[S R (U 0 ɛ 1 ) S R (U 0 ɛ 2 ]. (0.1) k B

Size: px
Start display at page:

Download "[S R (U 0 ɛ 1 ) S R (U 0 ɛ 2 ]. (0.1) k B"

Transcription

1 Canonical ensemble (Two derivations) Determine the probability that a system S in contact with a reservoir 1 R to be in one particular microstate s with energy ɛ s. (If there is degeneracy we are picking one of them.) The reservoir has an energy U 0 ɛ s in this case and has g R (U 0 ɛ s ) accessible states; the entire isolated system has the same number of accessible states. (Why?) The relative probability of two states 1 and 2 is given by 2 P (ɛ 1 ) P (ɛ 2 ) = e 1 k B [S R (U 0 ɛ 1 ) S R (U 0 ɛ 2 ]. (0.1) Expand the entropy assuming that the reservoir is very large ( its degeneracy is fantastically large). Use the result we have for the argument of the exponential R /k B = 1 U=U0 k B T β (0.2) where T is the temperature of the reservoir, have P (ɛ 1 ) P (ɛ 2 ) = = e β(ɛ 1 ɛ 2 ) (0.3) This is Equation 9 of Chapter 3 and e βɛ is called the Boltzmann factor. If there are many states with the same energy then the probability of a state with that energy occurring is g(ɛ) e βɛ and this simple fact encapsulates a great deal of physics. Canonical ensemble: Use the Gibbsian approach. Suppose p j is the probability of obtaining the microstate j and we fix the average energy (there can be fluctuations in the total energy and so this is not microcanonical) and maximize the entropy. The mathematical setup is elementary and you should be able to write down the next equation without looking. We have to maximize S = p j ln(p j ) + λ p j 1 β p j ɛ j U. (0.4) k B j j j We obtain by differentiating with respect to p i 1 ln(p i ) + λ β ɛ i = 0. (0.5) Therefore, we obtain p i = e 1+λ e βɛ i (0.6) 1 What is a reservoir? 2 Employ the useful device and write g(u) = e S(U)/k B. 1

2 β = 1 k B T appears as the Lagrange multiplier. The constant λ is obtained by the normalization. We have e λ 1 = Therefore, p j = e βɛ j /Z. We also obtain 1 Z 1 j e βɛ j = 1 Z. (0.7) e βɛ i ɛ i = U. (0.8) i We define the partition function or Zustandsumme (sum over states) Z = s e βɛs.it is easy to verify that This is a useful formula. U = s P (ɛ s ) ɛ s = 1 Z s e βɛs ɛ s = β ln Z. What is the entropy in this formalism? Use Gibbs definition of entropy with p r = Z 1 e βɛr. We have S = k B r p r ln(p r ) = k B Z e βɛr (βɛ r + k B ln(z)) (0.9) r = U T + k B ln(z). (0.10) This is a useful place to record the (statistical mechanical 3 ) definition of the Helmholtz fee energy F = k B T ln Z. We have to connect this definition to the thermodynamically defined Helmholtz free energy and its implications as done in class and the book. As a first step we look at the expression for the entropy from the previous paragraph and the definition of F and see that F = U T S and this is precisely the thermodynamic definition. Two-state problem using the canonical ensemble. See the text page 62 for a clear description. I will just state the formulae assuming that the two states have energies 0 and ɛ. Z = 1 + e βɛ. (0.11) U = β ln Z = ɛ e βɛ 1 + e βɛ = ɛ. (0.12) 1 + eβɛ Often it is easier to compute this for two states 1 and 2 as 3 Why do we call this statistical mechanical? U = p 1 ɛ 1 + p 2 ɛ 2 = ɛ e βɛ 1 + e βɛ (0.13) 2

3 using the Boltzmann factor and avoiding differentiation. Look at high and low temperatures. What is high and low? ( ) Define C V = and plot it. See textbook and homework problems. T Z N 1 Ideal Gas Recapitulation: See page 72 in book. Recall that we wrote Z N (T, V ) = /N! where N! is the de-labeling factor introduced by Gibbs before he knew about distinguishable particles for internal consistency. Astounding! Going from a quantum mechanical sum to an integral we found Z 1 = V n Q = V λ 3 T = V ( ) 2πMkB T 3/2 (0.14) where λ T is the thermal de Broglie wavelength. What is the meaning of the thermal de Broglie wavelength? The characteristic magnitude of the momentum for an ideal gas at a temperature T is given by p2 2m = 3 2 k BT as we se below. Using λ = h p dependence apart from numerical factors. You should be able to recall the definition not the factors. h 2 we find the correct We can also do the problem classically (cheating appropriately 4 ) writing Z 1 = 1 h 3 d 3 x d 3 p2 β p e 2M. (0.15) V The coordinate integral yields V and the momentum integrals yield (do three identical Gaussian integrals in Cartesian coordinates) [ 2πMk B T ] 3. Z N This prescription along with = Z N 1 /N! yields the same answer. Please make sure you are clear about the h3 factor. Derive thermodynamic functions: [ F (T, V, N) = k B T ln Z N (T, V ) = Nk B T ln(v ) + 3 ( ) ] 2 ln 2πMkB T h 2 ln(n) + 1 (0.16) U = β ln Z N(t, V ) = 3 2 Nk BT. (0.17) ( ) C V = = 3 T 2 Nk B. (0.18) (How much energy does it take to heat 1 mole of nitrogen at room temperature by 1C? This is a trick question at this point. Why?) S = U F T [ = Nk B ln(n Q /n) + 5 ] 2 4 Can you identify the two places where we cheat? V ( ) V = Nk B [ln + 3 ( ) N 2 ln 2πMkB T h ] 2 (0.19) 3

