3.012 PS Issued: Fall 2003 Graded problems due:

Size: px
Start display at page:

Download "3.012 PS Issued: Fall 2003 Graded problems due:"

Transcription

1 3.012 PS Issued: Fall 2003 Graded problems due: Graded problems: 1. Planes and directions. Consider a 2-dimensional lattice defined by translations T 1 and T 2. a. Is the direction [hk] perpendicular to the plane (hk)? Always? Sometimes? Never? b. Let s now extend our consideration to three-dimensional lattices. Is the direction [hkl] perpendicular to the plane (hkl)? 2. Assignment of Miller-Bravais indices. The following process leads to unambiguous determination of the Miller-Bravais indices (hkl) for a rational lattice plane in terms of its intercepts (in units of a, b, and c) on the edges of the unit cell. The method is based on the fact that the intercepts of the first plane from the origin are 1/h 1/k 1/l and those of the n th plane from the origin are n/h n/k n/l. Therefore, for any rational plane in the stack one can: (a) find n/h n/k n/l; (b) take the reciprocals h/n k/n l/n; (c) clear the common factor 1/n to obtain hkl. The indices hkl, therefore, should contain no common factor. However, one often sees diffraction patterns with peaks indexed in terms of the indices of the d hkl that gave rise to them. Some of these are assigned indices such as 222, 400, or 550 (to name a few) that obviously contain a common factor. What s going on here? Don t these people know how to assign Miller-Bravais indices properly? Please provide an explanation of this situation using Bragg s law. 3. 1D diffraction. We direct a beam of X-radiation with wavelength l = 1 Å at an angle of incidence m = 52 o onto a real one-dimensional crystal consisting of a row of identical atoms spaced at a lattice constant a = 3.5 Å. A 10x10 cm square piece of film is placed in an orientation normal to the lattice row (see sketch of the arrangement below). a. At what distance from the crystal must the film be placed if a record of the complete diffraction cone is to be recorded on the film? b. Sketch qualitatively (but realistically) the distribution of intensity that you would expect to see on the film, remembering that the electrons scattering the radiation have a spatial distribution about the atom that is comparable to 1 Å (with a lattice constant of 3.5 Å, the atomic radius will be 1.75 Å). c. Will a record of any other diffraction cone appear on the film? PS 4 1 of 14 10/15/03

2 4. Identifying symmetries. Two patterns follow that are translationally-periodic and which possess symmetry elements of various sorts. a. Draw on the patterns a set of dots that represent lattice points (bold, plump little dots, please, so that they may be readily discerned by a grader!). Connect four of them to define a cell. b. Draw in, using standard symbols (bold lines for mirror lines, n-gons for rotation axes), the loci of all symmetry elements that you can find. (Note: As everything is repeated by translation you need do this only at the periphery and within the area encompassed by one unit cell). c. Identify with shading the asymmetric unit- that minimal area of the pattern which, upon specification of the symmetry of the pattern, would permit generation of the entire pattern PS 4 2 of 14 10/15/03

3 3.012 PS 4 3 of 14 10/15/03

4 3.012 PS 4 4 of 14 10/15/03

5 5. Interpretation of the second law. Mortimer problem 4.46, parts a-f. (a) false the entropy of the system + surroundings must increase in a spontaneous (irreversible) process occurs, but the entropy of the system alone may increase or decrease. (b) False same as part (a). (c) True. (d) False- the entropy of the system + surroundings remains constant in a reversible process. (e) False- same as part (d). (f) True. 6. The free energy of a rubber band[dji1]. If a rubber band is stretched adiabatically, its temperature increases (try it! Stretch a rubber band and press it immediately against your lip). If we assume the rubber band maintains a constant volume (though its shape changes), we can write it s fundamental equation as: du = TdS + (kl)dl where k is an elastic constant for stretching the band (equivalent to the elastic constant of a spring), and l is the length of the rubber band. Measurements show the elastic constant k is always positive and increases with increasing temperature. (a) Derive the Helmholtz free energy for the rubber band at constant volume. df = du - TdS - SdT df =-SdT + (kl)dl - PdV at constant volume, dv = 0 df =-SdT + (kl)dl (b) Derive the Maxwell relation for this material from the Helmholtz free energy and use it to predict whether the entropy increases, decreases, or stays the same when the rubber band is stretched isothermally. The Maxwell relation is obtained by differentiating first with respect to temperature, and second with respect to length: Ê F ˆ Á =-S Ë T l Ê 2 F ˆ Ê (-S)ˆ Á = Á Ë l T Ë l T PS 4 5 of 14 10/15/03

6 Reversing the order of differentiation, we have: Finally, equating the two derivatives: Ê F ˆ Á = kl Ë l T Ê 2 F ˆ Ê (kl)ˆ Ê k ˆ Á = Á = lá Ë T l Ë T l Ë T l Ê 2 F ˆ Ê 2 F ˆ Á = Á Ë l T Ë T l Ê S ˆ Ê k ˆ -Á = lá Ë l T Ë T l The Maxwell relation says that the entropy of the rubber band decreases if the rubber band is stretched isothermally- because the derivative on the right hand side is positive, given that k increases with increasing temperature. (c) If the rubber band is stretched adiabatically, does the internal energy increase, decrease, or stay the same? (Show why). In an adiabatic process, the entropy change ds = 0 (dq rev = 0). This leaves: du = (kl)dl Since dl, k, and l are all positive in a stretching process, the internal energy must increase PS 4 6 of 14 10/15/03

