27 xx:xx xx.xx Answer THREE of the FOUR questions. If
More informationConvex Optimization & Lagrange Duality
Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT
More informationEE364a Homework 8 solutions
EE364a, Winter 200708 Prof. S. Boyd EE364a Homework 8 solutions 9.8 Steepest descent method in l norm. Explain how to find a steepest descent direction in the l norm, and give a simple interpretation.
More informationPrimalDual InteriorPoint Methods. Javier Peña Convex Optimization /36725
PrimalDual InteriorPoint Methods Javier Peña Convex Optimization 10725/36725 Last time: duality revisited Consider the problem min x subject to f(x) Ax = b h(x) 0 Lagrangian L(x, u, v) = f(x) + u T
More informationStructural and Multidisciplinary Optimization. P. Duysinx and P. Tossings
Structural and Multidisciplinary Optimization P. Duysinx and P. Tossings 20182019 CONTACTS Pierre Duysinx Institut de Mécanique et du Génie Civil (B52/3) Phone number: 04/366.91.94 Email: P.Duysinx@uliege.be
More informationConstrained optimization: direct methods (cont.)
Constrained optimization: direct methods (cont.) Jussi Hakanen Postdoctoral researcher jussi.hakanen@jyu.fi Direct methods Also known as methods of feasible directions Idea in a point x h, generate a
More informationKarushKuhnTucker Conditions. Lecturer: Ryan Tibshirani Convex Optimization /36725
KarushKuhnTucker Conditions Lecturer: Ryan Tibshirani Convex Optimization 10725/36725 1 Given a minimization problem Last time: duality min x subject to f(x) h i (x) 0, i = 1,... m l j (x) = 0, j =
More informationLecture 7: Convex Optimizations
Lecture 7: Convex Optimizations Radu Balan, David Levermore March 29, 2018 Convex Sets. Convex Functions A set S R n is called a convex set if for any points x, y S the line segment [x, y] := {tx + (1
More informationI.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec  Spring 2010
I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec  Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0
More informationAdvances in Convex Optimization: Theory, Algorithms, and Applications
Advances in Convex Optimization: Theory, Algorithms, and Applications Stephen Boyd Electrical Engineering Department Stanford University (joint work with Lieven Vandenberghe, UCLA) ISIT 02 ISIT 02 Lausanne
More informationNonlinear Programming
Nonlinear Programming Kees Roos email: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6  May 8, A.D. 2006 Optimization Group 1 Outline for week
More informationConvex Optimization M2
Convex Optimization M2 Lecture 3 A. d Aspremont. Convex Optimization M2. 1/49 Duality A. d Aspremont. Convex Optimization M2. 2/49 DMs DM par email: dm.daspremont@gmail.com A. d Aspremont. Convex Optimization
More informationInterior Point Methods in Mathematical Programming
Interior Point Methods in Mathematical Programming Clóvis C. Gonzaga Federal University of Santa Catarina, Brazil Journées en l honneur de Pierre Huard Paris, novembre 2008 01 00 11 00 000 000 000 000
More informationEquality constrained minimization
Chapter 10 Equality constrained minimization 10.1 Equality constrained minimization problems In this chapter we describe methods for solving a convex optimization problem with equality constraints, minimize
More informationAlgorithms for constrained local optimization
Algorithms for constrained local optimization Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Algorithms for constrained local optimization p. Feasible direction methods Algorithms for constrained
More informationDuality revisited. Javier Peña Convex Optimization /36725
Duality revisited Javier Peña Conve Optimization 10725/36725 1 Last time: barrier method Main idea: approimate the problem f() + I C () with the barrier problem f() + 1 t φ() tf() + φ() where t > 0 and
More informationComputational Optimization. Constrained Optimization Part 2
Computational Optimization Constrained Optimization Part Optimality Conditions Unconstrained Case X* is global min Conve f X* is local min SOSC f ( *) = SONC Easiest Problem Linear equality constraints
More informationAnalytic Center CuttingPlane Method
Analytic Center CuttingPlane Method S. Boyd, L. Vandenberghe, and J. Skaf April 14, 2011 Contents 1 Analytic center cuttingplane method 2 2 Computing the analytic center 3 3 Pruning constraints 5 4 Lower
More informationLecture: Duality of LP, SOCP and SDP
1/33 Lecture: Duality of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html wenzw@pku.edu.cn Acknowledgement:
More informationOptimization. YuhJye Lee. March 21, Data Science and Machine Intelligence Lab National Chiao Tung University 1 / 29
Optimization YuhJye Lee Data Science and Machine Intelligence Lab National Chiao Tung University March 21, 2017 1 / 29 You Have Learned (Unconstrained) Optimization in Your High School Let f (x) = ax
More informationOptimality Conditions for Constrained Optimization
72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)
More informationDeterminant maximization with linear. S. Boyd, L. Vandenberghe, S.P. Wu. Information Systems Laboratory. Stanford University
Determinant maximization with linear matrix inequality constraints S. Boyd, L. Vandenberghe, S.P. Wu Information Systems Laboratory Stanford University SCCM Seminar 5 February 1996 1 MAXDET problem denition
More informationAgenda. Interior Point Methods. 1 Barrier functions. 2 Analytic center. 3 Central path. 4 Barrier method. 5 Primaldual path following algorithms
Agenda Interior Point Methods 1 Barrier functions 2 Analytic center 3 Central path 4 Barrier method 5 Primaldual path following algorithms 6 Nesterov Todd scaling 7 Complexity analysis Interior point
More informationLecture 5: September 15
10725/36725: Convex Optimization Fall 2015 Lecture 5: September 15 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Di Jin, Mengdi Wang, Bin Deng Note: LaTeX template courtesy of UC Berkeley EECS
More informationNonlinear Optimization: What s important?
Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global
More informationPenalty and Barrier Methods. So we again build on our unconstrained algorithms, but in a different way.
AMSC 607 / CMSC 878o Advanced Numerical Optimization Fall 2008 UNIT 3: Constrained Optimization PART 3: Penalty and Barrier Methods Dianne P. O Leary c 2008 Reference: N&S Chapter 16 Penalty and Barrier
More informationLecture 3. Optimization Problems and Iterative Algorithms
Lecture 3 Optimization Problems and Iterative Algorithms January 13, 2016 This material was jointly developed with Angelia Nedić at UIUC for IE 598ns Outline Special Functions: Linear, Quadratic, Convex
More informationConstrained Optimization
1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange
More informationConvex Optimization Boyd & Vandenberghe. 5. Duality
5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized
More informationLecture 6: Conic Optimization September 8
IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions
More informationScientific Computing: Optimization
Scientific Computing: Optimization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATHGA.2043 or CSCIGA.2112, Spring 2012 March 8th, 2011 A. Donev (Courant Institute) Lecture
More informationUC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009
UC Berkeley Department of Electrical Engineering and Computer Science EECS 227A Nonlinear and Convex Optimization Solutions 5 Fall 2009 Reading: Boyd and Vandenberghe, Chapter 5 Solution 5.1 Note that
More information8. Geometric problems
8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 Minimum volume ellipsoid around a set LöwnerJohn ellipsoid
More information4TE3/6TE3. Algorithms for. Continuous Optimization
4TE3/6TE3 Algorithms for Continuous Optimization (Algorithms for Constrained Nonlinear Optimization Problems) Tamás TERLAKY Computing and Software McMaster University Hamilton, November 2005 terlaky@mcmaster.ca
More informationTruncated Newton Method
Truncated Newton Method approximate Newton methods truncated Newton methods truncated Newton interiorpoint methods EE364b, Stanford University minimize convex f : R n R Newton s method Newton step x nt
More informationLinear and nonlinear programming
Linear and nonlinear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)
More informationEE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17
EE/ACM 150  Applications of Convex Optimization in Signal Processing and Communications Lecture 17 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 29, 2012 Andre Tkacenko
More informationOptimization. YuhJye Lee. March 28, Data Science and Machine Intelligence Lab National Chiao Tung University 1 / 40
Optimization YuhJye Lee Data Science and Machine Intelligence Lab National Chiao Tung University March 28, 2017 1 / 40 The Key Idea of Newton s Method Let f : R n R be a twice differentiable function
More informationSelfConcordant Barrier Functions for Convex Optimization
Appendix F SelfConcordant Barrier Functions for Convex Optimization F.1 Introduction In this Appendix we present a framework for developing polynomialtime algorithms for the solution of convex optimization
More information4. Algebra and Duality
41 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: nonconvex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone
More informationConvex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization
Convex Optimization Ofer Meshi Lecture 6: Lower Bounds Constrained Optimization Lower Bounds Some upper bounds: #iter μ 2 M #iter 2 M #iter L L μ 2 Oracle/ops GD κ log 1/ε M x # ε L # x # L # ε # με f
More informationA : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution:
15: Leastsquares I A : k n. Usually k > n otherwise easily the minimum is zero. Analytical solution: f (x) =(Ax b) T (Ax b) =x T A T Ax 2b T Ax + b T b f (x) = 2A T Ax 2A T b = 0 ChihJen Lin (National
More information