4 where n N V. The above is the Sackur-Tetrode formula and was verified experimentally confirming the h 3 factor. Of course, the same factor arises when we do the particle in a box and take the limit. The molar entropy of Argon measured at p = 1 atm is (J/K) mol 1. What does the above equation yield? Statistical mechanics: Start from U = r p r ɛ r and write du = r ɛ r dp r + r p r dɛ r and consider the first term. We have p r = e βɛr Z ɛ r = k B T (ln Z + ln p r ). Using this relation for ɛ r we obtain for the first term du 1 = r ɛ r dp r = k B T r [dp r ln(p r ) k B T ln(z) r dp r (0.20) Thus we obtain The other term yields pdv. We write du 2 = r ( ) du 1 = k B T d p r ln(p r ) = T ds. (0.21) p r dɛ r = r r p r ɛ r V dv = dv ɛr V = p dv. (0.22) We have shown that du = T ds pdv. The derivation is for completeness and can be forgotten (if there was any danger that you would remember it). The second term is the work done on the system. If V decreases then dw is negative and positive work is done on the system. Thermodynamics: Define F U T S. This is a Legendre transformation and implies F = F (T, V, N). Why? We know T ds = du + pdv keeping N a constant from the fundamental thermodynamic relation. df = du T ds SdT = du du + pdv SdT = SdT pdv. Thus F/ T = S and F/ V = p. This is very important. Derive Maxwell s relation from above: / V = p/ T. (Equation 51) Therefore we have F k B T ln ZS is thermodynamically defined Helmholtz free energy. They obey the same differential relation derived above. Another important result is that F is an extremum in equilibrium at constant V and T. What exactly does this mean? 4

5 Legendre Transformation We consider U(S, V, N) where S and V are used as independent variables (In statistical mechanics we imagine we are in the microcanonical ensemble and we have inverted S(U, V, N) to obtain U(S, V, N).) We recall the fundamental relation du = T ds pdv (0.23) ( ) ( ) ( ) = ds + dv + (0.24) V N Clearly, this implies that T = ( ). We would like to trade S for the partial derivative with respect to S, i.e., T, so that T and V can be used as independent variables. S,N S,V Note that the mathematical problem to be solved can be abstracted and posed as follows: Consider the curve y = f(x). Define the slope z by z = y x where we have used a partial derivative to emphasize that all other dependences of f are kept fixed. We will not be so pedantic in the rest of this section and use simple derivatives. We wish to use the slope as the independent variable. Can one describe the curve in terms of z, the slope? (Convince yourself that this is the same problem as the one raised above in the context of thermodynamics. Instead of U(S) we wish to describe the system in terms of (/) the derivative.) First attempt: Let y = 4x 3. Hence, z = dy/dx = 12x 2. The latter can be inverted to obtain x = z/12. Substituting for x in terms of z we obtain y = 4(z/12) 3/2. So we have expressed y in terms of the slope z, we are done, right? Not! This is obvious geometrically because the curve is not uniquely specified by the slope: Translates of the curve are not distinguished. We can ascertain this analytically by noting that when y is expressed as a function of (dy/dx), a first-order differential equation has to be solved there is a constant of integration to be determined. We can solve the problem geometrically: Let (x, y) denote points on the curve y = f(x) shown below. We can represent the curve by (ψ, z) where z is the slope at a given point on the curve and ψ is the intercept along the y axis of the tangent to the curve as shown below. Draw a figure. The required curve is obtained as the envelope of the family of the tangent lines. Using the figure we see that z = y ψ x, and therefore, we have ψ = y xz. More explicitly, ψ = y x dy dx. (0.25) Thus we have the definition of the Legendre transform and its geometrical interpretation. In the thermodynamic problem we have U = U(S, V, N). To trade S for the derivative 5

6 with respect to S, T = ( ), we use F = ( ) U S V (0.26) = U T S. (0.27) This is the definition of the Helmholtz Free Energy. Check that the definitions of the enthalpy and the Gibbs Free Energy can be written down analogously. It is easiest to think of G(T, p, N) = F (T, V, N) + pv and remember that p = ( F/ V ) T,N. Please pay attention to signs. Important Aside: In classical mechanics the Lagrangian L is a function of the coordinates {q i } and { q i }. We define the momenta by p i = L q i and we would like trade { q i } for the momenta that are the derivatives of L with respect to { q i }. This is again done by a Legendre transformation defining the Hamiltonian by convention as H = L i p i q i. (0.28) 6