7 Optional problems: 7. A crystal that is cubic, with lattice constant a = 10 Å is irradiated with Cu Ka radiation (l Cu Ka = Å). A side-view of the experiment and the sphere of reflection that is employed in the Ewald Construction to interpret the experiment is shown below. The vectors that are used to describe the reciprocal lattice are a 1 * = l/d 100 = l/a 1, a 2 * = l/a 2, and a 3 * = l/a 3. The reciprocal lattice vectors are parallel to the directions of the corresponding a 1, a 2, and a 3. The reciprocal lattice vector s hkl that must be brought onto the surface of the sphere of reflection to generate diffraction by d hkl is given by s hkl = ha 1 * + ka 2 * + la 3 *. The crystal is rotated about an axis normal to the incident beam to satisfy the diffraction condition. a 3 * is oriented along r the rotation axis and a 1 * is initially parallel to S o, the direction of the incident beam. a. What is the maximum value of l for which a diffraction peak can be generated? b. What is the maximum value of h for which a peak will be generated? c. What is the total number of different diffraction peaks of the class hk0 that will be generated as the crystal is rotated through 360? ( ±h ±k and ±l are to be considered different indices). d. Through what angle in a counter-clockwise direction must the crystal be rotated in order to generate the 320 diffraction peak? PS 4 7 of 14 10/15/03

8 8. More practice with symmetry recognition. Repeat problem 4 for the two (more difficult) periodic patterns provided below PS 4 8 of 14 10/15/03

9 3.012 PS 4 9 of 14 10/15/03

10 9. The second law applied to heating processes[dji2]. a. One kg of water at 273K is brought into contact with a heat reservoir at 373K. When the water has reached 373K, what is the entropy change of the water, of the heat reservoir, and of the universe? b. If the water had been heated from 273K to 373K by first bringing it into contact with a reservoir at 323K and then with a reservoir at 373K, what would have been the entropy change of the universe? c. Explain how the water might be heated from 273K to 373K with almost no change of entropy of the universe. The heat capacity of water can be taken as: C p L = J/mole K (a) First, the entropy change in the system is obtained using the relationship between heat capacity and entropy: 373 L nc P L DS system = Ú dt = nc P ln = 4184 ln =1305.8J /K T n is the number of moles of water (needed to convert from the heat capacity per mole to the total amount of entropy in the system). To calculate the entropy change of the reservoir, we need to know how much heat was passed from the reservoir to the system during this process: = dq P dt C L 373 \q L system = Ú nc P dt = 418,400J 273 Then the entropy change of the reservoir is given by: dq ds = rev T -q \D S system -418, 400 reservoir = = = J /K 373K T reservoir Finally, the entropy change of the universe is simply the sum of the entropy changes in the system and the reservoir (nothing else in the universe changes in this process): DS universe =DS system +DS reservoir =184.1J /K PS 4 10 of 14 10/15/03

11 For the first step, heating to 323K: (b) We solve this part in a similar manner, by accounting entropy changes in each step. 323 L nc P L DS system = Ú dt = nc P ln = 4184 ln = 703.7J /K T q L system = Ú nc P dt = 209,200J 273 DS reservoir = -q system = -209,200 =-647.7J /K 323K T reservoir and in the second step, heating from 323K to 373K: 373 L nc P L DS system = Ú dt = nc P ln = 4184 ln = 602.1J /K T q L system = Ú nc P dt = 209,200J 323 DS reservoir = -q system = -209,200 = J /K T reservoir 373K DS universe =DS system +DS reservoir = 97.3J /K (c) As you see from parts (a) and (b), heating the water step-wise by sequential equilibrations with many reservoirs having slightly increasing temperature reduces the total entropy change of the universe. In the limit of an infinite number of reservoirs, the total entropy change of the universe becomes zero (the process is reversible). 10. Gibbs free energy and Helmholtz free energy at equilibrium. Mortimer problem (a) True only for processes at constant pressure and constant temperature. The Gibbs free energy was designed to simplify constant T,P calculations. (b) True only for processes at constant volume and constant temperature. (c) False- the second law dictates only the behavior of the entropy at equilibrium. (d) True for closed systems (no external work applied on the system) PS 4 11 of 14 10/15/03

12 (e) True for closed systems (no external work applied on the system). (f) False- work can still be done on the surroundings. (g) True- the entropy of the surroundings is only affected by heat transfer: ds = dq/t. (h) True. 11. The equivalence of maximizing entropy and minimizing internal energy. A pair of blocks initially at different temperatures are placed in thermal contact. The blocks have constant total volume. Using an analysis similar to our entropy-based calculations in class, show that if the total entropy of the blocks A and B is held constant, then du total = 0 at equilibrium will require T A = T B at equilibrium. Our constraint in this analysis is: = S A + S B = constan t S total = ds A + ds B = 0 ds total ds A =-ds B We now calculate the change in internal energies occurring in this process using the fundamental equation for internal energy: du A =T A ds A du B = T B ds B du universe = du A + du B =T A ds A + T B ds B du universe = (T A -T B )ds A If equilibrium in this system is defined by the condition duuniverse = 0, then to satisfy this condition for any arbitrary small change in the entropy of block A, we must have: T A - T B = 0 or T A = T B which agrees with our earlier result obtained from the entropy point of view PS 4 12 of 14 10/15/03