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble Recall from before: Internal energy (or Entropy): &, *, - (# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble & = /01Ω maximized Ω: fundamental statistical quantity

More information

PHYS 352 Homework 2 Solutions

PHYS 352 Homework 2 Solutions PHYS 352 Homework 2 Solutions Aaron Mowitz (, 2, and 3) and Nachi Stern (4 and 5) Problem The purpose of doing a Legendre transform is to change a function of one or more variables into a function of variables

More information

i=1 n i, the canonical probabilities of the micro-states [ βǫ i=1 e βǫn 1 n 1 =0 +Nk B T Nǫ 1 + e ǫ/(k BT), (IV.75) E = F + TS =

i=1 n i, the canonical probabilities of the micro-states [ βǫ i=1 e βǫn 1 n 1 =0 +Nk B T Nǫ 1 + e ǫ/(k BT), (IV.75) E = F + TS = IV.G Examples The two examples of sections (IV.C and (IV.D are now reexamined in the canonical ensemble. 1. Two level systems: The impurities are described by a macro-state M (T,. Subject to the Hamiltonian

More information

Advanced Thermodynamics. Jussi Eloranta (Updated: January 22, 2018)

Advanced Thermodynamics. Jussi Eloranta (Updated: January 22, 2018) Advanced Thermodynamics Jussi Eloranta (jmeloranta@gmail.com) (Updated: January 22, 2018) Chapter 1: The machinery of statistical thermodynamics A statistical model that can be derived exactly from the

More information

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H Solutions exam 2 roblem 1 a Which of those quantities defines a thermodynamic potential Why? 2 points i T, p, N Gibbs free energy G ii T, p, µ no thermodynamic potential, since T, p, µ are not independent

More information

1 Particles in a room

1 Particles in a room Massachusetts Institute of Technology MITES 208 Physics III Lecture 07: Statistical Physics of the Ideal Gas In these notes we derive the partition function for a gas of non-interacting particles in a

More information

9.1 System in contact with a heat reservoir

9.1 System in contact with a heat reservoir Chapter 9 Canonical ensemble 9. System in contact with a heat reservoir We consider a small system A characterized by E, V and N in thermal interaction with a heat reservoir A 2 characterized by E 2, V

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #10

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #10 MASSACHUSES INSIUE OF ECHNOLOGY Physics Department 8.044 Statistical Physics I Spring erm 203 Problem : wo Identical Particles Solutions to Problem Set #0 a) Fermions:,, 0 > ɛ 2 0 state, 0, > ɛ 3 0,, >

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Thermodynamics of phase transitions

Thermodynamics of phase transitions Thermodynamics of phase transitions Katarzyna Sznajd-Weron Department of Theoretical of Physics Wroc law University of Science and Technology, Poland March 12, 2017 Katarzyna Sznajd-Weron (WUST) Thermodynamics

More information

Physics 112 The Classical Ideal Gas

Physics 112 The Classical Ideal Gas Physics 112 The Classical Ideal Gas Peter Young (Dated: February 6, 2012) We will obtain the equation of state and other properties, such as energy and entropy, of the classical ideal gas. We will start

More information

Chapter 3. Entropy, temperature, and the microcanonical partition function: how to calculate results with statistical mechanics.

Chapter 3. Entropy, temperature, and the microcanonical partition function: how to calculate results with statistical mechanics. Chapter 3. Entropy, temperature, and the microcanonical partition function: how to calculate results with statistical mechanics. The goal of equilibrium statistical mechanics is to calculate the density

More information

...Thermodynamics. Entropy: The state function for the Second Law. Entropy ds = d Q. Central Equation du = TdS PdV

...Thermodynamics. Entropy: The state function for the Second Law. Entropy ds = d Q. Central Equation du = TdS PdV ...Thermodynamics Entropy: The state function for the Second Law Entropy ds = d Q T Central Equation du = TdS PdV Ideal gas entropy s = c v ln T /T 0 + R ln v/v 0 Boltzmann entropy S = klogw Statistical

More information

where (E) is the partition function of the uniform ensemble. Recalling that we have (E) = E (E) (E) i = ij x (E) j E = ij ln (E) E = k ij ~ S E = kt i

where (E) is the partition function of the uniform ensemble. Recalling that we have (E) = E (E) (E) i = ij x (E) j E = ij ln (E) E = k ij ~ S E = kt i G25.265: Statistical Mechanics Notes for Lecture 4 I. THE CLASSICAL VIRIAL THEOREM (MICROCANONICAL DERIVATION) Consider a system with Hamiltonian H(x). Let x i and x j be specic components of the phase

More information

Lecture 6: Ideal gas ensembles

Lecture 6: Ideal gas ensembles Introduction Lecture 6: Ideal gas ensembles A simple, instructive and practical application of the equilibrium ensemble formalisms of the previous lecture concerns an ideal gas. Such a physical system

More information

Microcanonical Ensemble

Microcanonical Ensemble Entropy for Department of Physics, Chungbuk National University October 4, 2018 Entropy for A measure for the lack of information (ignorance): s i = log P i = log 1 P i. An average ignorance: S = k B i

More information

Ideal gases. Asaf Pe er Classical ideal gas

Ideal gases. Asaf Pe er Classical ideal gas Ideal gases Asaf Pe er 1 November 2, 213 1. Classical ideal gas A classical gas is generally referred to as a gas in which its molecules move freely in space; namely, the mean separation between the molecules

More information

Nanoscale simulation lectures Statistical Mechanics

Nanoscale simulation lectures Statistical Mechanics Nanoscale simulation lectures 2008 Lectures: Thursdays 4 to 6 PM Course contents: - Thermodynamics and statistical mechanics - Structure and scattering - Mean-field approaches - Inhomogeneous systems -

More information

PHYSICS 214A Midterm Exam February 10, 2009

PHYSICS 214A Midterm Exam February 10, 2009 Clearly Print LAS NAME: FIRS NAME: SIGNAURE: I.D. # PHYSICS 2A Midterm Exam February 0, 2009. Do not open the exam until instructed to do so. 2. Write your answers in the spaces provided for each part

More information

We already came across a form of indistinguishably in the canonical partition function: V N Q =

We already came across a form of indistinguishably in the canonical partition function: V N Q = Bosons en fermions Indistinguishability We already came across a form of indistinguishably in the canonical partition function: for distinguishable particles Q = Λ 3N βe p r, r 2,..., r N ))dτ dτ 2...

More information

ChE 210B: Advanced Topics in Equilibrium Statistical Mechanics

ChE 210B: Advanced Topics in Equilibrium Statistical Mechanics ChE 210B: Advanced Topics in Equilibrium Statistical Mechanics Glenn Fredrickson Lecture 1 Reading: 3.1-3.5 Chandler, Chapters 1 and 2 McQuarrie This course builds on the elementary concepts of statistical

More information

Part II: Statistical Physics

Part II: Statistical Physics Chapter 6: Boltzmann Statistics SDSMT, Physics Fall Semester: Oct. - Dec., 2014 1 Introduction: Very brief 2 Boltzmann Factor Isolated System and System of Interest Boltzmann Factor The Partition Function

More information

Outline Review Example Problem 1 Example Problem 2. Thermodynamics. Review and Example Problems. X Bai. SDSMT, Physics. Fall 2013

Outline Review Example Problem 1 Example Problem 2. Thermodynamics. Review and Example Problems. X Bai. SDSMT, Physics. Fall 2013 Review and Example Problems SDSMT, Physics Fall 013 1 Review Example Problem 1 Exponents of phase transformation 3 Example Problem Application of Thermodynamic Identity : contents 1 Basic Concepts: Temperature,

More information

Chemistry. Lecture 10 Maxwell Relations. NC State University

Chemistry. Lecture 10 Maxwell Relations. NC State University Chemistry Lecture 10 Maxwell Relations NC State University Thermodynamic state functions expressed in differential form We have seen that the internal energy is conserved and depends on mechanical (dw)

More information

2. Thermodynamics. Introduction. Understanding Molecular Simulation

2. Thermodynamics. Introduction. Understanding Molecular Simulation 2. Thermodynamics Introduction Molecular Simulations Molecular dynamics: solve equations of motion r 1 r 2 r n Monte Carlo: importance sampling r 1 r 2 r n How do we know our simulation is correct? Molecular

More information

ChE 503 A. Z. Panagiotopoulos 1

ChE 503 A. Z. Panagiotopoulos 1 ChE 503 A. Z. Panagiotopoulos 1 STATISTICAL MECHANICAL ENSEMLES 1 MICROSCOPIC AND MACROSCOPIC ARIALES The central question in Statistical Mechanics can be phrased as follows: If particles (atoms, molecules,

More information

(a) How much work is done by the gas? (b) Assuming the gas behaves as an ideal gas, what is the final temperature? V γ+1 2 V γ+1 ) pdv = K 1 γ + 1

(a) How much work is done by the gas? (b) Assuming the gas behaves as an ideal gas, what is the final temperature? V γ+1 2 V γ+1 ) pdv = K 1 γ + 1 P340: hermodynamics and Statistical Physics, Exam#, Solution. (0 point) When gasoline explodes in an automobile cylinder, the temperature is about 2000 K, the pressure is is 8.0 0 5 Pa, and the volume

More information

Chapter 4: Partial differentiation

Chapter 4: Partial differentiation Chapter 4: Partial differentiation It is generally the case that derivatives are introduced in terms of functions of a single variable. For example, y = f (x), then dy dx = df dx = f. However, most of

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work, with partial credit where it is deserved. Please give clear, well-organized solutions. 1. Consider the coexistence curve separating two different

More information

Thermodynamic Variables and Relations

Thermodynamic Variables and Relations MME 231: Lecture 10 Thermodynamic Variables and Relations A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Thermodynamic relations derived from the Laws of Thermodynamics Definitions