13 12. Identifying stable phases. You are given below measured enthalpy and entropy data taken at 1 atm pressure as a function of temperature for two different phases (A and B) of a new material. Only one of these phases is the equilibrium phase at any given temperature, the other is metastable. a. At T = 350K, which phase is stable, and which is metastable? b. Show why the metastable phase will be driven to spontaneously transform to the stable phase at this temperature. Data: H A = 5.91(T 298) + 2.9x10-3(T ) cal/mole S A = log(T/298) + 2.9x10-3 (T 298) cal/mole K H B = (T 395) x10-3 (T ) cal/mole S B = log(T/395) x10-3 (T 395) cal/mole K We consider a situation of constant temperature (350K) and pressure (1 atm), thus the Gibbs free energy is the right tool to identify the stable phase. The stable form of the material will be the one with lower Gibbs free energy. We can readily determine the Gibbs free energy per mole using the given enthalpy and entropy data because: G H - TS Shown below is a plot prepared by simply calculating G from the given H(T) and S(T) data plugged into a spreadsheet. At T = 350K, the free energy of the A phase is 4408 J/mole, and the B phase is B 4313 J/mole. Since G A is lower than G, the A phase is stable at 350K G (A phase) G (B phase) G (J/mole) T (K) (b) The second law states that processes increasing the entropy of the universe will occur spontaneously. At constant temperature and pressure, this law translates as: a decrease in Gibbs free energy of the system will increase the entropy of the universe, and thus occur spontaneously PS 4 13 of 14 10/15/03

14 A Since G B > G, the process of transforming the B phase into A phase will be driven to occur spontaneously at T = 350K (it would lower the free energy of the system) PS 4 14 of 14 10/15/03

3.012 PS Issued: Fall 2003 Graded problems due:

3.012 PS Issued: Fall 2003 Graded problems due: 3.012 PS 4 3.012 Issued: 10.07.03 Fall 2003 Graded problems due: 10.15.03 Graded problems: 1. Planes and directions. Consider a 2-dimensional lattice defined by translations T 1 and T 2. a. Is the direction

More information

3.012 PS Issued: Fall 2004 Due: pm

3.012 PS Issued: Fall 2004 Due: pm 3.012 PS 2 3.012 Issued: 09.15.04 Fall 2004 Due: 09.22.04 5pm Graded problems: 1. In discussing coordination numbers and deriving the permitted range of radius ratio, R A / R B, allowed for each ( where

More information

SOLID STATE 18. Reciprocal Space

SOLID STATE 18. Reciprocal Space SOLID STATE 8 Reciprocal Space Wave vectors and the concept of K-space can simplify the explanation of several properties of the solid state. They will be introduced to provide more information on diffraction

More information

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle References: Thermodynamics and an Introduction to Thermostatistics, Callen Physical Chemistry, Levine THE ENTROPY MAXIMUM PRINCIPLE

More information

Class 29: Reciprocal Space 3: Ewald sphere, Simple Cubic, FCC and BCC in Reciprocal Space

Class 29: Reciprocal Space 3: Ewald sphere, Simple Cubic, FCC and BCC in Reciprocal Space Class 29: Reciprocal Space 3: Ewald sphere, Simple Cubic, FCC and BCC in Reciprocal Space We have seen that diffraction occurs when, in reciprocal space, Let us now plot this information. Let us designate

More information

Chemistry. Lecture 10 Maxwell Relations. NC State University

Chemistry. Lecture 10 Maxwell Relations. NC State University Chemistry Lecture 10 Maxwell Relations NC State University Thermodynamic state functions expressed in differential form We have seen that the internal energy is conserved and depends on mechanical (dw)

More information

Thermodynamic Variables and Relations

Thermodynamic Variables and Relations MME 231: Lecture 10 Thermodynamic Variables and Relations A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Thermodynamic relations derived from the Laws of Thermodynamics Definitions

More information

NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap )

NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap ) NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap. 5.3-5.4) Learning objectives for Chapter 7 At the end of this chapter you will be able to: Understand the general features of a unary

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work (with partial credit where it is deserved) so please do not just write down answers with no explanation (or skip important steps)! Please give clear,

More information

Analytical Methods for Materials

Analytical Methods for Materials Analytical Methods for Materials Lesson 15 Reciprocal Lattices and Their Roles in Diffraction Studies Suggested Reading Chs. 2 and 6 in Tilley, Crystals and Crystal Structures, Wiley (2006) Ch. 6 M. DeGraef

More information

Crystal planes. Neutrons: magnetic moment - interacts with magnetic materials or nuclei of non-magnetic materials. (in Å)