More information

Grand Canonical Formalism

Grand Canonical Formalism Grand Canonical Formalism Grand Canonical Ensebmle For the gases of ideal Bosons and Fermions each single-particle mode behaves almost like an independent subsystem, with the only reservation that the

More information

A Brief Introduction to Statistical Mechanics

A Brief Introduction to Statistical Mechanics A Brief Introduction to Statistical Mechanics E. J. Maginn, J. K. Shah Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame, IN 46556 USA Monte Carlo Workshop Universidade

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

2m + U( q i), (IV.26) i=1

2m + U( q i), (IV.26) i=1 I.D The Ideal Gas As discussed in chapter II, micro-states of a gas of N particles correspond to points { p i, q i }, in the 6N-dimensional phase space. Ignoring the potential energy of interactions, the

More information

Some properties of the Helmholtz free energy

Some properties of the Helmholtz free energy Some properties of the Helmholtz free energy Energy slope is T U(S, ) From the properties of U vs S, it is clear that the Helmholtz free energy is always algebraically less than the internal energy U.

More information

8.044 Lecture Notes Chapter 5: Thermodynamcs, Part 2

8.044 Lecture Notes Chapter 5: Thermodynamcs, Part 2 8.044 Lecture Notes Chapter 5: hermodynamcs, Part 2 Lecturer: McGreevy 5.1 Entropy is a state function............................ 5-2 5.2 Efficiency of heat engines............................. 5-6 5.3

More information

PHY 5524: Statistical Mechanics, Spring February 11 th, 2013 Midterm Exam # 1

PHY 5524: Statistical Mechanics, Spring February 11 th, 2013 Midterm Exam # 1 PHY 554: Statistical Mechanics, Spring 013 February 11 th, 013 Midterm Exam # 1 Always remember to write full work for what you do. This will help your grade in case of incomplete or wrong answers. Also,

More information

1. Thermodynamics 1.1. A macroscopic view of matter

1. Thermodynamics 1.1. A macroscopic view of matter 1. Thermodynamics 1.1. A macroscopic view of matter Intensive: independent of the amount of substance, e.g. temperature,pressure. Extensive: depends on the amount of substance, e.g. internal energy, enthalpy.

More information

Physics 607 Final Exam

Physics 607 Final Exam Physics 607 Final Exam Please be well-organized, and show all significant steps clearly in all problems You are graded on your work, so please do not ust write down answers with no explanation! o state

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.62 Physical Chemistry II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.62 Lecture #9: CALCULATION

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2024W1 SEMESTER 2 EXAMINATION 2011/12 Quantum Physics of Matter Duration: 120 MINS VERY IMPORTANT NOTE Section A answers MUST BE in a separate blue answer book. If any blue

More information

Physics 4230 Final Examination 10 May 2007

Physics 4230 Final Examination 10 May 2007 Physics 43 Final Examination May 7 In each problem, be sure to give the reasoning for your answer and define any variables you create. If you use a general formula, state that formula clearly before manipulating

More information

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014 Review and Example Problems: Part- SDSMT, Physics Fall 014 1 Review Example Problem 1 Exponents of phase transformation : contents 1 Basic Concepts: Temperature, Work, Energy, Thermal systems, Ideal Gas,

More information

Physics 333, Thermal and Statistical Physics: Homework #2 Solutions Manual

Physics 333, Thermal and Statistical Physics: Homework #2 Solutions Manual Physics 333, Thermal and Statistical Physics: Homework #2 Solutions Manual 1. n 5 = 0 n 5 = 1 n 5 = 2 n 5 = 3 n 5 = 4 n 5 = 5 d n 5,0,0,0,0 4 0 0 0 0 1 5 4,1,0,0,0 12 4 0 0 4 0 20 3,2,0,0,0 12 0 4 4 0

More information

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc.

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Chapter 3 Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Concepts Energy functions F and G Chemical potential, µ Partial Molar properties

More information

4.1 Constant (T, V, n) Experiments: The Helmholtz Free Energy

4.1 Constant (T, V, n) Experiments: The Helmholtz Free Energy Chapter 4 Free Energies The second law allows us to determine the spontaneous direction of of a process with constant (E, V, n). Of course, there are many processes for which we cannot control (E, V, n)

More information

ln( P vap(s) / torr) = T / K ln( P vap(l) / torr) = T / K

ln( P vap(s) / torr) = T / K ln( P vap(l) / torr) = T / K Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics Fall Semester 2017 Homework Problem Set Number 9 Solutions 1. McQuarrie and Simon, 9-4. Paraphrase: Given expressions

More information

Statistical Mechanics I

Statistical Mechanics I Statistical Mechanics I Peter S. Riseborough November 15, 11 Contents 1 Introduction 4 Thermodynamics 4.1 The Foundations of Thermodynamics............... 4. Thermodynamic Equilibrium....................

More information

U = γkt N. is indeed an exact one form. Thus there exists a function U(S, V, N) so that. du = T ds pdv. U S = T, U V = p

U = γkt N. is indeed an exact one form. Thus there exists a function U(S, V, N) so that. du = T ds pdv. U S = T, U V = p A short introduction to statistical mechanics Thermodynamics consists of the application of two principles, the first law which says that heat is energy hence the law of conservation of energy must apply

More information

X α = E x α = E. Ω Y (E,x)

X α = E x α = E. Ω Y (E,x) LCTUR 4 Reversible and Irreversible Processes Consider an isolated system in equilibrium (i.e., all microstates are equally probable), with some number of microstates Ω i that are accessible to the system.

More information

The state of a quantum ideal gas is uniquely specified by the occupancy of singleparticle

The state of a quantum ideal gas is uniquely specified by the occupancy of singleparticle Ideal Bose gas The state of a quantum ideal gas is uniquely specified by the occupancy of singleparticle states, the set {n α } where α denotes the quantum numbers of a singleparticles state such as k

More information

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle References: Thermodynamics and an Introduction to Thermostatistics, Callen Physical Chemistry, Levine THE ENTROPY MAXIMUM PRINCIPLE

More information

Statistical Mechanics

Statistical Mechanics Statistical Mechanics Newton's laws in principle tell us how anything works But in a system with many particles, the actual computations can become complicated. We will therefore be happy to get some 'average'

More information

Homework Hint. Last Time

Homework Hint. Last Time Homework Hint Problem 3.3 Geometric series: ωs τ ħ e s= 0 =? a n ar = For 0< r < 1 n= 0 1 r ωs τ ħ e s= 0 1 = 1 e ħω τ Last Time Boltzmann factor Partition Function Heat Capacity The magic of the partition

More information

Quiz 3 for Physics 176: Answers. Professor Greenside

Quiz 3 for Physics 176: Answers. Professor Greenside Quiz 3 for Physics 176: Answers Professor Greenside True or False Questions ( points each) For each of the following statements, please circle T or F to indicate respectively whether a given statement

More information

Part II: Statistical Physics

Part II: Statistical Physics Chapter 6: Boltzmann Statistics SDSMT, Physics Fall Semester: Oct. - Dec., 2013 1 Introduction: Very brief 2 Boltzmann Factor Isolated System and System of Interest Boltzmann Factor The Partition Function

More information

Statistical thermodynamics L1-L3. Lectures 11, 12, 13 of CY101

Statistical thermodynamics L1-L3. Lectures 11, 12, 13 of CY101 Statistical thermodynamics L1-L3 Lectures 11, 12, 13 of CY101 Need for statistical thermodynamics Microscopic and macroscopic world Distribution of energy - population Principle of equal a priori probabilities

More information

763620SS STATISTICAL PHYSICS Solutions 5 Autumn 2012

763620SS STATISTICAL PHYSICS Solutions 5 Autumn 2012 7660SS STATISTICAL PHYSICS Solutions 5 Autumn 01 1 Classical Flow in Phase Space Determine the trajectories of classical Hamiltonian flow in -dim corresponding to a particle in a constant gravitational

More information

PY Introduction to thermodynamics and statistical physics Summer Examination suggested solutions Dr. Asaf Pe er

PY Introduction to thermodynamics and statistical physics Summer Examination suggested solutions Dr. Asaf Pe er PY2104 - Introduction to thermodynamics and statistical physics Summer Examination 2014 - suggested solutions Dr. Asaf Pe er 1) Onemoleofwater(H 2 O)isbeingheatedfrom 20 Cto+80 C,atconstant atmospheric

More information

Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras

Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras Module No. # 02 Additional Thermodynamic Functions Lecture No.

More information

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21 Preface Reference tables Table A Counting and combinatorics formulae Table B Useful integrals, expansions, and approximations Table C Extensive thermodynamic potentials Table D Intensive per-particle thermodynamic

More information

4. All questions are NOT ofequal value. Marks available for each question are shown in the examination paper.

4. All questions are NOT ofequal value. Marks available for each question are shown in the examination paper. THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF PHYSICS \1111~11\llllllllllllftllll~flrllllllllll\11111111111111111 >014407892 PHYS2060 THER1\1AL PHYSICS FINAL EXAMINATION SESSION 2 - NOVEMBER 2010 I. Time

More information

10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics)

10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) Subect Chemistry Paper No and Title Module No and Title Module Tag 0, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) 0, Free energy

More information

Section 3 Entropy and Classical Thermodynamics

Section 3 Entropy and Classical Thermodynamics Section 3 Entropy and Classical Thermodynamics 3.1 Entropy in thermodynamics and statistical mechanics 3.1.1 The Second Law of Thermodynamics There are various statements of the second law of thermodynamics.