Crystal planes. Neutrons: magnetic moment - interacts with magnetic materials or nuclei of non-magnetic materials. (in Å) Crystallography: neutron, electron, and X-ray scattering from periodic lattice, scattering of waves by periodic structures, Miller indices, reciprocal space, Ewald construction. Diffraction: Specular,

More information

Homework Week 8 G = H T S. Given that G = H T S, using the first and second laws we can write,

Homework Week 8 G = H T S. Given that G = H T S, using the first and second laws we can write, Statistical Molecular hermodynamics University of Minnesota Homework Week 8 1. By comparing the formal derivative of G with the derivative obtained taking account of the first and second laws, use Maxwell

More information

Phys 412 Solid State Physics. Lecturer: Réka Albert

Phys 412 Solid State Physics. Lecturer: Réka Albert Phys 412 Solid State Physics Lecturer: Réka Albert What is a solid? A material that keeps its shape Can be deformed by stress Returns to original shape if it is not strained too much Solid structure

More information

Crystal Structure. Dr Bindu Krishnan

Crystal Structure. Dr Bindu Krishnan Solid State Physics-1 Crystal Structure Dr Bindu Krishnan CRYSTAL LATTICE What is crystal (space) lattice? In crystallography, only the geometrical properties of the crystal are of interest, therefore

More information

What is thermodynamics? and what can it do for us?

What is thermodynamics? and what can it do for us? What is thermodynamics? and what can it do for us? The overall goal of thermodynamics is to describe what happens to a system (anything of interest) when we change the variables that characterized the

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

3.012 Structure An Introduction to X-ray Diffraction

3.012 Structure An Introduction to X-ray Diffraction 3.012 Structure An Introduction to X-ray Diffraction This handout summarizes some topics that are important for understanding x-ray diffraction. The following references provide a thorough explanation

More information

Geometry of Crystal Lattice

Geometry of Crystal Lattice 0 Geometry of Crystal Lattice 0.1 Translational Symmetry The crystalline state of substances is different from other states (gaseous, liquid, amorphous) in that the atoms are in an ordered and symmetrical

More information

10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics)

10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) Subect Chemistry Paper No and Title Module No and Title Module Tag 0, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) 0, Free energy

More information

3.012 PS 7 Thermo solutions Issued: Fall 2003 Graded problems due:

3.012 PS 7 Thermo solutions Issued: Fall 2003 Graded problems due: 3.012 PS 7 Thermo solutions 3.012 Issued: 11.17.03 Fall 2003 Graded problems due: 11.26.03 Graded problems: 1. Analysis of equilibrium phases with a binary phase diagram. Shown below is the phase diagram

More information

Concentrating on the system

Concentrating on the system Concentrating on the system Entropy is the basic concept for discussing the direction of natural change, but to use it we have to analyze changes in both the system and its surroundings. We have seen that

More information

...Thermodynamics. Entropy: The state function for the Second Law. Entropy ds = d Q. Central Equation du = TdS PdV

...Thermodynamics. Entropy: The state function for the Second Law. Entropy ds = d Q. Central Equation du = TdS PdV ...Thermodynamics Entropy: The state function for the Second Law Entropy ds = d Q T Central Equation du = TdS PdV Ideal gas entropy s = c v ln T /T 0 + R ln v/v 0 Boltzmann entropy S = klogw Statistical

More information

Thermodynamics and Phase Transitions in Minerals

Thermodynamics and Phase Transitions in Minerals Studiengang Geowissenschaften M.Sc. Wintersemester 2004/05 Thermodynamics and Phase Transitions in Minerals Victor Vinograd & Andrew Putnis Basic thermodynamic concepts One of the central themes in Mineralogy

More information

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc.

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Chapter 3 Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Concepts Energy functions F and G Chemical potential, µ Partial Molar properties

More information

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Objectives In this Lecture you will learn the following The need for studying thermodynamics to understand chemical and biological processes.

More information

Lecture 6 Free Energy

Lecture 6 Free Energy Lecture 6 Free Energy James Chou BCMP21 Spring 28 A quick review of the last lecture I. Principle of Maximum Entropy Equilibrium = A system reaching a state of maximum entropy. Equilibrium = All microstates

More information

disordered, ordered and coherent with the substrate, and ordered but incoherent with the substrate.

disordered, ordered and coherent with the substrate, and ordered but incoherent with the substrate. 5. Nomenclature of overlayer structures Thus far, we have been discussing an ideal surface, which is in effect the structure of the topmost substrate layer. The surface (selvedge) layers of the solid however

More information

Data Provided: A formula sheet and table of physical constants are attached to this paper.

Data Provided: A formula sheet and table of physical constants are attached to this paper. Data Provided: A formula sheet and table of physical constants are attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Spring Semester (2016-2017) From Thermodynamics to Atomic and Nuclear Physics

More information

S = S(f) S(i) dq rev /T. ds = dq rev /T

S = S(f) S(i) dq rev /T. ds = dq rev /T In 1855, Clausius proved the following (it is actually a corollary to Clausius Theorem ): If a system changes between two equilibrium states, i and f, the integral dq rev /T is the same for any reversible

More information

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201) Chapter 3. The Second Law 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The direction of spontaneous change 3.1 The dispersal of energy 3.2 The entropy 3.3 Entropy changes accompanying specific

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2017, UC Berkeley Midterm 2 FORM B March 23, 2017 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed lease show

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: The Second Law: The Concepts Section 4.4-4.7 Third Law of Thermodynamics Nernst Heat Theorem Third- Law Entropies Reaching Very Low Temperatures Helmholtz

More information

Review of classical thermodynamics

Review of classical thermodynamics Review of classical thermodynamics Fundamental Laws, Properties and Processes (2) Entropy and the Second Law Concepts of equilibrium Reversible and irreversible processes he direction of spontaneous change

More information

The Reciprocal Lattice

The Reciprocal Lattice 59-553 The Reciprocal Lattice 61 Because of the reciprocal nature of d spacings and θ from Bragg s Law, the pattern of the diffraction we observe can be related to the crystal lattice by a mathematical

More information

The structure of liquids and glasses. The lattice and unit cell in 1D. The structure of crystalline materials. Describing condensed phase structures

The structure of liquids and glasses. The lattice and unit cell in 1D. The structure of crystalline materials. Describing condensed phase structures Describing condensed phase structures Describing the structure of an isolated small molecule is easy to do Just specify the bond distances and angles How do we describe the structure of a condensed phase?

More information

Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy

Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy Dr. W. Pezzaglia Physics 8C, Spring 2014 Page 1 Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy 1. Work 1 Dr. W. Pezzaglia Physics 8C, Spring 2014 Page 2 (c)

More information

Materials Science and Engineering 102 Structure and Bonding. Prof. Stephen L. Sass. Midterm Examination Duration: 1 hour 20 minutes

Materials Science and Engineering 102 Structure and Bonding. Prof. Stephen L. Sass. Midterm Examination Duration: 1 hour 20 minutes October 9, 008 MSE 0: Structure and Bonding Midterm Exam SOLUTIONS SID: Signature: Materials Science and Engineering 0 Structure and Bonding Prof. Stephen L. Sass Midterm Examination Duration: hour 0 minutes

More information

Identify the intensive quantities from the following: (a) enthalpy (b) volume (c) refractive index (d) none of these

Identify the intensive quantities from the following: (a) enthalpy (b) volume (c) refractive index (d) none of these Q 1. Q 2. Q 3. Q 4. Q 5. Q 6. Q 7. The incorrect option in the following table is: H S Nature of reaction (a) negative positive spontaneous at all temperatures (b) positive negative non-spontaneous regardless

More information

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set.

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. The symbols used here are as discussed in the class. Use scratch paper as needed. Do not give more than one answer for any question.

More information

The Story of Spontaneity and Energy Dispersal. You never get what you want: 100% return on investment

The Story of Spontaneity and Energy Dispersal. You never get what you want: 100% return on investment The Story of Spontaneity and Energy Dispersal You never get what you want: 100% return on investment Spontaneity Spontaneous process are those that occur naturally. Hot body cools A gas expands to fill

More information

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3 The following two problems refer to this situation: #1 A cylindrical chamber containing an ideal diatomic gas is sealed by a movable piston with cross-sectional area A = 0.0015 m 2. The volume of the chamber

More information

Thermodynamics! for Environmentology!

Thermodynamics! for Environmentology! 1 Thermodynamics! for Environmentology! Thermodynamics and kinetics of natural systems Susumu Fukatsu! Applied Quantum Physics Group! The University of Tokyo, Komaba Graduate School of Arts and Sciences

More information

Outline Review Example Problem 1 Example Problem 2. Thermodynamics. Review and Example Problems. X Bai. SDSMT, Physics. Fall 2013

Outline Review Example Problem 1 Example Problem 2. Thermodynamics. Review and Example Problems. X Bai. SDSMT, Physics. Fall 2013 Review and Example Problems SDSMT, Physics Fall 013 1 Review Example Problem 1 Exponents of phase transformation 3 Example Problem Application of Thermodynamic Identity : contents 1 Basic Concepts: Temperature,

More information

PY Introduction to thermodynamics and statistical physics Summer Examination suggested solutions Dr. Asaf Pe er

PY Introduction to thermodynamics and statistical physics Summer Examination suggested solutions Dr. Asaf Pe er PY2104 - Introduction to thermodynamics and statistical physics Summer Examination 2014 - suggested solutions Dr. Asaf Pe er 1) Onemoleofwater(H 2 O)isbeingheatedfrom 20 Cto+80 C,atconstant atmospheric

More information

Some properties of the Helmholtz free energy

Some properties of the Helmholtz free energy Some properties of the Helmholtz free energy Energy slope is T U(S, ) From the properties of U vs S, it is clear that the Helmholtz free energy is always algebraically less than the internal energy U.

More information

Reversible Processes. Furthermore, there must be no friction (i.e. mechanical energy loss) or turbulence i.e. it must be infinitely slow.