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work (with partial credit where it is deserved) so please do not just write down answers with no explanation (or skip important steps)! Please give clear,

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics Physics 576 Stellar Astrophysics Prof. James Buckley Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics Reading/Homework Assignment Read chapter 3 in Rose. Midterm Exam, April 5 (take home)

More information

A.1 Homogeneity of the fundamental relation

A.1 Homogeneity of the fundamental relation Appendix A The Gibbs-Duhem Relation A.1 Homogeneity of the fundamental relation The Gibbs Duhem relation follows from the fact that entropy is an extensive quantity and that it is a function of the other

More information

Lecture 6 Free Energy

Lecture 6 Free Energy Lecture 6 Free Energy James Chou BCMP21 Spring 28 A quick review of the last lecture I. Principle of Maximum Entropy Equilibrium = A system reaching a state of maximum entropy. Equilibrium = All microstates

More information

Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy

Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy Dr. W. Pezzaglia Physics 8C, Spring 2014 Page 1 Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy 1. Work 1 Dr. W. Pezzaglia Physics 8C, Spring 2014 Page 2 (c)

More information

Brief introduction to groups and group theory

Brief introduction to groups and group theory Brief introduction to groups and group theory In physics, we often can learn a lot about a system based on its symmetries, even when we do not know how to make a quantitative calculation Relevant in particle

More information

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

Thermodynamic equilibrium

Thermodynamic equilibrium Statistical Mechanics Phys504 Fall 2006 Lecture #3 Anthony J. Leggett Department of Physics, UIUC Thermodynamic equilibrium Let s consider a situation where the Universe, i.e. system plus its environment

More information

although Boltzmann used W instead of Ω for the number of available states.

although Boltzmann used W instead of Ω for the number of available states. Lecture #13 1 Lecture 13 Obectives: 1. Ensembles: Be able to list the characteristics of the following: (a) icrocanonical (b) Canonical (c) Grand Canonical 2. Be able to use Lagrange s method of undetermined

More information

NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap )

NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap ) NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap. 5.3-5.4) Learning objectives for Chapter 7 At the end of this chapter you will be able to: Understand the general features of a unary

More information

Entropy and Free Energy in Biology

Entropy and Free Energy in Biology Entropy and Free Energy in Biology Energy vs. length from Phillips, Quake. Physics Today. 59:38-43, 2006. kt = 0.6 kcal/mol = 2.5 kj/mol = 25 mev typical protein typical cell Thermal effects = deterministic

More information

Statistical Mechanics Notes. Ryan D. Reece

Statistical Mechanics Notes. Ryan D. Reece Statistical Mechanics Notes Ryan D. Reece August 11, 2006 Contents 1 Thermodynamics 3 1.1 State Variables.......................... 3 1.2 Inexact Differentials....................... 5 1.3 Work and Heat..........................

More information

The Maxwell Relations

The Maxwell Relations CHEM 331 Physical Chemistry Fall 2017 The Maxwell Relations We now turn to one last and very useful consequence of the thermodynamic state functions we have been considering. Each of these potentials (U,

More information

Thus, the volume element remains the same as required. With this transformation, the amiltonian becomes = p i m i + U(r 1 ; :::; r N ) = and the canon

Thus, the volume element remains the same as required. With this transformation, the amiltonian becomes = p i m i + U(r 1 ; :::; r N ) = and the canon G5.651: Statistical Mechanics Notes for Lecture 5 From the classical virial theorem I. TEMPERATURE AND PRESSURE ESTIMATORS hx i x j i = kt ij we arrived at the equipartition theorem: * + p i = m i NkT

More information

Removing the mystery of entropy and thermodynamics. Part 3

Removing the mystery of entropy and thermodynamics. Part 3 Removing the mystery of entropy and thermodynamics. Part 3 arvey S. Leff a,b Physics Department Reed College, Portland, Oregon USA August 3, 20 Introduction In Part 3 of this five-part article, [, 2] simple

More information

Problem Set 4 Solutions 3.20 MIT Dr. Anton Van Der Ven Fall 2002

Problem Set 4 Solutions 3.20 MIT Dr. Anton Van Der Ven Fall 2002 Problem Set 4 Solutions 3.20 MIT Dr. Anton Van Der Ven Fall 2002 Problem -22 For this problem we need the formula given in class (Mcuarie -33) for the energy states of a particle in an three-dimensional

More information

Thermodynamics: A Brief Introduction. Thermodynamics: A Brief Introduction

Thermodynamics: A Brief Introduction. Thermodynamics: A Brief Introduction Brief review or introduction to Classical Thermodynamics Hopefully you remember this equation from chemistry. The Gibbs Free Energy (G) as related to enthalpy (H) and entropy (S) and temperature (T). Δ

More information

The goal of equilibrium statistical mechanics is to calculate the diagonal elements of ˆρ eq so we can evaluate average observables < A >= Tr{Â ˆρ eq

The goal of equilibrium statistical mechanics is to calculate the diagonal elements of ˆρ eq so we can evaluate average observables < A >= Tr{Â ˆρ eq Chapter. The microcanonical ensemble The goal of equilibrium statistical mechanics is to calculate the diagonal elements of ˆρ eq so we can evaluate average observables < A >= Tr{Â ˆρ eq } = A that give