Reversible Processes. Furthermore, there must be no friction (i.e. mechanical energy loss) or turbulence i.e. it must be infinitely slow. Reversible Processes A reversible thermodynamic process is one in which the universe (i.e. the system and its surroundings) can be returned to their initial conditions. Because heat only flows spontaneously

More information

Lecture 3 Evaluation of Entropy

Lecture 3 Evaluation of Entropy Lecture 3 Evaluation of Entropy If we wish to designate S by a proper name we can say of it that it is the transformation content of the body, in the same way that we say of the quantity U that it is the

More information

Preliminary Examination - Day 2 August 15, 2014

Preliminary Examination - Day 2 August 15, 2014 UNL - Department of Physics and Astronomy Preliminary Examination - Day 2 August 15, 2014 This test covers the topics of Thermodynamics and Statistical Mechanics (Topic 1) and Mechanics (Topic 2). Each

More information

The Gibbs Phase Rule F = 2 + C - P

The Gibbs Phase Rule F = 2 + C - P The Gibbs Phase Rule The phase rule allows one to determine the number of degrees of freedom (F) or variance of a chemical system. This is useful for interpreting phase diagrams. F = 2 + C - P Where F

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

even at constant T and P, many reversible and irreversible changes of thermodynamic state may

even at constant T and P, many reversible and irreversible changes of thermodynamic state may Chapter 5 Spontaneity and Equilibrium: Free Energy 5.1 Spontaneity and Equilibrium Let us consider that a system is at a constant temperature, T and a constant pressure (P). Note, even at constant T and

More information

[S R (U 0 ɛ 1 ) S R (U 0 ɛ 2 ]. (0.1) k B

[S R (U 0 ɛ 1 ) S R (U 0 ɛ 2 ]. (0.1) k B Canonical ensemble (Two derivations) Determine the probability that a system S in contact with a reservoir 1 R to be in one particular microstate s with energy ɛ s. (If there is degeneracy we are picking

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Rubber elasticity. Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge. February 21, 2009

Rubber elasticity. Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge. February 21, 2009 Rubber elasticity Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge February 21, 2009 A rubber is a material that can undergo large deformations e.g. stretching to five

More information

WHY SHOULD WE CARE ABOUT THERMAL PHENOMENA? they can profoundly influence dynamic behavior. MECHANICS.

WHY SHOULD WE CARE ABOUT THERMAL PHENOMENA? they can profoundly influence dynamic behavior. MECHANICS. WORK-TO-HEAT TRANSDUCTION IN THERMO-FLUID SYSTEMS ENERGY-BASED MODELING IS BUILT ON THERMODYNAMICS the fundamental science of physical processes. THERMODYNAMICS IS TO PHYSICAL SYSTEM DYNAMICS WHAT GEOMETRY

More information

Physics 360 Review 3

Physics 360 Review 3 Physics 360 Review 3 The test will be similar to the second test in that calculators will not be allowed and that the Unit #2 material will be divided into three different parts. There will be one problem

More information

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are perfectly insulated from the surroundings. Is this a spontaneous

More information

Last Name or Student ID

Last Name or Student ID 10/06/08, Chem433 Exam # 1 Last Name or Student ID 1. (3 pts) 2. (3 pts) 3. (3 pts) 4. (2 pts) 5. (2 pts) 6. (2 pts) 7. (2 pts) 8. (2 pts) 9. (6 pts) 10. (5 pts) 11. (6 pts) 12. (12 pts) 13. (22 pts) 14.

More information

Introduction into thermodynamics

Introduction into thermodynamics Introduction into thermodynamics Solid-state thermodynamics, J. Majzlan Chemical thermodynamics deals with reactions between substances and species. Mechanical thermodynamics, on the other hand, works

More information

CHAPTER 6 CHEMICAL EQUILIBRIUM

CHAPTER 6 CHEMICAL EQUILIBRIUM CHAPTER 6 CHEMICAL EQUILIBRIUM Spontaneous process involving a reactive mixture of gases Two new state functions A: criterion for determining if a reaction mixture will evolve towards the reactants or

More information

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes More Thermodynamics Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes Carnot Cycle Efficiency of Engines Entropy More Thermodynamics 1 Specific Heat of Gases

More information

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments

OCN 623: Thermodynamic Laws & Gibbs Free Energy. or how to predict chemical reactions without doing experiments OCN 623: Thermodynamic Laws & Gibbs Free Energy or how to predict chemical reactions without doing experiments Definitions Extensive properties Depend on the amount of material e.g. # of moles, mass or

More information

Lecture 3 Clausius Inequality

Lecture 3 Clausius Inequality Lecture 3 Clausius Inequality Rudolf Julius Emanuel Clausius 2 January 1822 24 August 1888 Defined Entropy Greek, en+tropein content transformative or transformation content The energy of the universe

More information

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014 Review and Example Problems: Part- SDSMT, Physics Fall 014 1 Review Example Problem 1 Exponents of phase transformation : contents 1 Basic Concepts: Temperature, Work, Energy, Thermal systems, Ideal Gas,

More information

Experimental Determination of Crystal Structure

Experimental Determination of Crystal Structure Experimental Determination of Crystal Structure Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. PHYS 624: Introduction to Solid State Physics http://www.physics.udel.edu/~bnikolic/teaching/phys624/phys624.html

More information

Resolution: maximum limit of diffraction (asymmetric)

Resolution: maximum limit of diffraction (asymmetric) Resolution: maximum limit of diffraction (asymmetric) crystal Y X-ray source 2θ X direct beam tan 2θ = Y X d = resolution 2d sinθ = λ detector 1 Unit Cell: two vectors in plane of image c* Observe: b*

More information

I.G Approach to Equilibrium and Thermodynamic Potentials

I.G Approach to Equilibrium and Thermodynamic Potentials I.G Approach to Equilibrium and Thermodynamic otentials Evolution of non-equilibrium systems towards equilibrium is governed by the second law of thermodynamics. For eample, in the previous section we

More information

PHY214 Thermal & Kinetic Physics Duration: 2 hours 30 minutes

PHY214 Thermal & Kinetic Physics Duration: 2 hours 30 minutes BSc Examination by course unit. Friday 5th May 01 10:00 1:30 PHY14 Thermal & Kinetic Physics Duration: hours 30 minutes YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL INSTRUCTED

More information

Physics 404: Final Exam Name (print): "I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Physics 404: Final Exam Name (print): I pledge on my honor that I have not given or received any unauthorized assistance on this examination. Physics 404: Final Exam Name (print): "I pledge on my honor that I have not given or received any unauthorized assistance on this examination." May 20, 2008 Sign Honor Pledge: Don't get bogged down on

More information

Handout 7 Reciprocal Space

Handout 7 Reciprocal Space Handout 7 Reciprocal Space Useful concepts for the analysis of diffraction data http://homepages.utoledo.edu/clind/ Concepts versus reality Reflection from lattice planes is just a concept that helps us

More information

Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 09 Second Law and its Corollaries-IV Good afternoon to all of you to this session

More information

S A 0.6. Units of J/mol K S U /N

S A 0.6. Units of J/mol K S U /N Solutions to Problem Set 5 Exercise 2. Consider heating a body A, of constant heat capacity J/ C and initially at temperature K, to a nal temperature of 2K. The heating takes place by sequentially placing

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

Affinity, Work, and Heat

Affinity, Work, and Heat Affinity, Work, and Heat Introduction 1 The fundamental equation of thermodynamics comes in two forms. First, after defining entropy and limiting the number of ways that a system can exchange energy with

More information

Lecture 4 Clausius Inequality

Lecture 4 Clausius Inequality Lecture 4 Clausius Inequality Entropy distinguishes between irreversible and reversible processes. irrev S > 0 rev In a spontaneous process, there should be a net increase in the entropy of the system

More information

VI. Entropy. VI. Entropy

VI. Entropy. VI. Entropy A. Introduction ( is an alternative way of looking at entropy). Observation shows that isolated systems spontaneously change to a state of equilibrium. a. wo blocks of iron with A > B. Bring the blocks

More information

Thermal and Statistical Physics Department Exam Last updated November 4, L π

Thermal and Statistical Physics Department Exam Last updated November 4, L π Thermal and Statistical Physics Department Exam Last updated November 4, 013 1. a. Define the chemical potential µ. Show that two systems are in diffusive equilibrium if µ 1 =µ. You may start with F =

More information

Gibb s free energy change with temperature in a single component system

Gibb s free energy change with temperature in a single component system Gibb s free energy change with temperature in a single component system An isolated system always tries to maximize the entropy. That means the system is stable when it has maximum possible entropy. Instead

More information

PHYSICS 715 COURSE NOTES WEEK 1

PHYSICS 715 COURSE NOTES WEEK 1 PHYSICS 715 COURSE NOTES WEEK 1 1 Thermodynamics 1.1 Introduction When we start to study physics, we learn about particle motion. First one particle, then two. It is dismaying to learn that the motion

More information

UNIT I SOLID STATE PHYSICS

UNIT I SOLID STATE PHYSICS UNIT I SOLID STATE PHYSICS CHAPTER 1 CRYSTAL STRUCTURE 1.1 INTRODUCTION When two atoms are brought together, two kinds of forces: attraction and repulsion come into play. The force of attraction increases

More information

FUNDAMENTALS OF THERMAL ANALYSIS AND DIFFERENTIAL SCANNING CALORIMETRY Application in Materials Science Investigations

FUNDAMENTALS OF THERMAL ANALYSIS AND DIFFERENTIAL SCANNING CALORIMETRY Application in Materials Science Investigations FUNDAMENTALS OF THERMAL ANALYSIS AND DIFFERENTIAL SCANNING CALORIMETRY Application in Materials Science Investigations Analiza cieplna i kalorymetria różnicowa w badaniach materiałów Tomasz Czeppe Lecture

More information

Phys 460 Describing and Classifying Crystal Lattices

Phys 460 Describing and Classifying Crystal Lattices Phys 460 Describing and Classifying Crystal Lattices What is a material? ^ crystalline Regular lattice of atoms Each atom has a positively charged nucleus surrounded by negative electrons Electrons are

More information

Physics 7B Midterm 1 Problem 1 Solution

Physics 7B Midterm 1 Problem 1 Solution Physics 7B Midterm Problem Solution Matthew Quenneville September 29, 206 (a) Suppose some amount of heat, Q, is added to the gas, while the volume is held constant. This is equivalent to adding some amount