More information

1 The fundamental equation of equilibrium statistical mechanics. 3 General overview on the method of ensembles 10

1 The fundamental equation of equilibrium statistical mechanics. 3 General overview on the method of ensembles 10 Contents EQUILIBRIUM STATISTICAL MECHANICS 1 The fundamental equation of equilibrium statistical mechanics 2 2 Conjugate representations 6 3 General overview on the method of ensembles 10 4 The relation

More information

G : Statistical Mechanics

G : Statistical Mechanics G25.2651: Statistical Mechanics Notes for Lecture 1 Defining statistical mechanics: Statistical Mechanics provies the connection between microscopic motion of individual atoms of matter and macroscopically

More information

Absolute Zero and the Third Law of Thermodynamics

Absolute Zero and the Third Law of Thermodynamics Absolute Zero the hird Law of hermodynamics ELEGAN CONNECIONS IN PHYSICS 1. HE HIRD LAW OF HERMODYNAMICS A system s internal energy U entropy S are introduced in terms of their changes. he First Law of

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSIY OF SOUHAMPON PHYS1013W1 SEMESER 2 EXAMINAION 2013-2014 Energy and Matter Duration: 120 MINS (2 hours) his paper contains 9 questions. Answers to Section A and Section B must be in separate answer

More information

Statistical Mechanics. Hagai Meirovitch BBSI 2007

Statistical Mechanics. Hagai Meirovitch BBSI 2007 Statistical Mechanics Hagai Meirovitch SI 007 1 Program (a) We start by summarizing some properties of basic physics of mechanical systems. (b) A short discussion on classical thermodynamics differences

More information

Chapter 10: Statistical Thermodynamics

Chapter 10: Statistical Thermodynamics Chapter 10: Statistical Thermodynamics Chapter 10: Statistical Thermodynamics...125 10.1 The Statistics of Equilibrium States...125 10.2 Liouville's Theorem...127 10.3 The Equilibrium Distribution Function...130

More information

Express the transition state equilibrium constant in terms of the partition functions of the transition state and the

Express the transition state equilibrium constant in terms of the partition functions of the transition state and the Module 7 : Theories of Reaction Rates Lecture 33 : Transition State Theory Objectives After studying this Lecture you will be able to do the following. Distinguish between collision theory and transition

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble The object of this endeavor is to impose a simple probability

More information

Monatomic ideal gas: partition functions and equation of state.

Monatomic ideal gas: partition functions and equation of state. Monatomic ideal gas: partition functions and equation of state. Peter Košovan peter.kosovan@natur.cuni.cz Dept. of Physical and Macromolecular Chemistry Statistical Thermodynamics, MC260P105, Lecture 3,

More information

Effect of adding an ideal inert gas, M

Effect of adding an ideal inert gas, M Effect of adding an ideal inert gas, M Add gas M If there is no change in volume, then the partial pressures of each of the ideal gas components remains unchanged by the addition of M. If the reaction

More information

The Euler Equation. Using the additive property of the internal energy U, we can derive a useful thermodynamic relation the Euler equation.

The Euler Equation. Using the additive property of the internal energy U, we can derive a useful thermodynamic relation the Euler equation. The Euler Equation Using the additive property of the internal energy U, we can derive a useful thermodynamic relation the Euler equation. Let us differentiate this extensivity condition with respect to

More information

The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit:

The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: Chapter 13 Ideal Fermi gas The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: k B T µ, βµ 1, which defines the degenerate Fermi gas. In this

More information

WHY SHOULD WE CARE ABOUT THERMAL PHENOMENA? they can profoundly influence dynamic behavior. MECHANICS.

WHY SHOULD WE CARE ABOUT THERMAL PHENOMENA? they can profoundly influence dynamic behavior. MECHANICS. WORK-TO-HEAT TRANSDUCTION IN THERMO-FLUID SYSTEMS ENERGY-BASED MODELING IS BUILT ON THERMODYNAMICS the fundamental science of physical processes. THERMODYNAMICS IS TO PHYSICAL SYSTEM DYNAMICS WHAT GEOMETRY

More information

Recitation: 10 11/06/03

Recitation: 10 11/06/03 Recitation: 10 11/06/03 Ensembles and Relation to T.D. It is possible to expand both sides of the equation with F = kt lnq Q = e βe i If we expand both sides of this equation, we apparently obtain: i F

More information

Physics 119A Final Examination

Physics 119A Final Examination First letter of last name Name: Perm #: Email: Physics 119A Final Examination Thursday 10 December, 2009 Question 1 / 25 Question 2 / 25 Question 3 / 15 Question 4 / 20 Question 5 / 15 BONUS Total / 100

More information

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 5. Simple Mixtures Fall Semester Physical Chemistry 1 (CHM2201) Chapter 5. Simple Mixtures 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The thermodynamic description of mixtures 5.1 Partial molar quantities 5.2 The thermodynamic of Mixing 5.3 The chemical

More information

to satisfy the large number approximations, W W sys can be small.

to satisfy the large number approximations, W W sys can be small. Chapter 12. The canonical ensemble To discuss systems at constant T, we need to embed them with a diathermal wall in a heat bath. Note that only the system and bath need to be large for W tot and W bath

More information