More information

So far changes in the state of systems that occur within the restrictions of the first law of thermodynamics were considered:

So far changes in the state of systems that occur within the restrictions of the first law of thermodynamics were considered: Entropy So far changes in the state of systems that occur within the restrictions of the first law of thermodynamics were considered: Energy is transferred from one state to another by any possible forms,

More information

Hence. The second law describes the direction of energy transfer in spontaneous processes

Hence. The second law describes the direction of energy transfer in spontaneous processes * Heat and Work The first law of thermodynamics states that: Although energy has many forms, the total quantity of energy is constant. When energy disappears in one form, it appears simultaneously in other

More information

3.012 Quiz Fall points total (50 in thermo + 50 in bonding)

3.012 Quiz Fall points total (50 in thermo + 50 in bonding) 3.012 Quiz 3 3.012 12.20.05 Fall 2005 100 points total (50 in thermo + 50 in bonding) Give as much written explanation as possible of your reasoning, and write clearly and legibly. There is plenty of space

More information

Physics 123 Unit #2 Review

Physics 123 Unit #2 Review Physics 123 Unit #2 Review I. Definitions & Facts thermal equilibrium ideal gas thermal energy internal energy heat flow heat capacity specific heat heat of fusion heat of vaporization phase change expansion

More information

Crystal Structure SOLID STATE PHYSICS. Lecture 5. A.H. Harker. thelecture thenextlecture. Physics and Astronomy UCL

Crystal Structure SOLID STATE PHYSICS. Lecture 5. A.H. Harker. thelecture thenextlecture. Physics and Astronomy UCL Crystal Structure thelecture thenextlecture SOLID STATE PHYSICS Lecture 5 A.H. Harker Physics and Astronomy UCL Structure & Diffraction Crystal Diffraction (continued) 2.4 Experimental Methods Notes: examples

More information

10. Heat devices: heat engines and refrigerators (Hiroshi Matsuoka)

10. Heat devices: heat engines and refrigerators (Hiroshi Matsuoka) 10 Heat devices: heat engines and refrigerators (Hiroshi Matsuoka) 1 In this chapter we will discuss how heat devices work Heat devices convert heat into work or work into heat and include heat engines

More information

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube X-ray Diffraction Mineral identification Mode analysis Structure Studies X-ray Generation X-ray tube (sealed) Pure metal target (Cu) Electrons remover inner-shell electrons from target. Other electrons

More information

Preliminary Examination - Day 2 August 16, 2013

Preliminary Examination - Day 2 August 16, 2013 UNL - Department of Physics and Astronomy Preliminary Examination - Day August 16, 13 This test covers the topics of Quantum Mechanics (Topic 1) and Thermodynamics and Statistical Mechanics (Topic ). Each

More information

4. All questions are NOT ofequal value. Marks available for each question are shown in the examination paper.

4. All questions are NOT ofequal value. Marks available for each question are shown in the examination paper. THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS \1111~11\llllllllllllftllll~flrllllllllll\11111111111111111 >014407892 PHYS2060 THER1\1AL PHYSICS FINAL EXAMINATION SESSION 2 - NOVEMBER 2010 I. Time

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Adiabats and entropy (Hiroshi Matsuoka) In this section, we will define the absolute temperature scale and entropy.

Adiabats and entropy (Hiroshi Matsuoka) In this section, we will define the absolute temperature scale and entropy. 1184 Adiabats and entropy (Hiroshi Matsuoka In this section, we will define the absolute temperature scale and entropy Quasi-static adiabatic processes and adiabats Suppose that we have two equilibrium

More information

Quantities and Variables in Thermodynamics. Alexander Miles

Quantities and Variables in Thermodynamics. Alexander Miles Quantities and Variables in Thermodynamics Alexander Miles AlexanderAshtonMiles@gmail.com Written: December 8, 2008 Last edit: December 28, 2008 Thermodynamics has a very large number of variables, spanning

More information

Lecture 4 Clausius Inequality

Lecture 4 Clausius Inequality Lecture 4 Clausius Inequality We know: Heat flows from higher temperature to lower temperature. T A V A U A + U B = constant V A, V B constant S = S A + S B T B V B Diathermic The wall insulating, impermeable

More information

Section 3 Entropy and Classical Thermodynamics

Section 3 Entropy and Classical Thermodynamics Section 3 Entropy and Classical Thermodynamics 3.1 Entropy in thermodynamics and statistical mechanics 3.1.1 The Second Law of Thermodynamics There are various statements of the second law of thermodynamics.

More information

3.012 PS 7 3.012 Issued: 11.05.04 Fall 2004 Due: 11.12.04 THERMODYNAMICS 1. single-component phase diagrams. Shown below is a hypothetical phase diagram for a single-component closed system. Answer the

More information

OSU Physics Department Comprehensive Examination #115

OSU Physics Department Comprehensive Examination #115 1 OSU Physics Department Comprehensive Examination #115 Monday, January 7 and Tuesday, January 8, 2013 Winter 2013 Comprehensive Examination PART 1, Monday, January 7, 9:00am General Instructions This

More information